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Abstract
Glioblastoma (GBM) is an aggressive brain tumor with median patient survival of
about 15 months. The key reason for our poor understanding of GBM is that it is
a highly heterogeneous disease with molecular heterogeneity and spatiotemporal
heterogeneity. Radiogenomics is a rapidly emerging field that seeks to develop
non-invasive imaging signatures associated with genetic mutations of such cancers
from magnetic resonance imaging (MRI) scans. This paper develops a technique to
quantify the molecular heterogeneity of GBM using radiogenomic features. We fit
a probabilistic model that predicts the likelihood of 13 different genetic mutations
and use a technique called Intensive Principal Component Analysis (InPCA) to
visualize the predictions of this model. The principal components of InPCA
form an interpretable coordinate system for characterizing the imaging signatures
of different GBM pathways; this coordinate system is consistent with clinical
research. We quantify the overlap of different pathway groups to characterize the
molecular heterogeneity of GBM. Such analysis can potentially be used in the
future for targeted treatments, e.g., when patients present with one or more of these
overlapping pathways.

1 Introduction
Glioblastoma (GBM) is an aggressive brain tumor with a high likelihood of recurrence. The median
patient survival is 14.6–16.7 months1 in spite of sophisticated treatment options. One of the major
reasons for treatment failure in GBM is the intra-tumor heterogeneity, implying various genetic
sub-populations may cohabit the tumor and diffuse through the neurophil2–4. This makes treatments
or surgical resection of tumors extremely challenging. The molecular heterogeneity indicates that
multiple mutations across complex pathways with significant cross-talk renders single-target therapies
ineffective. There is also spatiotemporal heterogeneity where diffuse and migrating glioma cells
make even ex vivo assays challenging5.

Radiogenomics is a rapidly emerging field that seeks to develop signatures of cancers by exploiting
the differences in the magnetic resonance imaging (MRI) features corresponding to cells with different
mutations6,7. This is very powerful because it enables non-invasive approaches to examine the tumor
and track its progression during treatment. If we can extract imaging biomarkers that capture
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the phenotypic characteristics of the tumor and its surroundings based on descriptors for image
intensity, morphology, texture, etc. from MRI features, then we can hope to develop a more holistic
understanding of the tumor and eventually aid treatment8. Although radiogenomics has led to
promising results for some types of cancers9, the molecular heterogeneity of GBM is somewhat
unique and it is the key hurdle to instantiating this program for GBM.

This paper develops a technique to quantify the molecular heterogeneity of GBM from radio-
genomic features. We use a dataset of multi-parametric MRI (mpMRI) scans (both conventional and
advanced modalities including T1, T1-Gd, T2, T2-FLAIR, DSC and DTI) of 286 subjects who were
diagnosed with GBM. Corresponding to these scans, we have genomics data from next generation
sequencing (NGS), which is an ultra-high throughput sequencing technology used in clinical practice
to determine the genetic buildup for each subject. NGS data is the result of an assay of tumorous
tissue which provides “annotations” for the presence or absence of a set of 13 gene mutations (EGFR,
PDGFRA, MET, FGFR2, PIK3CA, PIK3R1, PTEN, NF1, BRAF, TP53, MDM4, CDKN2A and
RB1) underlying 5 commonly identified pathways (RTK, PI3K, MAPK, P53, RB1) in GBM. Table 1
describes our dataset. In addition to the biological complexity of the problem, the small sample
size (n = 286) and class imbalance (0.7% subjects have FGFR2 alteration vs. 36.4% subjects have
PTEN alteration) make this data challenging for machine learning. Moreover, subjects typically
have multiple gene mutations and multiple pathways activated. This is a unique dataset for studying
radiogenomic features of GBM and the first of its kind.

Roughly speaking, our goal is to identify imaging signatures of known prominent genetic path-
ways and quantify the “overlap” between different pathway groups. For pathways that are relatively
well clustered, we hope to identify precise signatures, and for pathways have large overlaps with
other pathways, we hope to quantify the amount of overlap across these clusters. Our technical
contributions are summarized as follows.

