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Abstract

Self-supervised learning has been demonstrated to be a powerful way to use un-
labeled data in computer vision tasks. In this study, we propose a self-supervised
pretraining approach to improve the performance of deep learning models that
detect left ventricular systolic dysfunction from 12-lead electrocardiography data.
We first pretrain an encoder that can extract rich features from unlabeled electro-
cardiography data using self-supervised contrastive learning, and then fine-tune
the model on the downstream dataset using the pretrained encoder. In experiments,
our proposed approach achieved higher performance than the supervised baseline
method, using only 28% of the labels used by the baseline method.

1 Introduction

Self-supervised learning has been demonstrated to be a powerful way to use unlabeled data in
computer vision tasks [1, 2, 3]. In particular, contrastive learning approaches, such as MoCo [4, 5]
and SimCLR [6], have achieved high performance on ImageNet [7] using only a small number of
labels. By using these methods, we can first pretrain an encoder that can extract rich features from
unlabeled data, and then fine-tune the encoder on a small labeled downstream dataset.

Self-supervised learning is an ideal method for medical fields because collecting high-quality labels
for medical data is usually extremely difficult. Effective use of self-supervised learning may achieve
high diagnostic accuracy even with small labeled datasets. In this study, we aimed to apply self-
supervised contrastive learning to the analysis of electrocardiograms (ECGs), which are among the
most basic types of medical images.

The deep learning approach to analyzing ECGs has been widely studied in recent years, enabling
highly accurate detection of cardiac diseases [8, 9, 10, 11], which were previously difficult to diagnose
from ECGs. However, these approaches require large amounts of labeled electrocardiography data,
which are difficult to collect at a single institution. To solve this problem, several methods that apply
self-supervised pretraining to ECGs have been proposed [12, 13, 14, 15]. However, no study has ever
applied self-supervised pretraining to improve a model for diagnosing left ventricular (LV) systolic
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dysfunction. LV systolic dysfunction is a common disease that may lead to an increased risk of
sudden death, therefore, early detection is important. In clinical practice, LV systolic dysfunction is
currently diagnosed using echocardiography and is difficult to diagnose from ECGs.

In this paper, we show that self-supervised contrastive learning can be used to improve the per-
formance of deep learning models that detect LV systolic dysfunction from 12-lead electrocardio-
graphy data. We propose several data transformation techniques and an architecture based on a
two-dimensional (2D) convolutional neural network (CNN) as an encoder for pretraining using a
contrastive learning algorithm. The pretrained encoder is then used to train on a downstream dataset
to detect LV systolic dysfunction. Experimental results show that our proposed approach achieved
higher performance than the supervised baseline method, using only 28% of the labels used by the
baseline method. Finally, we also use Grad-CAM [16] visualization to discover which part of an
ECG is the focus of the pretrained encoder.

2 Method

Dataset: We used a dataset of 37,103 ECGs collected at the University of Tokyo Hospital. LV
systolic dysfunction was assessed by echocardiography and defined as an ejection fraction of less
than 40%. Patients who had LV systolic dysfunction were labeled as positive, and the rest were
labeled as negative. Table 1 shows the details of the dataset. The dataset was divided into five splits:
train1, valid1, train2, valid2, and test. It is worth noting that, to avoid data leakage, all ECGs from
one patient were assigned to the same split. The train1 and valid1 splits were used for self-supervised
pretraining, in which the labels were not used. The train2, valid2, and test splits were used for the
downstream task, in which a CNN model was trained to detect LV systolic dysfunction by supervised
learning. Due to the imbalance of the labels, all positive samples were used in the downstream dataset,
which means only the negative samples were used for self-supervised pretraining.

Self-Supervised Pretraining: The first step of our approach was to pretrain an efficient encoder by
self-supervised contrastive learning, using the train1 and valid1 splits. In this study, we used the
MoCo [4, 5] algorithm. In the MoCo algorithm, data transformation methods should be used, and
the main idea is that feature vectors generated from the same sample should be close to each other,
and those generated from different samples should be far apart. More details of MoCo are showed in
Appendix A. Inspired by previous works [12, 13], we used five transformation methods: Gaussian
noise, Gaussian smoothing, random erasing, resizing, and baseline shifting. Figure 1 shows examples
of each method. While training, several transformation methods were randomly selected to apply to
the ECG data, and the transformed data were then input into the encoder.

Model Architecture: In most previous studies, a ResNet-based [17] architecture was used for the
encoder. However, in this study, we used a CNN architecture, as shown in Appendix B. The reason
is that a previous study showed that this architecture can achieve high performance in detecting
LV systolic dysfunction [11]. The encoder consists of six temporal convolution blocks, one spatial
convolution block, and one fully connected layer. The encoder takes a 12×5000 ECG matrix as input,
and finally outputs a 128-dimensional feature vector. In the self-supervised pretraining, ECGs (after
normalization and transformation were applied) were input to the encoder to perform contrastive
learning, using MoCo. In the downstream task, two fully connected layers and a sigmoid layer were
added to the encoder to detect LV systolic dysfunction. The binary cross-entropy loss was minimized.

