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Abstract

As AI-based medical devices are becoming more common in imaging fields like
radiology and histology, interpretability of the underlying predictive models is cru-
cial to expand their use in clinical practice. Existing heatmap-based interpretability
methods such as GradCAM only highlight the location of predictive features but
do not explain how they contribute to the prediction. In this paper, we propose a
new interpretability method that can be used to understand the predictions of any
black-box model on images, by showing how the input image would be modified in
order to produce different predictions. A StyleGAN is trained on medical images
to provide a mapping between latent vectors and images. Our method identifies
the optimal direction in the latent space to create a change in the model prediction.
By shifting the latent representation of an input image along this direction, we can
produce a series of new synthetic images with changed predictions. We validate our
approach on histology and radiology images, and demonstrate its ability to provide
meaningful explanations that are more informative than GradCAM heatmaps. Our
method reveals the patterns learned by the model, which allows clinicians to build
trust in the model’s predictions, discover new biomarkers and eventually reveal
potential biases.

1 Introduction

As of September 2020, the FDA had approved 64 AI-based medical devices (Benjamens et al.,
2020), and for the first time the Centers for Medicare & Medicaid Services (CMS) approved the
reimbursement of deep-learning powered stroke detector for brain CT scans (Viz.ai, 2020). The
advances of deep learning in computer vision (Krizhevsky et al., 2012) are especially promising
in medical imaging fields such as radiology (Ardila et al., 2019), histology (Coudray et al., 2018),
dermatology (Esteva et al., 2017) or ophthalmology (Gulshan et al., 2016).

While many deep learning techniques may provide state-of-the-art predictive performance, inter-
pretable deep learning models are necessary for regulatory approval, as their ability to explain their
predictions can reveal potential biases and failure modes, as seen in the case of (Oakden-Rayner,
2017). Additionally, interpretable models also provide new opportunities for biomedical investigation,
as evidenced in (Courtiol et al., 2019). Finally, such models are able to make inroads with medical
experts, as their explainability helps build confidence in their utility (Holzinger et al., 2019). As
illustrated by the COVID-19 crisis (Bai et al., 2020; Li et al., 2020; Wang et al., 2020), the go-to
method for model interpretation in the medical imaging field is GradCAM (Selvaraju et al., 2017),
which produces a coarse heatmap based on gradient intensity to identify which areas of the input
image are responsible for the prediction. However, these heatmaps only highlight the location of
predictive features but do not explain how they contribute to the prediction. In an image where
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Figure 1: Our method applied to knee osteoarthritis severity prediction on an X-ray image. The
input image is gradually modified to increase the osteoarthritis severity. The GradCAM heatmap is
computed on the input image to compare both interpretability methods. X-rays of the patient’s later
visits are displayed to visually assess the clinical relevance of our method.

information is diffuse, the heatmap cannot highlight any specific region so GradCAM is not sufficient
to interpret the model predictions.

In this paper, we propose a new interpretability method that generates small synthetic transformations
of the original image that would lead to different model predictions. We train a generative model
called StyleGAN (Karras et al., 2019, 2020) and find the minimal modification in the latent space
that changes the model prediction, which ensures that generated images remain as close as possible
to the original image. Seah et al. (2019) explore a similar idea by using an older GAN algorithm to
create heatmaps highlighting features of congestive heart failure, but their method cannot be applied
to any black-box model. Fetty et al. (2020) manipulate three attributes of the StyleGAN latent space
in order to enlarge datasets with synthetic images. We validate our interpretability method on two
different imaging modalities and demonstrate its ability to provide meaningful explanations of the
predictions, and its potential to discover new biomarkers.

2 Method

We propose to create StyleGAN-generated visualizations that explain the predictions of a deep
neural network in an interpretable manner. Let f be a classifier (e.g. a fully convolutional neural
network) trained on a dataset D = (xi, yi) ∈ X × Y , where X denotes a set of 2D images and Y
a finite set of labels. Our method consists of three steps. First, the images in X are used to train a
StyleGAN2 (Karras et al., 2019), which is an improved GAN whose generator G : W → X has a
linearly disentangled intermediate latent spaceW ⊂ R512. The generator G is used to generate a set
of synthetic images (G (wi)), where the wi are sampled in the latent spaceW . Then, we train (using
a Mean Squared Error loss) a ResNet50 (He et al., 2016) encoder E : X → W on the synthetic
dataset (wi, G (wi)) to retrieve the latent representation wi from a generated image G (wi). Finally,
a logistic regression classifier f̃ (wi) = σ