1. We fit a probabilistic model, i.e., a deep neural network, which predicts the likelihood of the
13 different gene mutations (multiples one can be active for each subject) using over 3000
different radiogenomic features obtained from mpMRI images as inputs. The output of this
model is probability distribution and it can be thought of as a “feature vector” pertaining to
each subject.

2. We leverage a nonlinear manifold learning technique called Intensive Principal Component
Analysis (InPCA) for visualizing such feature vectors10. This technique creates a global
isometry and thus it can visualize the global geometry of the predictions because it preserves
pairwise distances between points (unlike t-SNE11, UMAP12 or diffusion maps13 which
only preserve local distances).

3. The principal components of InPCA form an interpretable coordinate system for charac-
terizing the imaging signatures of different GBM pathways. We show how these principal
components can imply potential clinical findings, e.g., the first principal component (PC1)
is associated with P53 and then RTK/PI3K; the second principal component (PC2) is as-
sociated with P53 then MAPK, etc. Our approach therefore enables to use the labels of
the genetic mutations to discover the imaging signatures of the pathways. Our data-driven
results can provide clinical value to the investigation of the cancer pathways.

4. We quantify the overlap of the pathways to characterize the molecular heterogeneity of
GBM. The quantitative analysis can potentially facilitate the development of targeted therapy
especially for treating patients with multiple pathways involved.

2 Methods
We have NGS-based annotations yi ∈ {0, 1}13 and corresponding inputs xi for subjects i = {1, . . . , N}.
Labels yi can have multiple genetic alterations. We train a multi-layer neural network by minimizing
the binary cross-entropy loss

ℓ(w) = −N−1 ∑N
i=1

∑13
k=1(yi)k log pw(k | xi) + (1− (yi)k) log (1− pw(k | xi)) .

where log pw(k | xi) − log(1− pw(k | xi)) ≡ (ŷi)k is the output of the network. This objective is
minimized using stochastic gradient descent (see §5.2). We normalize the 13 logits ŷi using a softmax
operation and set log p′w(k | xi) ∝ (ŷi)k to obtain a 13-dimensional “feature vector” (zi)k = p′w(k | xi)
for each datum xi. We can also cluster zi using the von Mises-Fisher (vMF) mixture model14 by
observing that the vector

√
(zi)k for k = 1, . . . , 13 has unit norm and therefore lies on sphere of radius

1. Since unsupervised clustering cannot adequately identify radiogenomics signatures of different
pathways due to significant inter-pathway overlapping, we fit vMF model for each pathway in a
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Figure 1: (a) InPCA embeddings of top 4 principal components of subjects with both single pathway
and multiple-pathway alterations. Subjects with multiple-pathway alterations (presented by multiple triangle
points close to each other) typically fall in-between different pathway groups. Clusters pertaining to different
pathways can be distinguished using the colors of the markers. This indicates that even if the model was
trained using annotations of the altered genes, its features are useful to predict the genetic pathways. (b) Inter-
pathway distances for subjects with single pathway alteration. The distances are calculated as inter-pathway
Bhattacharyya distances between points normalized by the average of the intra-pathway Bhattacharyya distances
(error bars from 5-fold nested CV). Entries that are smaller than one indicate a large overlap between the
pathways (PI3K-MAPK, PI3K-RTK); entries that larger than 1 are relatively well-separated pathways (MAPK-
P53). This is a quantitative exposition of the heterogeneity of GBM features: pathways that are relatively
well-separated in this matrix have distinctive radiogenomic signatures. (c) Inter-pathway distances for subjects
with multiple-pathway alterations. The distances are similarly calculated as the above. It can be observed
that the inter-pathway distances are smaller among multiple-pathway subjects than these among single pathway
subjects. This result suggests multiple-pathway subjects are more heterogeneous than single-pathway subjects.

supervised fashion by selecting the number of components as 1. We will next analyze these feature
vectors zis.

