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Abstract

We propose a structured variational inference model for disentangling observable
evidence of disease (e.g. brain lesions or atrophy) from subject-specific anatomy in
brain MRIs. With flexible, partially autoregressive priors, our model (1) addresses
the subtle and detailed dependencies that typically exist between anatomical and
pathological generating factors of an MRI to ensure the validity of generated
samples; (2) preserves and disentangles finer pathological details pertaining to a
patient’s disease state. We additionally demonstrate that, by providing supervision
to a subset of latent units, that: (1) a partially supervised latent space achieves
a higher degree of disentanglement between evidence of disease and subject-
specific anatomy; (2) when the prior is formulated with an autoregressive structure,
knowledge from the supervision can propagate to the unsupervised latent units,
resulting in more informative latent representations capable of modelling anatomy-
pathology interdependencies.

1 Introduction and Background
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Figure 1: (a) A sample drawn from a mean-field model
with lesions in clinically invalid locations (red arrow).
(b) Mean-field model leads to missed small lesions in
the reconstructed image (yellow arrows). Our proposed
structured model does not suffer from these issues.

In the context of magnetic resonance imag-
ing (MRI) analysis, various methods have been
introduced to disentangle particular structures
from the rest of the image under different obser-
vations [1–10]. Many of such methods are based
on the variational auto-encoder (VAE) [11–13].
However, in brain MRI, observable pathological
features (e.g. hyper-intense MS lesions) can-
not be easily disentangled from subject-specific
anatomical structures (e.g. sulcal pattern, ven-
tricular shape) due to dependencies that exist
between the anatomical and pathological gen-
erative factors. A straight adoption of VAE for
pathology-anatomy disentanglement in patient
brain MRIs is, therefore, often unsatisfactory for
several reasons. Firstly, mean-field variational
inference poses the unlikely assumption that all
generating factors are independent [14], thereby
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failing to capture the dependencies that exist between the anatomical and pathological generative
factors. For example, in the case of multiple sclerosis (MS), a chronic neurological disease, T2
hyperintense lesions in the brain are typically located in certain regions and cannot be found in others
(e.g. within the ventricles). Good representations in this context must be capable of modelling the
spatial distribution of the lesions and their dependencies on surrounding anatomical structures to
avoid assigning higher likelihoods to clinically invalid samples, as depicted in Figure 1a. Secondly,
VAEs tend to suffer from lower synthesis quality [14, 15]. In cases such as MS, where lesions as
small as 3 mm long still represent a significant marker of disease activity [16], failure to capture fine
details in the learned representation could lead to significantly poorer performance in downstream
tasks (Figure 1b).

In this work, we propose to address these issues by using structured variational inference [17] for fine-
grained pathology-anatomy disentanglement in brain MRI. Specifically we model the dependencies
that typically exist between pathological and anatomical features via multi-scale VAEs with a
hierarchical latent structure (Figure 2). We find that more expressive structured priors indeed
lead to higher reconstruction quality and the preservation of important small pathological details.
Moreover, with an additional optional supervision objective, the model is shown to achieve high-
quality pathology-anatomy disentanglement and to be capable of capturing latent dependency.

2 Methods
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Figure 2: The structured latent space consists of (L+ 1) disjoint variable
groups (layers) that follow a hierarchical structure. Dashed lines are active
during inference. Solid lines are active during generation and, if residual
parameterisation [18] is used, also during bidirectional inference.

Four different parametrisa-
tions of a multi-scale VAE
with spatial latent variables
are evaluated:

(1) VAE: a vanilla multi-scale
VAE with mean-field priors
at each layer. This model has
a “hierarchy” in the sense of
having latent representations
at various resolution scales.
However, it does not have
explicit inter-layer dependen-
cies in the prior formulation:
all latent variables at each
layer of the model are subject
to a parameter-free, standard
Gaussian prior.

(2) NVAE [18]: a multi-scale VAE with a partially autoregressive prior and hierarchical residual
parameterisation for the posterior. More precisely: (i) The prior of the topmost layer z0 is still
a standard Gaussian but the priors of subsequent layers pθ(zl|z<l), l > 0 are moving Gaussians
that explicitly depend on the priors of previous layers. (ii) Distributional parameters obtained from
the encoder, (∆µl,∆σl), are not directly interpreted as posteriors. Instead, they are combined
with distributional parameters obtained from preceding layers of the decoder, (µl, σl), to form
“residual posteriors” qϕ,θ(zl|z<l,x) that characterise deviations from the moving priors at each layer.
This implies that the model requires bidirectional inference since obtaining the residual posterior
distribution at layer l involves a forward pass through the decoder up to θl.