Table 1: Details of the dataset used in this study.
Split Negative Positive Total (Unique Patients) Labels Used

Pretraining train1 20693 0 20693 (11324) no
valid1 5303 0 5303 (2864) no

Downstream
train2 5406 2427 7833 (3347) yes
valid2 1108 514 1622 (685) yes

test 1092 560 1652 (699) yes

Total 33602 3501 37103 (18919)
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Figure 1: Single-lead examples of each transformation method used to train the MoCo encoder.

Experiments and Baselines: We conducted three experiments: our proposed approach, baseline
(unpretrained), and baseline (full labels). Our proposed approach first trained an encoder using
self-supervised contrastive learning on the pretraining dataset (train1 and valid1), and then fine-tuned
the model on the downstream dataset (train2 and valid2) using the pretrained encoder. Baseline
(unpretrained) omitted the self-supervised pretraining step. It directly trained a model on the
downstream dataset using supervised learning, with the model weight initialized randomly. Baseline
(full labels) also directly performed supervised learning. However, in contrast with the baseline
(unpretrained), it used all labels in the dataset, including the labels of the train1 and valid1 splits.
The train1 and train2 splits were concatenated as the training dataset, and the valid1 and valid2 splits
were concatenated as the validation dataset. Table 3 in Appendix C shows the correspondence of the
data splits used in each experiment. In all three experiments, the Adam optimizer was used. Initial
learning rates of 1e-4, 3e-5, and 1e-5 were tested in each experiment; the model weights with the
lowest validation loss were saved, and later used for evaluation on the test set.

3 Results and Discussion

The area under the curve (AUC) of each model, evaluated on the test split, is shown in Table 2. Our
proposed approach achieved an AUC of 0.9245 and it outperformed both the baseline (unpretrained)
and baseline (full labels), of which the AUC values were 0.9208 and 0.9236, respectively. The
fact that our proposed approach performs better than the baseline (unpretrained) indicates that
self-supervised pretraining enables the encoder to learn effective feature representations, which are
useful for detecting LV systolic dysfunction. Moreover, our proposed approach achieved higher
performance than the baseline (full labels). The baseline (full labels) used all labels in the dataset;
the total number of labels used in the train1 and train2 splits is 28,526. In contrast, our proposed
approach used only 7,833 labels in the train2 split. In summary, our proposed approach achieved
higher performance than the baseline (full labels) using only 28% of the labels.

To understand the features learned by the self-supervised pretraining, we used Grad-CAM [16] to
visualize the area of focus of the pretrained encoder in the ECG, as shown in Figure 2. The figure
shows that, in the negative sample, the encoder focuses on the QRS complex. In contrast, in the
positive sample, the encoder focuses on the ST segment, in particular, in leads I, aVL, V5, and V6.

Although our approach enables us to develop a deep learning model to detect LV systolic dysfunction
in a label-efficient way, because of the limited number of data in the test dataset, it is hard to show
statistically significant differences between our approach and the baselines. Future work should
evaluate our approach on a larger dataset. Moreover, an exciting direction for future work is to
explore the best model architecture and data transformation methods for self-supervised contrastive
learning for electrocardiography data.

Table 2: AUC of each model evaluated on the test dataset.
Baseline (unpretrained) Baseline (full labels) Proposed

AUC 0.9208 0.9236 0.9245
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(a) Negative sample (b) Positive sample

Figure 2: Two examples of Grad-CAM visualization of the pretrained encoder.

4 Broader Impact

Our study used self-supervised pretraining to advance the performance of a deep learning model to
detect LV systolic dysfunction. Compared with the conventional supervised learning approach, the
number of labels required was significantly reduced. The most obvious potential practical benefit
of our work is that it may enable the development of a high-performance model to detect cardiac
diseases using only a small amount of labeled data. Our work will accelerate the application of
self-supervised learning to the analysis of ECGs. It will also contribute to the clinical understanding
of ECGs, which may potentially lead to future work with greater clinical impact. To the best of our
knowledge, our work has no potential negative impacts.
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Appendix

A Framework of the MoCo Algorithm

In the MoCo algorithm, data transformation methods should be used to generate positive and negative
sample pairs. The query ECG and key ECG are respectively transformed and then input to the
encoder. The feature vectors of each ECG are used to calculate the contrastive loss. By minimizing
the contrastive loss, the feature vectors generated from the same sample will become close to each
other, and those generated from different samples will be far apart.

Figure 3: Framework of the MoCo algorithm.

B Model Architecture of the MoCo Encoder

The encoder consists of six temporal convolution blocks, one spatial convolution block, and one
fully connected layer. As proposed in the previous work [11], the temporal convolution blocks were
designed to learn features within each lead. Each block has a 2D convolutional layer with filters in
the shape of 1×K to perform convolution in the time direction of each lead. The spatial convolution
block has a 2D convolutional layer with filters in the shape of 12× 1 to perform convolution in the
channel direction.

Figure 4: Model architecture of the MoCo encoder.
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C Data Splits Used in Each Experiment

Table 3: Data splits used in the proposed method and the baselines. The bracketed number indicates
the number of labels used.

Pretrain Downstream

Training Validation Training Validation Evaluation

Proposed train1 (0) valid1 (0) train2 (7833) valid2 (1622) test2 (1652)
Baseline (unpretrained) - - train2 (7833) valid2 (1622) test2 (1652)
Baseline (full labels) - - train1+train2 (28526) valid1+valid2 (6952) test2 (1652)
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