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Abstract

Contrastive Learning has shown impressive results on natural and medical images,
without requiring annotated data. However, a particularity of medical images
is the availability of meta-data (such as age or sex) that can be exploited for
learning representations. Here, we show that the recently proposed contrastive
y-Aware InfoNCE loss, that integrates multi-dimensional meta-data, asymptotically
optimizes two properties: conditional alignment and global uniformity. Similarly
to [33]], conditional alignment means that similar samples should have similar
features, but conditionally on the meta-data. Instead, global uniformity means
that the (normalized) features should be uniformly distributed on the unit hyper-
sphere, independently of the meta-data. Here, we propose to define conditional
uniformity, relying on the meta-data, that repel only samples with dissimilar meta-
data. We show that direct optimization of both conditional alignment and uniformity
improves the representations, in terms of linear evaluation, on both CIFAR-100
and a brain MRI dataset.

1 Introduction

Deep learning models have recently shown impressive results in medical imaging [2}9}(10}20],
especially when large data-sets are available. However, in many medical applications (e.g, computer-
aided diagnosis with MRI [34]], chest X-ray on COVID-19 [30], etc.), data-sets are often small or
heterogeneous and biased [32] (e.g, images coming from different hospitals) and annotations are
costly.

Traditional transfer learning from natural images has been applied to several medical applications
[1,27]], hypothesizing that features can be re-used or fine-tuned on the downstream tasks [35].
However, it does not always lead to better results [26], which might be due to the large domain
gap between natural and medical images. On the contrary, self-supervised models do not rely on
annotations and can be directly applied to big unlabeled medical data-sets, avoiding both the burden
of expert annotations and the domain gap. These models are trained on a pretext task that incorporates
prior information about the data and should estimate a relevant representation for the subsequent
downstream tasks (e.g, the invariants [|6], object shapes or colors [[191[21}]24], etc). Recent approaches
are built upon Siamese networks [3]], as in contrastive learning [6l/12]], where an encoder is trained to
map different views of the same image to the same point in the representation space while pushing
away dissimilar images. In practice, the InfoNCE loss [|6}|11},22] is usually used and it has shown
impressive results on both natural [|6}[12] and medical [[2}/4,31]] image classification and segmentation.

A particularity with medical images is the availability of meta-data (such as participant’s age and
sex) that often come freely with medical data-sets and that can be viewed as prior knowledge. As
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observed in [4,8]], most of the methods in contrastive learning consider distinct images equally
semantically different. However, two different images with close meta-data should probably share
discriminative features, as opposed to images with very distinct meta-data. In [8], a new contrastive
loss based on InfoNCE and integrating continuous meta-data has been proposed, namely y-Aware
InfoNCE. It generalizes the SupCon loss [16] and has shown good results on brain MRI. We shall see
its connection with the alignment and uniformity terms proposed in [33]].

Contributions. First, we show that the y-Aware InfoNCE loss can be decomposed, asymptotically,
into conditional alignment (pulling images with close meta-data y close together) and global unifor-
mity (repelling all images independently of y, see Fig. [I). Second, remarking that images should not
be uniformly repelled, and inspired by [7]], we propose to re-define the uniformity term only between
samples with dissimilar meta-data (ideally coming from different latent classes), calling it conditional
uniformity. We empirically demonstrate that going from global to conditional uniformity allows the
encoder to learn a better transferable representation on both CIFAR-100 and a brain MRI dataset.

2 Problem Formulation and y-Aware InfoNCE estimator

T Te— e e In contrastive learning, the goal is to learn an
Global Uniformity embedding fy : X — S? that maps similar
samples (z,z1) € X x X to close representa-
tions fo(x), fo(x™) but also different samples
(x,z7) € X x X to distant representations
fo(x), fo(x™), on a unit hyper-sphere S¢. Simi-
larly to [8]], we assume that each input sample x
has a proxy label y € RP giving prior knowledge
about x (such as participant’s age and/or sex)
and coming from the joint distribution p(z, y).
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that measures similarity between the proxy labels y. Similarly to [33], this loss can be re-written as:
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Lemma 1. As the number of samples N — oo, the y-Aware InfoNCE loss LY, converges to:
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where ppos(x,2) = [ plxly)p(z®|yT)p} (yH)p(y)dydy™ is a positive distribution satisfying
Ppos(t) = p(x) and pf(y") = %@wg(y7y+)p(y+) quantifies the similarity between vy and

y*. Zs(y) = Epyr)(wo(y, yT)) is a normalizing constant. See the Appendix for a proof.