(3) NVMP: our novel extension of NVAE where we replace the standard-Gaussian prior of the topmost
layer of NVAE with a K-component multimodal VamPrior [19] 1

K

∑K
k=1 qϕ(zl|uk) characterized

by trainable pseudo-inputs u and encoder parameters ϕ. The subsequent layers still adhere to the
hierarchical residual parameterisation like NVAE. The implication is that only z0 is multi-modal
whereas the lower level “deviations” are assumed to be Gaussians.

(4) NVMP+: a variant of NVMP where we impose an additional KL term between the encoder-driven
VamPriors and the decoder priors throughout the latent hierarchy, which means every layer in the
hierarchy would enjoy the flexibility of a multi-modal distribution.

Further details on parameterisation and implementation can be found in Appendices A, B.
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3 Experiments and Results

We validate our approach on two brain MRI datasets: the publically available Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset [20] (N = 864), and a proprietary MS dataset from a MS
clinical trial (N = 815). The central 16 2-D slices of T1-weighted sequences were used for the AD
experiments, while the central 24 2-D slices of Fluid Attenuated Inverse Recovery (FLAIR) sequence
were used for the MS experiments. Ground-truth T2 lesion labels for the MS experiments were
provided. Both datasets were divided into non-overlapping training (60 %), validation (20 %) and
testing (20 %) sets. Additional acquisition and pre-processing details are described in Appendix B.

We first train the model under an unsurpervised setting and evaluate the effect of incorporating
additional prior structures on synthesis quality. As shown in Table 1, VAEs with more expressive
structured priors indeed outperform their mean-field counterpart at the same model capacity in terms
of image reconstruction fidelity.

We additionally examine model behaviours in a supervised learning setting depicted in the bottom-
left (purple) block in Figure 2 and Figure 5. In this setting, we supplement the MS model with a
lesion segmentation objective between a chosen “pathological” latent subset zP and ground-truth
pathology (lesion) labels P. The rest of the latent space (that remains unsupervised) are regarded as
the anatomical latent subsets, denoted as zA.

Firstly, as one might expect, supervision is shown to enhance latent disentanglement as one may
anticipate. Disease-related features in the synthesized images are noticeably more sensitive [21] to
perturbations in zP comapred to zA, as shown in Figure 6c, Appendix C. Such a disparity in attribute
sensitivity is appreciable in unsupervised models, but is made much more pronounced by the selective
latent supervision.

Secondly and more importantly, supervision helps to verify that the model is indeed actively using the
latent structures. In models with autoregressive structures (NVAE, NVMP, NVMP+), knowledge
from the supervision is propagated to the unsupervised “anatomical” latent units zA, as in, those
unsupervised latent units attain a higher linear predictability (Lasso regression R2 scores [22], Table
4) with respect to lesion volume. This is in contrast to the behaviour of the baseline mean-field VAE,
where information from the supervision task is constrained within the supervised group zP . This
observation shows that the model is indeed taking advantage of the extra structures brought by the
autoregressive priors and the residual parameterisation and hence, indeed capable of modelling the
dependencies between anatomical and pathological generating factors.

Data Model NLL↓ PSNR↑ SSIM↑ FID ↓

MS

VAE (M.1) [11] 2758 25.1 0.72 0.058
NVAE (M.2) [18] 2458 25.7 0.75 0.023
NVMP (M.3) [19] 2374 25.9 0.75 0.031
NVMP+ (M.4) [19] 1953 26.6 0.79 0.035

AD

VAE (M.1) [11] 2386 24.6 0.70 0.030
NVAE (M.2) [18] 2105 25.2 0.73 0.013
NVMP (M.3) [19] 1863 25.5 0.75 0.011
NVMP+ (M.4) [19] 842 26.8 0.80 0.007

Table 1: Reconstruction quality metrics.