Intensive Principal Component Analysis (InPCA)10 is a generalization of multi-dimensional
scaling (MDS)15. It works by creating a matrix D ∈ Rn×n whose entries are the Bhattacharyya
distances dB(zi, zj) = − log

∑
k

√
(zi)k(zj)k and calculating W = −LDL/2 where L = δij−1/n. An

eigen-decomposition of W = UΣU⊤ with eigenvalues sorted in descending order of their magnitude
gives the InPCA embeddings Rn×n ∋ X = U

√
Σ. Unlike standard PCA where eigenvalues are

non-negative, eigenvalues of InPCA can be both positive and negative10. This allows the InPCA
embedding to be an isometry:∑13

k=1

(
(Xi)k − (Xj)k

)2
= dB(zi, zj) ≥ 0.

for two columns Xi, Xj of X. We use the InPCA embedding for visualizing the clusters corresponding
to each pathway. We will use the intra-cluster and inter-cluster pairwise Bhattacharyya distances to
quantify how different imaging features can correspond to the same genetic pathway. Specifically, if
inter-cluster pairwise distances divided by the average of the intra-cluster pairwise distances is large,
then we will call the two genetic pathways far away from each other.
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3 Results
We have trained a multi-label classification network implemented with a multi-layer perceptron
(MLP). Our network obtained a training accuracy of 88.5 ± 0.4 % and 83.2 ± 1.1 %. accuracy on
held-out test data (see §5.2). We use the feature vectors zis (see §2) for subjects with single-pathway
alterations to calculate InPCA and obtain the top 4 principal components. New data, e.g., features
of test subjects, or features of subjects with multiple-pathway alterations can be embedded into the
same coordinates using eigenvectors of InPCA (see §5.3).

See Fig. 1. The top 3 principal components are associated with distinct pathway mutation patterns:
(1) Increasing values of PC1 are associated with primary involvement of P53 then RTK/PI3K; (2)
Increasing values of PC2 were associated with P53 then MAPK; (3) PC3 generally distinguishes
MAPK from other pathways. The overlaps between pathway groups indicated these pathways were
potentially correlated through their imaging phenotypes. From the average pairwise Bhattacharyya
distance matrix, we observed that RTK and P53, as well as RTK and RB1 are the two most distant
pathway pairs, while the distance between PI3K and MAPK is the smallest. These findings can
be potentially validated in clinical literature on signaling pathways. For instance, there is evidence
that a significant amount of cross-talk exists between the PI3K and MAPK pathways16. It is also
known that RTKs are major upstream regulators of PI3K/Akt signaling17, where our results show the
inter-pathway distances between RTK and PI3K pathways are as small as 0.72 and 0.51 for subjects
with single pathway and multiple-pathway alterations respectively.

4 Potential Negative Social Impact
Glioblastoma (GBM) is the most common malignant tumor with a grim prognosis. In spite of
extensive efforts, new drugs and technologies over the past few decades, little has changed in terms
of patient outcome. This paper seeks to develop new techniques to extract signatures of mutations
from in vivo imaging and thereby shed light upon genetic and spatial heterogeneity of GBM. We
believe that this line of research can lead to a holistic understanding of GBM that goes beyond the
single tissue sample analysis in the current clinical practice.

This research is in very preliminary stages and its merit lies in acting as an aid to scientific
investigations of mutations that cause GBM. The ideas discussed in our paper are very far from any
kind of deployment. We therefore do not foresee any negative social impacts of this research. Our
methods can also be applied to other heterogeneous diseases, such as different types of cancer or
neurodegenerative diseases to study the genetic underpinnings of imaging phenotypes.

That said, the sample size of our data is fundamentally small. Although the size of the dataset
keeps growing as more samples from the clinicians are obtained and nested cross-validation has
been applied to ensure that our findings are not over-fit to the data, it is possible that some of our
conclusions could change with more available data. Therefore, the biological findings obtained from
this work should be carefully validated by clinicians and researchers. More broadly, small sample
size is a hallmark of problems in the clinical sciences. To address it effectively, we need to inject
knowledge from biology into machine-learning based methods18, e.g., known relationships between
pathways and co-occurring mutations in the clinical literature.
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Table 1: Key driver pathways and genes: Each pathway contains several gene alterations and if
one of the genes is altered, then we regard the pathway which the gene belongs being altered. The
numbers of patients with each gene alteration are summarized as following.