Similarly to [33], the alignment term brings all positive pairs (x,2) close together in S¢ while
the uniformity term is optimal when all points fy(x) for x ~ p(x) are uniformly distributed on the
hyper-sphere. In our formulation, we know this is hardly true since all points with close meta-data
(measured by p;(yﬂ) should be close in S?. Instead of repelling uniformly all points from one
another, we propose to weight the repulsion between points with the meta-data, as in the conditional
alignment. To this end, we introduce a negative distribution p,,q(z, ™) (see below).



Conditional Uniformity. As proved in [33], the minimizers fs of Ly,;; minimize

log By o/ mop(a)p(a) (ef 9(“’”/)). Instead of sampling independently x, ', we propose to draw them from
Dreg(r,27) = [ p(aly)p(@™ |y~ )p, (v )p(y)dydy~ where py (y~) = lells—teliulyp ).
The infinite norm ensures the positiveness of our distribution and the kernel w, (y, y~) makes a direct
connection with p/\ (). We then define:

efe(rﬂ?*)) 4)
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that can be empirically estimated using: £ .. = log + 3, P T Ao
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3 Experiments and Results
CIFARL1O

CIFAR100

CIFAR. We pre-trained a ResNet18
[13]] on CIFAR 10 and 100 [18]]
by considering the true labels as
meta-data and we compared our

o
@

0.5

0.4

o
@

Accuracy
o
=
Accuracy
e o
N w

0.1

f

0 50 100 150 200 250 0 50 100 150 200 250
Contrastive Epoch Contrastive Epoch

¥ ol
+2C {Efere

unif

== Supervised
— simCLR
SupCon

¥ o
align align

o ol o L, +L
+Line = Latign + 5Linir S

o
align

Figure 2: Linear Evaluation of ResNet18 pre-trained on CIFAR
10 and 100.

approach with different baselines:
SimCLR (unsupervised) [6], Sup-
Con (supervised with labels) [16]]
and Alignment and Uniformity (un-
supervised) [33]] (see Appendix for
experimental details). We reported
in Fig. [2|the representation quality
under the linear evaluation protocol.
We observed a better convergence
speed on CIFAR10 and a better rep-
resentation on CIFAR100.

Brain MRI. In a real case scenario,

Linear Evaluation on BIOBD

following the experimental setup in
[[8]], we pre-trained a DenseNet121
[15] on BHB-10K, a large multi-
site brain MRI dataset compris-
ing 10* 3D scans of healthy con-
trols. We used age and sex as
meta-data with the associated kernel
wo((agey, sexy), (ages, sexs)) =
wo’(agelaafge2)6sea:1:sew2- We
then assessed the representation
quality on BIOBD [14,[28]], to dis- A
criminate between bipolar disorder
patients and healthy controls.

Performance vs A Performance vs Nirain

o, 1 2 5 o 100 300 500

Neot = 662
# Training Samples

=== Supervised ==+ SimCLR === y-Aware InfoNCE —o— ign+ ALYy

Figure 3: Linear Evaluation on BIOBD after pre-training on
. BHB-10K, varying A (left image with Ny,q;, = 662) and the
4 Conclusion number of training samples (right image with A\ = 1).
By decomposing the recently proposed y-Aware InfoNCE loss into conditional alignment and global
uniformity, we established a connection with the framework recently proposed in [33]. We also
demonstrated that a conditional uniformity term is preferable and lead to a better representation
quality on both CIFAR 100 and a brain MRI dataset. Future work will consist in validating the
proposed framework on various modalities (e.g CT and X-ray) and applying transfer learning from
the learnt representations.

5 Broader Impact

Including continuous and categorical meta-data into a contrastive loss should enrich the learnt
representation making it more discriminative for any downstream task. This should particularly benefit
the applications with small data-sets such as rare diseases or private clinical data-sets. Furthermore,



the proposed loss could be also adapted for multi-modal data or for data-sets with missing imaging
data, thus increasing and broadening its clinical impact and applicability.
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A Experimental Details

CIFAR-10 and 100. For all experiments, we used a batch size b = 1024 with a latent dimension
d = 128. We optimized the ResNet18 with ADAM [17] and a learning rate o« = 10~3. We used
a small weight decay 0.00005. All images in a batch are transformed twice as in [6] through a set
of transformations 7 implemented in PyTorch [23]] and including: Random Crop, Horizontal Flip,
Color Jittering and Random Grayscale, following [[6]. We used the standard testing split as defined
in [18] and we split the training set into training/validation with 1.4, = 40000 and n,,; = 10000
randomly sub-sampled and stratified. The standard deviation in Fig. [2]is obtained by repeated all
experiments 3 times with different random initialization.

