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Abstract

A radiology report typically comprises multiple sentences covering different as-
pects of an imaging examination. With some preprocessing effort, these sentences
can be regrouped according to a predefined set of topics, allowing us to implement
a straightforward two-stage model for chest X-ray radiology report generation.
Firstly, a topic classifier detects relevant findings or abnormalities in an image. Sec-
ondly, a conditional report generator outputs sentences from an image conditioned
on a given topic. We present experimental results on the test split of the MIMIC-
CXR dataset for each stage separately and the system as a whole. Most notably,
the proposed model outperforms previous works on several medical correctness
metrics based on the CheXpert labeler, establishing a new state-of-the-art. The
source code is available at https://github.com/PabloMessina/MedVQA/.

1 Introduction

The development of deep neural networks for image-based radiology report generation is a very active
research area given the large number of medical examinations and a continuing shortage of trained
radiologists worldwide [[19} [13]]. In particular, the limitations of conventional NLP metrics (e.g.
BLEUJ23]], ROUGE-L [16]]) have inspired several publications to explore more adequate metrics to
evaluate the clinical accuracy of machine-generated reports [20} 4} |17, 31} 25 24, |19]. In this context,
the CheXpert labeler [|11]] has emerged as a standard tool for evaluating medical correctness in chest
X-ray report generation. We contribute to this area with a novel yet simple model for two-stage
conditional report generation. The first stage identifies relevant topics and the second stage generates
sentences for the report conditioned on a given topic. We evaluate our model on the test split of the
MIMIC-CXR dataset [|12]], outperforming previous works on several metrics based on the CheXpert
labeler.

2 Methods and Results

Defining a set of topics. Through an iterative incremental approach via regular expressions and
random sampling, we examine the sections findings and impression of informative reports from
MIMIC-CXR [[12] and IU X-ray [[8] and mine a vocabulary of 97 topics (e.g. diseases such as fibrosis
and COPD, abnormalities such as adenopathy, and general topics such as lungs, heart, bones and
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tubes-and-lines). Sentences in a report that match a regular expression associated with a given topic
become part of the ground truth for that topic. This means that the same sentence could match
more than one topic, and multiple topics can be present in a report. Additionally, inspired by the
template-based approach by Pino et al. [24]], we use the CheXpert labels as 14 additional topics,
with two possible templates for each one (see C in Figure[I)). Likewise, we extend this idea to other
datasets, namely, CheXpert [11] (14 labels), CXR14 [30] (14 labels) and VinDr-CXR [21] (28 labels),
with two templates for each label.

Topic Classifier (TC). The first step in order to build a report is to select topics. There are many
options here, e.g. select all topics, a predefined subset, etc. Another option is to implement a
Topic Classifier neural network for the 97 mined topics (A in Figure[I). A fully connected layer
predicts mined topics based on 3 sources of information: (1) visual encoder’s global features (we
use DenseNet121 [10]]), (2) the patient’s clinical history or indication (available in most reports in
MIMIC-CXR and IU X-ray), encoded by a BILSTM and decoded back by an LSTM to improve the
encoding quality (autoencoder loss), and (3) a weighted sum of 14 CheXpert embedding vectors
(to exploit any correlations), where the weights come from the sigmoid activations of a multilabel
classification layer that predicts CheXpert labels from the image as an auxiliary task.

Conditional Report Generator (CRG). B in Figure [I| shows CRG’s architecture. DenseNet121
performed the best as visual encoder. However, we also experimented with a Vision Transformer
from CLIP [26]], which was later fine-tuned on MIMIC-CXR using contrastive loss in order to test
the effect of visual-language multimodal pre-training. We supervise the global features of the visual
encoder with multiple auxiliary tasks, depending on the metadata available in each dataset. Topics are
represented with a topic embedding matrix. Global and local features from the visual encoder are fed
along with the topic vector to a Transformer Decoder [29] that generates a mini-report word by word.
Given multiple topics, the final report is simply the concatenation of the respective mini-reports.
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Figure 1: Architectures of the Topic Classifier (TC) and Conditional Report Generator (CRG)
networks. A shows the TC architecture. B shows the CRG architecture. C shows CRG conditioned
on a CheXpert topic, where the output can be either a pre-defined positive or negative sentence (as in
Pino et al. [24]]). D shows CRG conditioned on a mined topic (the output is more verbose).