Pathway Gene alteration # Subjects Fraction (%)
(Total: 286)

RTK

EGFR 75 26.2
PDGFRA 14 4.9
MET 12 4.2
FGFR2 2 0.7

PI3K
PIK3CA 26 9.1
PIK3R1 26 9.1
PTEN 104 36.4

MAPK
NF1 48 16.8
BRAF 2 0.7

P53
TP53 100 35
MDM4 2 0.7

RB1
CDKN2A 3 1.0
RB1 21 7.3
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Figure 2: Left: Number of subjects which have alterations for the 13 genes in out dataset. The
dataset has a large imbalance which makes learning a good representation difficult, this is even more
challenging because of the limited sample size. Right: Number of subjects which have alterations
for the 5 different pathways considered in this paper.

5 Appendix
5.1 Dataset
Multi-parametric MRI (mpMRI) scans (T1, T1-Gd, T2, T2-FLAIR, DSC, DTI) of 286 subjects
diagnosed with glioblastoma were retrospectively collected. Radiomics features, including his-
tograms, morphologic and textural descriptors, were derived using Cancer Imaging Phenomics
Toolkit (CaPTk)19. For the data preprocessing, the subjects with any missing values in the imaging
features are excluded. Highly correlated imaging features (ρ > 0.95) and features with identical
values for every subject are removed. The total number of the imaging features included is 3480 after
all above processing steps.

For the genomics data, genetic markers were obtained through next generation sequencing (NGS)
panel on the resected tumor samples from the patients. A total number of 27 genes are included in
the NGS panel. Patients with IDH1 or IDH2 mutations are excluded. Our final cohort consists of
n = 286 IDH-wildtype patients with mpMRI data available.

5.2 Network and Implementation Details
The multi-label classification network is implemented as a five-layer multi-layer perceptron (MLP)
to avoid overfitting in the small data regime. Each of the first four layers consists of a linear layer,
rectified linear units (ReLU) nonlinear activation function, batch-normalization and dropout for
regularization. After training the model, the logits from the final layer will be the input of a softmax
function to convert into probability distributions, which facilitates the application of InPCA. The
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Table 2: Nested CV accuracies (%)
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall

Train 88.78 88.65 88.89 88.45 87.72 88.50 ± 0.42
Test 81.95 83.27 81.93 84.41 84.40 83.19 ± 1.10

network is trained in a nested cross-validation (CV) scheme with a 5-fold inner loop CV for hyper-
parameter tuning and 5-fold outer loop to estimate the test error on completely held out data. Through
this procedure, we found the optimal hyper-parameters to be a dropout rate of 0.2 and learning rate of
0.01 for stochastic gradient descent (SGD). The training and validation accuracies for the 5 outer
loops are shown in the Table 2.

5.3 Embedding new data into InPCA
Denote N as the number of training subjects, L as the number of test subjects, 1N as a N × N
matrix with each element as 1

N , 1NL as a N × L matrix with each element as 1
N , X and Xtest as the

probability matrix obtained from softmax function by input training and test subjects, E as the selected
eigenvectors derived from training data and the diagonal of Λ as the corresponding eigenvalues, the
embedding can be calculated similarly to that of Kernel PCA20, which is the following:

W = φ̃(X)⊤φ̃(X)

= [φ(X)− φ(X)1N ]⊤[φ(X)− φ(X)1N ]

= D −D1N − 1⊤ND + 1⊤ND · 1N

Wtest = φ̃(Xtest)
⊤φ̃(X)

= [φ(Xtest)− φ(X)1NL]
⊤[φ(X)− φ(X)1N ]

= Dtest −Dtest1N − 1⊤NLD + 1⊤NLD1N

Tproj = WtestEΛ− 1
2
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