Figure 3: Conditional synthesis
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Figure 4: Pathology style-mixing

We qualitatively evaluate pathology-anatomy disentanglement by swapping anatomical and patho-
logical latent features between a pair of subjects in a manner similar to “style-mixing” [23]. As
shown in Figure 4 for representative examples, brain atrophy in AD patients (left), and T2 lesions
in MS patients (right), are disentangled from the subject’s anatomical particularities (such as sulcal
pattern), thus enabling the mixing the pathology of one patient with the anatomy of the other. We may
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also leverage conditional distributions learned by the model to examine subject-specific pathology
distributions. For example, based on learned representations of Subject B1 in Figure 4, we may
visualise many possible disease states given this subject’s anatomy (top row images in Figure 3 are
generated by fixing zA to that of Subject B1 and resampling zP conditioned on zB1

A ) or explore how
this subject’s lesions would manifest on other subjects’ brain anatomies (bottom row images are
generated by combining zA obtained from other real samples with fixed zB1

P .).

4 Conclusions

We propose hierarchical VAEs with structured priors for learning pathology-anatomy disentangled
representations of brain MRIs. Our model can faithfully capture imaging features, including fine-
grained details, while accounting for pathology-anatomy dependencies to ensure sample validity. We
additionally examine model hevaviours in a supervised learning setting. Supervision is shown to (1)
further enhance latent disentanglement; and (2) enable the inspection of information propagation
between latent groups for modelling pathology-anatomy interdependencies. Our model allows for
robust and controllable brain MRI synthesis rich in high-frequency and pathologically-sound details,
which could be meaningful for various downstream tasks.

5 Potential Negative Societal Impact

We propose a deep learning framework for learning pathology-anatomy disentangled representations
of brain MRIs, which could facilitate the understanding of relevant diseases. Simultaneously, since
the dataset is not large-scale, it could not be representative of the true population and exhibits potential
bias towards certain demographics.
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A Model and Objective Formulation Details

In this work, we examine four ways to construct the ELBO objective for multi-level VAEs with
spatial latent variables [24], shown in Table 3. Each model consists of an inference model and a
generative model. A top-down decoder likelihood pθ(x, z) = p(z)pθ(x|z) generates observations x
with samples drawn from the prior p(z) defined over latent variables z. The inference model, on the
other hand, is a bottom-up encoder that approximates the posterior distribution qϕ,θ(z|x) to allow for
tractable optimization through the maximization of the Evidence Lower BOund (ELBO).

The model accepts image space observations x ∈ Rwx×hx drawn from a dataset x ∼ D as inputs.
We use L+ 1 disjoint groups of spatial latent variables [24] at various resolutions scales, denoted
as z = {zl ∈ Rwl×hl ; l ∈ {0, 1, ..., L}}. The inference model and the generative model are joint
distributions as follows:

qϕ,θ(z|x) := qϕL,θL(zL|x)
L−1∏
l=0

qϕl,θl(zl|zl+1)

pθ(x, z) := pθx(x|zL)p(z0)
L∏

l=1

pθl(zl|zl−1)

(1)

Layer Model Inference Generation

zl=0

VAE (M.1) [11]
qϕ(z0) := N (∆µ0(x),∆σ0(x))

p(z0) := N (0, I)
NVAE (M.2) [18]
NVMP (M.3) [19]

pϕ,u(z0) := 1
K

∑K
k=1 qϕ(z0|uk)NVMP+ (M.4) [19]

zl>0

VAE (M.1) [11] qϕl
(zl) := N (∆µϕ>l

(x),∆σϕ>l
(x)) pθl

(zl) := N (0, I)

NVAE (M.2) [18] qϕ,θ(zl|z<l,x) := N
(
µθ(z<l) + ∆µϕ(x), pθ(zl|z<l) :=

NVMP (M.3) [19] σθ(z<l) · ∆σϕ(x)
)

N (µθ<l
(z<l), σθ<l

(z<l))

NVMP+ (M.4) [19]
Table 2: Model Parameterisations

Model ELBO

VAE
(M.1) Ex∼D

[
Ez∼qϕ(z|x)[log pθ(x|z)] −

∑L
l=0 KLD[qϕ(zl|x)||N (0, I)]

]
NVAE
(M.2)

Ex∼D

[
Ez∼qϕ,θ(z|x)[log pθ(x|z)] − KLD[qϕ(z0|x)||N (0, I)]

−
∑L

l=1 Eqϕ,θ(z<l|x)KLD[qϕ,θ(zl|z<l,x)||pθ(zl|z<l)]
]

NVMP
(M.3)

Ex∼D

[
Ez∼qϕ,θ(z|x)[log pθ(x|z)] − KLD

[
qϕ(z0|x)|| 1

K

∑K
k=1 qϕ(z0|uk)