2.1 Results

New state-of-the-art. Table [1| presents results of CRG with 3 different topic selection schemes:
chexpert, predicted by TC ensemble and ground truth. All three schemes consistently achieve higher
CheXpert macro recall and F1 scores than previous works, although only the first two are fully
automatic. The ground truth scheme works as an oracle that obtains the topics directly from the
ground-truth reports, so these results represent a theoretical upper bound with an optimal TC module.
Considering the fully automatic results only, our best macro F1 score was 0,477 (row 15, with
CheXpert topics) and our best micro F1 score was 0, 588 (row 17, predicted mined topics). From our
literature review, to the best of our knowledge our closest competitors are Pino et al. [24]] (row 7) with
a macro F1 score of 0,428, and Nguyen et al. [22], with a micro F1 score of 0, 576. Interestingly,



both works explicitly include a multilabel classification task to predict CheXpert labels, as we also
do in this work, suggesting that this is a key decision to achieve higher CheXpert labeler metrics in
report generation.

Table 1: Report generation results on the test split of MIMIC-CXR. Bold indicates the highest score
in a group. Red indicates the highest score overall. Notation used: DN = DenseNet 121; TF =
Transformer; ViT = Vision Transformer; M = MIMIC-CXR; I = IU X-ray; Ch = CheXpert; C14 =
CXR14; Ve = VinDR-CXR (test split); V,; = VinDR-CXR (all data); ft = fine-tuned; fve = frozen
visual encoder; medtok = medical tokenization (only medical terms, stopwords are ignored); B =
BLEU; R-L = ROUGE-L; C-D = CIDEr-D; F1 = F1 score; P = precision; R = recall.

NLP Med. CheXpert (Macro) CheXpert (Micro)

ID | Model B RL CD | Comp.| Fl P R | F1 R
Other works
T [Liuctal |17 0.192 0306 1.046 | - 0.180 0313 0.126 | 0334 0.634 0.227
2 | Chenetal. 2020 7 0205 0277 - - 0276 0333 0273 | - - -
3 | Chenetal. 2021 [6 0208 0283 - - 0303 0352 0298 | - - -
4 | Lovelace et al. [1§ 0257 0318 0316 | - 0228 0333 0217 | 0441 0475 0361
5 | Miuraetal. [20 - - 0509 - 0304 0361 0360 | 0.563 0.499 0.646
6 | Nguyen etal. [22 0339 0390 - - 0412 0432 0418 | 0.576 0.567 0.585
7 | Pinoetal. [24 0.094 0.185 0.238 - 0428 0381 0531 - - -
8 | Kongetal [T4 0243 0286 - - - - - 0519 0482 0563
Our work

