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Abstract

Deep learning models are effective for medical image analysis tasks such as segmen-
tation. However, training these models requires substantial amounts of labeled data,
most often annotated manually. Segmenting new medical images to create labeled
training data is a tedious and time-consuming process for human annotators. In-
teractive segmentation tools seek to alleviate this problem, most often by predicting
completed segmentations from limited user inputs. This works reasonably well for
some domains and for well-defined tasks. But for a new domain or task, the segmen-
tation task is ambiguous. We hypothesize than in such situations proposing multiple
partial segmentations is more useful than proposing a single complete segmentation.
We propose a probabilistic partial segmentation model, that takes an input image
and partial segmentation, and predicts possible next steps for the segmentation. The
proposed model can be used iteratively to help annotators accurately and efficiently
segment new medical images. The user can choose among multiple predicted larger
segmentations and perhaps make a small number of corrections before inputting
the updated segmentation back into the system. By predicting multiple larger partial
segmentations at each iteration rather than attempting to fully complete the segmen-
tation in one step, the system can enable users to produce accurate segmentations
for new medical image domains with fewer corrections. We use synthetic data to
demonstrate the proposed model and show a proof-of-concept for the system.

1 Introduction

Deep learning models have been successful at performing medical image segmentation [13]. However,
training these models requires substantial amounts of labeled data, most often annotated manually.
Segmenting new medical images to create labeled training data is a tedious and time-consuming
process for human annotators, particularly for 3D modalities. Interactive segmentation methods seek to
reduce the effort and time required for manual segmentation. Given the diversity of biomedical imaging
available, effective tools for interactive segmentation would be most impactful in helping to segment
previously unseen regions, and image types where there are little or no existing labelled training data.

Related Works. Most learning-based interactive segmentation systems take a semi-automatic
approach, in which the user provides a few initial inputs such as scribbles [15, 16], bounding boxes
[6, 9, 11, 15, 17, 18], or clicks [5, 10, 12], and an automatic segmentation model produces a complete
prediction that the user corrects and refines. An alternative approach is to use user inputs as a noisy
signal to train an automatic segmentation model with weak supervision [9, 10]. However, this approach
is not interactive at inference time and requires training using a large dataset, which may not be
available for many medical imaging modalities and tasks.

Existing frameworks for interactive segmentation of medical images have focused on minimizing user
interaction [5, 10, 12, 18] and developing domain-specific methods with limited generalizability [1, 4,
8, 9]. Deep learning-based techniques [5, 12, 15, 16] have gained popularity because of their ability to
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Figure 1: Overview. The user begins segmenting the image (e.g., using brushstrokes) to indicate interior
and exterior regions. During each iteration, the proposed model predicts multiple partial segmentations
that the user chooses among. The user can then update the segmentation to make corrections.

learn high-level semantic features. In these systems, an automatic segmentation model is used to predict
a complete segmentation from user inputs, and then different strategies are used to incorporate additional
user corrections. To improve the accuracy of the initial segmentation, some works employ a separate re-
finement network [5, 16], or learn image-specific models for fine-tuning [15]. A few methods can gener-
alize to new classes and modalities, but the results are limited to a few relatively similar tasks [5, 12, 15].

Contributions. To develop an interactive segmentation system that can be used on a new domain
or segmentation target, we propose a probabilistic partial segmentation model that i) enlarges a
partial segmentation rather than completing it in one step, and ii) produces probabilistic predictions,
to give the annotator flexibility. Predicting larger segmentations instead of the whole segmentation
enables generalization to new medical segmentation tasks. We focus on predicting several possible
segmentations, to enable the user to choose the next step in ambiguous situations and reduce the
number of corrections they have to make.

At each iteration the proposed model takes in an input image and the partial segmentation completed
so far, and probabilistically predicts a set of possible next steps for the segmentation i.e., larger partial
segmentations (Figure 1). The user can then choose a partial segmentation with which to continue.
At the end of each iteration, the user can make corrections to the partial segmentation before the model
is run again to produce new predictions.

2 Methods

Given an image and initial partial segmentation, we propose a probabilistic model that can predict larger
partial segmentations. Given an input x(i) containing an image and partial segmentation, we assume
a partial segmentation y(i)={y(i)m , y

(i)
s } at step i, where y(i)m is a binary partialness mask indicating the

pixels that have been segmented and y
(i)
s is a binary segmentation mask. We let x(i)={x0, x

(i)
m , x

(i)
s }

contain an input image x0, an input binary partialness mask x
(i)
m , and an input binary segmentation

mask x
(i)
s . For the input partial segmentation {x(i)

m ,x
(i)
s } and larger partial segmentation {y(i)m ,y

(i)
s }

we assume pθ(x
(i)
s =1| x(i)

m =0)=1, pθ(y
(i)
s =1| y(i)m =0)=1, and pθ(y

(i)
s =x

(i)
s | x(i)

m =1)=1. We
let z(i) be a latent variable that captures the intrinsic variability of the partial segmentation y(i) for
input x, and assume a prior pθ(z; x)∼N (0, I). We let y(i) be a noisy observation of the non-linear
decoding gθ of z(i): pθ(y

(i)|z(i); x(i)) ∝ exp{−f
(
y(i), gθ(z

(i), x(i)); x(i)
)
} where f is a partial

segmentation distance measure.