Brain MRI. We followed the same experimental setting as [8] for pre-training with a batch size
b = 64 and a learning rate « = 10~ reduced by v = 0.9 every 10 epochs. We trained the model
for 50 epochs and evaluate the learned representation using a Logistic Regression implemented with
scikit-learn [25]]. For the transformations 7, we used random crop, random cutout, gaussian blur,
gaussian noise and flip, as in [§]. To obtain the standard deviation Fig. [3| we performed 5-fold
cross-validation on BIOBD.

BIOBD. This dataset contains N = 662 MRI scans acquired on 8 different sites with 356 HC and
306 patients with bipolar disorder, as described in [8].

B Proof of Lemma 1

In order to prove the lemma 1, we first give a natural way of introducing the distribution pj,s,
quantifying the similarity between positive samples (x, z") and we then re-write the expectation
under this distribution to derive the empirical estimator corresponding to the conditional alignment.

Discrete case. As in [29]], we may define the notion of similarity through a distribution p(c) defined
over discrete latent classes C and a positive distribution p™* (z, z7): points (x, zT) are similar if and
only if they share the same latent class c, i.e, z, 21 ~ pT(z,27) := Epo) (p(x|c)p(xzT|c)). In the
fully supervised setting, the latent classes C are known and correspond to the available annotations ).

General case. In general, we do not know the latent classes C but we may replace them with the
proxy labels y € RZ. Rewriting the positive distribution as:

p* (@2 = / p(zle)p(a et )b, )p(c)de

We may approximate this distribution by replacing the true latent class ¢ with the proxy label y and
the density d, (y™) by an estimate p,; (y ™) in the vicinity of y (following [5]):

Ppos(z,at) = / p(ly)p(a™y el (v )p(y)dydy™® (5)

Equipped with this distribution, and by remarking that the marginal distribution py.s(z) =
J Ppos(x,2t)dxt = p(x), we can derive a lower bound of the mutual information between x
and 27, I(z,2) := KL(ppos(x, 27)||p(2)ppos (™)) with the InfoNCE estimator [[11,22]:

ef6($:$+)
1o = Bl oty mpponaat) 108 N_1 — log(N) (6)
(I;)gvzjlwp(z’) ef6($11+) -+ Z efﬁ(w@q; )

where fo(x1,22) = %f() (1)T fo(x2) and 7 > 0 is the temperature.

y-Aware InfoNCE [8] We consider a Gaussian kernel function as a special case of density
py(yt) = %@wg(y, yT)p(y™) (where Z,(y) is a normalization constant and w,, is the Radial

Basis Function kernel) to draw a connection with the recently introduced y-Aware InfoNCE loss [8]].
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Let g(x,zt, (2, )N 71) = log T —. We can re-write the previous I3, estimator
efo(xat) > efo(z.@; )
i=1
as:
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This shows that y-aware InfoNCE loss L%, ; [8] is the empirical estimator of —I3; . Then, we
can decompose I3, into 2 terms:

N-1
1 z,zt x, T
I]%CE = Eppos(m,x+)f0(-1‘,$+) _E (@2 )pros logﬁ(efe( @) E efo(@z; ))
(w; )i ~p(x7) =1

Finally, by the same proof describe in [33] (Appendix A.2), using the Strong Law of Large Numbers,
the Continuous Mapping Theorem and the marginal p,,s(x) = p(x), we have:

N-1
: 1 z,xt T,x; x,x’
1\}E>noo E (@0t )mppos 108 N(efe( )+ Z elo(®:e)) = Eznp(x) log E-%'Np(-r’)(efe( )

()il ~p(a7) i=1
This finally terminates the proof that:

A}Enoo Lyce =— A}gnoo Bicp = —Eppos(x,w)(fe(%xﬂ) + Eznp(a) log Em,Np(m/)(efe(’”"” )
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