9 | CRG(DN+TF)chexpert wopics: M 0.146  0.196 0.041 | 0.087 | 0464 0377 0.713 | 0557 0428 0.797
10 | CRG(DN+TF)ehexpert topics: M+ 0.146  0.196 0.041 | 0.087 | 0.469 0.388 0.678 | 0.569 0448 0.781
11 | CRG(DN+TF)chexpert topics: M+1+Ch 0.146  0.196 0.041 | 0.088 | 0.463 0.384 0.689 | 0.568 0.446 0.783
12 | CRG(DN+TF)chexpert topics: MHI+Ch+C14 0.146  0.196 0.040 | 0.088 | 0.463 0386 0.702 | 0.564 0440 0.785
13 | CRG(DN+TF)chexpert topics: MATHCh+C14+V 0.145  0.195 0.040 | 0.088 | 0467 0386 0.712 [ 0.569 0439 0.811
14 | CRG(DN+TF)chexpert wpics: MHI+Ch+C14+V 0.145  0.195 0.041 | 0.088 | 0.462 0.383 0.700 | 0.571 0.444 0.800
15 | CRGDN+TF)fesok et M+ 0.146  0.197 0.040 | 0.086 | 0.477 0392 0.693 | 0.575 0449 0.799
16 | CRG(VATcLip+ TF) st it M+ 0.150 0.199 0.040 | 0.087 | 0472 0389 0.653 | 0.582 0464 0.779
17 | CRON+TE)eai il & e by ensemble? MH 0102 0.184 0031 | 0.116 | 0448 0.400 0568 | 0.588 0.487 0.743
18 | CRG(DN+TF)g( mined topics: M 0185 0299 0.031 | 0.166 | 0.587 0.559 0.649 | 0.692 0.639 0.756
19 | CRG(DN+TF)g( mined topics: M+ 0.180 0295 0.035| 0.162 | 0.572 0.540 0.629 | 0.685 0.631 0.748
20 | CRG(DN+TF)g mined topics: M++Ch 0.176 0292 0.023 | 0.159 | 0.586 0.548 0.657 | 0.690 0.621 0.777
21 | CRG(DN+TF)g mined topics: M+I+Ch+C14 0.180 0296 0.033 | 0.162 | 0.592 0551 0.660 | 0.689 0.629 0.762
22 | CRG(DN+TF)g mined topics: MH+Ch+C14+V e 0.180 0293 0.025 | 0.157 | 0594 0.557 0654 | 0.698 0.635 0.776
23 | CRG(DN+TE)g( mined topics: MH+Ch+C14+V gy 0.180 0293 0.029 | 0.160 | 0.583 0.550 0.650 | 0.685 0.627 0.755
24 | CRG(DN+TR)Iedok |+ M+T+Ch+V oy 0.160 0260 0.152 | 0.171 | 0.592 0.567 0.639 | 0.704 0.653 0.762
25 | CRG(DN+TF)mediok - s M+T+Ch+C14+V oy 0.167 0269 0.179 | 0.183 | 0.621 0.604 0.666 | 0.729 0.670 0.798
26 | CRG(DN+TE)jeaot et - M+ 0.165 0264 0.153 | 0.177 | 0.623 0596 0.676 | 0.719 0.656 0.797
27 | CRG(VITeLp+ TR ool i MHT+Ch+C14+V,y, | 0.167 0268 0.170 | 0.181 | 0.598 0569 0.650 | 0.703 0.649 0.768

CheXpert topics vs. mined topics. CheXpert-based reports achieve superior CheXpert macro scores
(except for precision), whereas the two-stage model with a TC ensemble achieves superior CheXpert
micro scores (except for recall). Additionally, we implement a simple "medical completeness" metric
that measures n-gram overlaps between medical terms (ignoring non-medical terms), revealing that
reports based on mined topics cover more medical terms than CheXpert-based reports that are limited
to 28 templates.

Contrastive pre-training. Rows 16 and 27 in Table[I]and row 8 in Table [2] present our best results
with a dual encoder of Vision Transformer (pre-trained from CLIP [26]) and a Bio Clinical BERT [2]
fine-tuned on MIMIC-CXR using contrastive loss. Despite this pre-training, we failed to observe
significant improvements compared to variations based on DenseNet121 without this pre-training.
This could be due to the smaller scale of medical datasets, where CLIP’s modality-specific attention
might not perform as well as other multimodal techniques [9].

Visual encoder results. An interesting result in Table [2is that the CheXpert classification metrics of
visual encoders trained end-to-end with the rest of the CRG architecture are consistently superior to
those of TC models. We hypothesize that this could be due to CRG’s visual encoder benefiting from
the additional natural language generation supervision. We also observe a high agreement between
the outputs of the visual encoder and the Transformer conditioned on CheXpert topics, measured
by Cohen’s Kappa. This suggests that the Transformer decoder is learning to take visual encoder
features into account rather than merely exploiting topic biases (a problem in other works observed
by Babar et al. [3]]). On the other hand, TC models achieved superior performance in mined topic
classification, and an ensemble of four TC models performed the best.

Impact of additional datasets. We test adding datasets during training with a multi-dataset data
loader to see any generalization improvements on MIMIC-CXR. We use IU X-ray [8]], CheXpert
[11], CXR14 [30], and VinDr-CXR [21]]. We run multiple experiments, including curriculums, where
a model is trained on multiple datasets and later fine-tuned on a subset. Overall, we only managed to



Table 2: Visual encoder results on the test split of MIMIC-CXR. For CRG models, CheXpert metrics
for the Transformer decoder when conditioned on CheXpert topics are included. Cohen’s Kappa
measures the agreement between visual encoder and Transformer.