]
−

∑L
l=1 Eqϕ,θ(z<l|x)KLD[qϕ,θ(zl|z<l,x)||pθ(zl|z<l)]

]

NVMP+
(M.4)

Ex∼D

[
Ez∼qϕ,θ(z|x)[log pθ(x|z)] − KLD

[
qϕ(z0|x)|| 1

K

∑K
k=1 qϕ(z0|uk)

]
−

∑L
l=1 Eqϕ,θ(z<l|x)

[
KLD[qϕ,θ(zl|z<l,x)||pθ(zl|z<l)] + KLD[pθ(zl|z<l)|| 1

K

∑K
k=1 qϕ(zl|uk)]

]]
Table 3: ELBOs for all four model parameterisation options examined in this work.

A.1 Vanilla Multi-Scale VAE

The most straightforward baseline (M.1) is a “vanilla multi-scale VAE”. With this parameterisation,
the priors for each latent group is a parameter-free standard Gaussian (2b). Although there is a “hier-
archy” in the sense of various resolution scales of the latent spaces, this model is not “hierarchical” in
its distributional parametrisation. There is no explicit inter-group dependency in the prior formulation
nor explicit information sharing between the encoder and the decoder. We have ∀l ∈ {0, 1, ..., L}:

qϕl
(zl) := N (∆µϕ>l

(x),∆σϕ>l
(x)) (2a)

pθl(zl) := N (0, I) ∀l ∈ {0, 1, ..., L} (2b)
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A.2 NVAE

NVAE (M.2) is a hierarchical model with residual normal parameterisation proposed by [18] and
[25]. The features that set this model apart from its vanilla counterpart are the explicit information
sharing between the encoder and the decoder networks, as well as its partially auto-regressive nature.

Firstly, unlike conventional VAEs, decoder parameters θ in NVAE not only characterize the generative
distribution pθ (3b) but are also a part of the inference model and hence play an important role in
characterizing the posterior distribution qϕ,θ (3a). For latent groups other than the topmost one
l > 0, the inference model is bidirectional. It estimates the relative variational posteriors (3a) that
characterize the deviation from priors obtained from preceeding layers of the decoder. With this
design, KL optimization is expected to be simpler than when posteriors predict the absolute mean
and variances at each layer.

qϕ,θ(zl|z<l,x) := N
(
µθ≤l

(z<l) + ∆µϕ≥l
(x), σθ≤l

(z<l) ·∆σϕ≥l
(x)
)

(3a)

pθ(zl|z<l) := N (µθ≤l
(z<l), σθ≤l

(z<l)) (3b)

Secondly, NVAE is considered to be partially auto-regressive and hence a more expressive prior than
the standard mean-field parametrization. While the prior for each group p(zl) is dependent on those
of the preceding layers p(z<l), each element within the same latent group zl := {zil , ...} still adhere
to the independence assumption as ∀l ∈ {0, 1, ..., L}, zil |= zjl ; i ̸= j. We can hence calculate the
relative KLD loss for each element (4) with a simple analytic expression:

KLD[qϕ,θ(z
i
l |x)||pθ(zil )] =

1

2

(
(∆µi

l)
2

(σi
l)

2
+ (∆σi

l)
2 − log(σi

l)
2 − 1

)
(4)

A.3 NVMP

We propose two extensions to NVAE by incorporating a VamPrior [19] into the hierarchical VAE
setup for extra flexibility in the hierarchical latent structure. We refer to them as NVMP (M.3) and
NVMP+ (M.4). VamPrior and LVAE share the same philosophy that coupling the prior with the
posterior would ease the training by fostering better “collaboration” between the prior and variational
posterior despite the seemingly opposite approaches taken by the two works (VamPrior incorporates
encoder parameters in the trainable prior whereas LVAE decoder parameters are involved in the
formulation of variational posteriors). This similarity motivates us to combine the two approaches to
achieve a greater extent of “communication” between the priors and the posteriors.

In NVAE or Equation (M.3), we replace the standard Gaussian prior for the topmost latent group
with a VamPrior, 1

K

∑K
k=1 qϕ(zl|uk), that is, a K-component multi-modal distribution characterized

by trainable pseudo-inputs u as well as the encoder parameters ϕ. We retain the residual Gaussian
parameterisation for subsequent layers (z>0).