Give a set of partial segmentations {y(i)}Ni=1 we aim to maximize the posterior probability pθ(z|y; x).
Unfortunately, computing the posterior probability pθ(z|y; x) is intractable. We therefore follow a
variational strategy and introduce an approximate posterior probability qϕ(z|y; x). We minimize the
KL divergence between the real and approximate posterior, which leads to maximizing the evidence
lower bound objective (ELBO),

log pθ(y|x) ≥ Eqϕ(z|y; x)
[
log pθ(y|z; x)

]
− KL

(
qϕ(z|y; x) || pθ(z; x)

)
. (1)

Figure 2 shows the proposed setup, using a decoder network to model pθ(y|z; x) and an encoder net-
work to model qϕ(z|y; x) = N (µϕ(x

(i), y(i)), σϕ(x
(i), y(i))), where µϕ(x

(i), y(i)) and σϕ(x
(i), y(i))

are differentiable deterministic functions similar to a conditional variational autoencoder [3, 14].
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Figure 2: Proposed probabilistic partial segmentation model. Inputs are an image, a partial
segmentation and a larger target partial segmentation. At inference (green box) we use a decoder
gθ(z; x) to predict partial segmentation ŷ={ŷm, ŷs} given an image and partial segmentation x and
a randomly sampled encoding z∼N (0, I).

Figure 3: Multiple predicted binary partial segmentations generated using the decoder with different
z ∼ N(0,I). Segmented interior (red) and exterior (blue) are overlayed on the input image. The
decoder produces plausible partial segmentations that segment multiple possible subsets of disks.

We let the partial segmentation distance f(·,·) be

f(y, ŷ; x) = WDL(ys, ŷs, ym−xm) + DL(ym, ŷm) (2)

where DL(ym, ŷm) is (soft) Dice loss [7] comparing the target and predicted partialness masks and
WDL(ys, ŷs, ym−xm) is (soft) Dice loss comparing segmentation masks weighted by the target
change in partialness mask ym−xm. Our final loss

L(θ, ϕ, x, y, z) = WDL
(
ys, ŷθs, ym−xm

)
+ β0 ·DL(ym, ŷθm) + β1 ·KL

(
N (z;µϕ, σ

2
ϕ),N (z; 0, I)

)
(3)

follows from maximizing the conditional log likelihood using the ELBO.

3 Experiments

Data. We created a preliminary dataset of 1,000 images of disks with corresponding ground truth
segmentation maps of different subsets of disks. Each 32×32 image contains three randomly generated
disks of different random intensity values. During training we simulate pairs of partial segmentations
by taking the intersection of the ground truth segmentation with synthetic images of random shapes [2].
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Setup. We train encoder and decoder networks that minimize (3) and set β0=1 and β1=10−3. The
encoder is a 3-layer CNN with 5, 32, and 16 channels with kernel size 3, ReLU activation, and 2x
down-sampling using max pooling after each layer. The decoder is a 4-layer CNN with an initial
up-sampling layer to resize z to be the same spatial dimensions of as x, a 2D convolutional layer, 2x
down-sampling using max pooling, a 2D convolutional layer, a 2D transpose convolutional layer and a
2D convolutional layer. The convolutional layers have 4, 64, 64, and 64 channels with kernel size 3 and
ReLU activation, except for the final learnable layer, which uses sigmoid activation. We enforce that
the input partial segmentation {xm, xs} is preserved in the predicted partial segmentation {ŷm, ŷs}
and the predicted segmentation ŷs only contains segmentation in areas covered by the partialness mask
ŷm i.e., pθ(ŷs=1, ŷm=0)=0.

Results. Figure 3 shows that the proposed decoder network produces larger partial segmentations that
are consistent with the input partial segmentation but segment different subsets of disks. For the first
input (top row, Figure 3), sampling different z changes whether the two bottom disks are segmented
or not. Sampling z∼N (0, I) for 1,000 held-out validation images, the predicted partial segmentations
on average add 52 pixels of foreground segmentation and 31 pixels of background segmentation with
a mean Dice of 0.87, taking the maximum Dice on the added partial segmentation compared to all
possible ground truth segmentations of disks.

Conclusion. We demonstrate a proof-of-concept for a new framework for probabilistic interactive
segmentation using synthetic images. We plan to train the proposed model with a combination of
simulated and diverse real data, focused on generalizing to new medical imaging modalities and
segmentation tasks where the intentions of the human annotator are ambiguous.

4 Societal Impact

Interactive segmentation tools make it easier for humans to annotate medical images for clinical
research and to create labelled datasets for model training and evaluation. Lowering the barrier to
manual annotation would make it easier to collect diverse medical imaging datasets. The probabilistic
nature of the proposed framework gives annotators more flexibility in their annotations compared
to previous tools, however they might still be biased towards particular annotations by the systems’
predictions. Errors or bias in the annotation of training data could negatively affect the predictions
made by models used for clinical decision making and medical research, and therefore deserve special
attention and rigorous experiments, which we plan to undertake.
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