Mined Topics CheXpert (visual encoder) CheXpert (transformer)
F1 F1 ROC,' ROC- F1 F1 F1 F1 Cohen’s
ID'| Model (macro) (micro) AUC AUC (macro) (micro) | (macro) (micro) Kappa
(macro) (micro)
1 CRG(DN+TF): M 0.213 0.413 0.758 0.823 0.473 0.578 0.465 0.556 0.703
2 | CRG(DN+TF): M+1 0.208 0.409 0.750 0.821 0.465 0.579 0.476 0.570 0.767
3 | CRG(DN+TF): M+I+Ch 0.206 0.392 0.763 0.821 0.472 0.576 0.474 0.569 0.785
4 | CRG(DN+TF): M+I+Ch+C14 0.209 0.401 0.765 0.823 0.478 0.582 0.470 0.563 0.806
5 | CRG(DN+TE): M+I+Ch+C14+V 0.212 0.405 0.761 0.826 0.483 0.587 0.476 0.570 0.785
6 CRG(DN+TF): M+I+Ch+C14+V 0.210 0.405 0.762 0.829 0.481 0.587 0.475 0.572 0.806
7 | CRG(DN+TF)™diok: M4T+Ch+C14+V o 0216 0422 | 0765  0.829 0486 0593 | 0473 0569  0.781
8 | CRG(ViTcpp+TEymediok fve. ft: M4 0219 039 | 0743 0823 0471 0590 | 0474  0.582  0.811
9 | TC(DN+ChEmb+Bilstm)°='%!: M+I+Ch+C14+V,y 0.233 0.443 0.715 0.804 0.450 0.566
10 | TC(ChEmb+Bilstm)==741; M++Ch 0.230 0.497 0.744 0.804 0.463 0.562
11 | TC(DN+ChEmb+Bilstm)*='8f': M+1+Ch 0.234 0.516 0.740 0.813 0.465 0.573
12 | TC(DN+ChEmb+Bilstm)*=28:t: M+I+Ch+C14+Vy | 0.239 0.507 0.741 0.817 0.466 0.579
13 | TC Ensemble | 0.310 0.603 | - - - - |

obtain moderate improvements, suggesting that transferring knowledge between datasets leading to
greater generalization is not trivial.

3 Conclusions and future work

We have presented experimental results of a novel yet simple two-stage conditional chest X-ray report
generation model that relies on a topic mining preprocessing of ground-truth reports via regular
expressions. Overall, we achieved a new state-of-the-art in several metrics based on the CheXpert
labeler, a tool known to better capture the clinical quality of generated reports. Going forward,
we see multiple avenues to improve upon this work: (1) improve topic mining, (2) improve topic
classification, (3) explore more sophisticated techniques for vision-language multimodal pre-training
to increase generalization, (4) train and/or test on other datasets (e.g. Padchest [5]]).

Broader Impact

This research attempts to make further progress in the challenging problem of automating the
generation of radiology reports by leveraging recent advances in deep learning techniques. From a
technical standpoint, we hope to inspire other researchers in the field to explore similar divide-and-
conquer approaches to radiology report generation. For example, a possible extension of this work
is to use Visual Question Answering (VQA), where instead of prompting the model with topics we
could ask the model questions and construct a report from its answers. This could even evolve into a
full dialog system that radiologists could interact with, making the system more explainable [15]. We
also hope to reinforce the importance of evaluating the medical accuracy of methods, which is why we
based our evaluation on the CheXpert labeler [[11], but at the same time we acknowledge its limitations
and encourage the development of more robust evaluation tools, as well as performing an expert
human evaluation of these systems with physicians whenever possible. From a healthcare standpoint,
although far from solving the problem, we hope to contribute in the direction of creating Al-based
tools for report generation that can complement and enhance the performance of radiologists, and
ultimately have a positive impact on the health of millions of patients worldwide who would benefit
from efficient and high quality imaging exams. In this sense, we acknowledge that our work lacks a
thorough human evaluation with radiologists, and important aspects such explainability, transparency,
interpretability, and accountability have to be taken into account and evaluated as well [1}, |28, [27].
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