In NVAE+ or Equation (M.4), one more KL term between the encoder-driven VamPriors and the
decoder priors is imposed for the entire hierarchy. In this case, the decoder “priors” are regarded
as “intermediate posteriors” and encouraged to imitate the encoder-driven multi-modal distribution
throughout the hierarchy. We postulate that this configuration adds an extra layer of information shar-
ing between the encoder and the decoder networks which can potentially lead to further improvement
in representation quality.

B Implementation and Training Details

All MRI sequences were acquired at a resolution of 1 mm × 1 mm × 1 mm, Each 2-D slice was
downsampled to a resolution of 2 mm × 2 mm. These were standardized to have zero-mean and unit
variance.

We compare the four parameterisations in Table 3 with a 5-layer model (L = 4) the exact
same capacity. For each dataset, the latent space capacity is set to {zL ∈ Rwx×hx×2, zL−1 ∈
R(wx/2)×(hx/2)×2, ..., z0 ∈ R(wx/2

L)×(hx/2
L)×2}. We use the Adam optimizer [26] with a learning

rate of 5e-5 and s weight decay of 1e-8. Two loss re-weighting mechanisms are used in our training
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Figure 5: Network Architecture

procedure: (1) We use a linear annealing schedule [27] for KLD losses with a cycle length of 10000
iterations. The initial KLD learning rate is set to 2e-7. (2) To avoid posterior collapse, we use a
KL Balancing trick suggested by [18]. We re-scale each KL term of the hierarchy with a coefficient
proportional to the size of each latent layer as well as the KLD value of that layer. This mechanism
encourages more balanced information attribution to each latent layer [28, 29].

C Additional Results

As discussed in 3, we evaluate layer-wise latent pathology informativeness of MS models by ex-
amining each layer’s linear predictability of a salient pathological attribute, T2 lesion volume. To
quantify linear predictability, we train Lasso regressors (α = 10) with latent representations obtained
from each individual latent layer of each model and compute each Lasso regressors’s R2 scores
with respect to ground truth T2 lesion volume. Rows 1-4 show the R2 scores of the unsupervised
models, which are generally poor. Rows 5-8 show the same metrics for supervised models where
supervision is provided to z2 (zP ) as an additional lesion segmentation objective. Models with
autoregressive structures (NVAE, NVMP, NVMP+) benefit more from the supervision - knowledge
from the supervision is propagated to the unsupervised “anatomical” latent units, resulting in higher
R2 scores even in the unsupervised latent subsets. This shows that the model is indeed actively using
the latent structures.

Table 4: (MS) Layer-wise latent informativeness with respect to T2 lesion volume

Model z0 z1 zP z3 z4
VAE 0.20 0.08 0.28 0.01 0.00

NVAE 0.11 0.12 0.00 0.00 0.00
NVMP 0.06 0.23 0.01 0.01 0.00

NVMP+ 0.03 0.00 0.20 0.00 0.00
zP -supervised VAE 0.00 0.00 0.62 0.08 0.01
zP -supervised NVAE 0.31 0.20 0.65 0.02 0.00
zP -supervised NVMP 0.54 0.23 0.63 0.02 0.01
zP -supervised NVMP+ 0.21 0.37 0.56 0.09 0.00
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Figure 6: (a) (AD) Variations captured by each layer of the model. Images at the top row are fully resampled at
each level of the hierarchy. On each subsequent row n, we show the residual variation of layer n by fixing latent
codes at the top (n− 1) layers.
(b) (MS) Clusters discovered by VamPrior.
(c) (MS) Layer-wise pathological attribute sensitivity visualised by individually scaling each layer in the latent
hierarchy, from z0 (top row) to z4 (bottom row). In this particular example, The appearance of the hyper-intense
MS lesions in the synthesised images is relatively insensitive to multiplicative perturbation in all but one latent
layer, z2. The layer with the highest pathological attribute sensitivity, z2, is hence considered to be a disentangled
“pathological” latent subset zP .
We note that even in the unsupervised setting, disease-related features in the synthesized images are noticeably
more sensitive to changes in a small subset of latent variables than the rest, which allows us to identify such a
subset as zP and the rest as zA (anatomical latent subsets) in a post-hoc manner. Such disparity in pathological
attribute sensitivity is much more pronounced in the “selective supervision” setting (bottom-left purple block in
Figure 2 and Figure 5), where the additional supervision is given to a chosen layer zP .
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