(
α>wi + β

)
is trained on the latent spaceW to predict

the estimated labels ỹi = f(G(wi)) associated to each latent vector wi ∈ W . Given a new input
image x ∈ X , our method translates the latent vector w = E (x) along the direction α. We can then
create new images from the latent representation via G (w + λα) associated with a lower or a higher
prediction depending on the value of λ ∈ R.
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3 Experiments

3.1 Knee osteoarthritis severity prediction on X-ray images

We first demonstrate our method by explaining the predictions of an osteoarthritis severity predictor
on X-ray images. The dataset on which the predictor has been trained consists of 20,123 X-rays of
patients suffering from knee osteoarthritis collected by the Osteoarthritis Initiative (OAI) (Nevitt
et al., 2006). Each patient has one to eight 12-month follow-up X-rays, as well as associated clinical
data, including the Kellgren and Lawrence (KL) grade (Kohn et al., 2016). The KL grade describes
a degree of osteoarthritis severity and ranges from 0 to 4: grades 0 and 1 mean no or doubtful
osteoarthritis, while grades 2 to 4 mean mild to severe osteoarthritis.

The image classifier f is a ResNet50 trained on the multi-class prediction task. To fit this multi-class
setting to our method, we transform it to a binary classification task by pooling grades 0 and 1 versus
grades 2 to 4. The predictor f obtains 89% test AUC on this binary task, while f̃ obtains 80% test
AUC on the latent space. Three radiologists evaluated the quality of the StyleGAN generator with a
Turing test. They reach 58% accuracy on average, showing that synthetic and real X-rays are almost
indistinguishable.

In Figure 1, our interpretability method is applied to a real X-ray image. The GradCAM heatmap
provides topographical information by showing that the osteoarthritis features are located in lateral
femorotibial space. Our method provides more than topographical information by showing the
gradual emergence of the different osteoarthritis features as the KL grade increases, such as the joint
space narrowing (red arrow) and osteophytes (blue arrow). By comparing the synthetic evolution
of the image to the real evolution of the patient at 12, 24 and 72 months after baseline, we observe
that the direction found in the latent space corresponds to a biologically plausible osteoarthritis
progression.

3.2 Tumor detection on histology images of metastatic lymph nodes

We apply the same method to histology images, to explain the predictions of a metastasis detector on
Camelyon16 (Bejnordi et al., 2017). The dataset contains 224,166 patch images from breast cancer
lymph node whole-slide images, each with a binary label indicating the presence of tumor cells.

The image classifier f is a ResNet50 trained on this dataset, obtaining 92% test AUC, while the latent
predictor f̃ reaches 95% test AUC. Figure 2 shows our interpretability method on two images: patch
B contains tumoral cells while patch A does not. The GradCAM heatmaps are not relevant here
because the informative features are spread over the entire image. On the contrary, our approach
reveals clinically relevant features. On patch A, it shows the appearance of tumor cells (blue arrow)
and the disappearance of lymphocytes (red arrow) as the tumor probability increases, and inversely
on patch B.

We can see that the encoder-decoder model is not able to perfectly reconstruct histology images, as
opposed to knee X-rays. A possible explanation is that the StyleGAN model does not generate images
that are under-represented in the training set. This issue is highlighted in this particular use-case as
there is more variability in the histology images than in the knee X-ray images. Recently, Yu et al.
(2020) propose to overcome this data coverage challenge by harmonizing adversarial training with
reconstructive generation.

4 Conclusion

In this study we explored the potential of StyleGANs to explain the predictions of black-box models
on medical images. Although heatmap-based methods dominate the interpretability field, they only
highlight the localization of predictive features in the image. Our method provides an intuitive way
for medical researchers to understand where are located the predictive features in the image and
how they impact the prediction by showing modified views of the input image that would produce
different predictions. This method shows how the model learned to solve the prediction task which
allows clinicians to build trust in the model’s predictions, discover new biomarkers and eventually
reveal potential biases. In both experiments, our method proved that the models learned clinically
relevant features.
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Figure 2: Our method applied to tumor probability prediction on two histology tiles of metastatic
lymph nodes. The input image is gradually modified to increase (on patch A) or decrease (on patch
B) the tumor probability. The GradCAM heatmap is computed on the input images to compare both
interpretability methods.
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