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1 Introduction and Related Work

In medical imaging, the amount of unlabelled data often exceeds that of labelled data [28]. When
labelled data is lacking, we may still be able to obtain training sets that are big enough for training
large-scale deep models, but that are from a different data distribution from the actual data to be
encountered at test time. In particular, retinal images are obtained through devices from different
vendors, which have diverse characteristics. Moreover, shifts in data distribution may be found even
among datasets of images collected with devices from the same vendor due to patient cooperation
during the examination or interoperator variability [20, 14]. In this study, we propose a method that is
able to exploit additional unlabelled datasets, possibly with a domain shift, to improve predictions on
our labelled data. In order to do so, we exploit a Convolutional Neural Network (CNN) architecture
with three classifiers that share a common feature backbone: (1) classifies labelled samples, (2)
determines the dataset of origin of each sample, and (3) solve a self-supervised task, in particular
predicting image rotations and solving Jigsaw puzzles, on unlabelled data. Classifier (2) is trained
to not be able to distinguish between different datasets, so that data is projected into a common
feature space, while the self supervised learner (3) learns features from unlabelled data, that are
shared through the common feature backbone. Previously, in [6], Carlucci et al. tested how solving
Jigsaw puzzles on unlabelled samples, while classifying labelled images, helps in learning more
general representations. However, there are two key differences with respect to our work. First,
their architecture does not include a domain classifier. Second, they focus on the classification
performance on the unlabelled dataset, while we focus on the performance on the labelled one. The
main contributions of our work are the following: 1) we proposed a new architecture that is able
to exploit unlabelled data with a domain shift to improve predictions on labelled data. It works by
learning features through self-supervised learning (SSL) while projecting all the data onto the same
space to achieve better transfer; 2) we run a series of experiments on Office-31 dataset, to test that
our method can be successfully applied to natural images; 3) we tested this method on retinal images,
in particular for age-related macular degeneration (AMD) and diabetic retinopathy (DR) grading,
consistently improving the results of the baselines (from 78.83% to 83.53% average test accuracy on
AMD grading and from 60.00% to 67.79% average test accuracy on DR grading). We qualitatively
and quantitatively verified, through saliency maps, how the proposed method is able to focus more

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Architecture of the method proposed. The common feature extractor projects
both labelled and unlabelled samples onto the same feature space. The label
prediction loss is minimised for labelled images (a), the domain classification
loss for labelled and original unlabelled images (b) and the SSL loss for
unlabelled images modified for the SSL task (c). A gradient reversal layer
connects the feature extractor to the domain classifier, ensuring that the
feature distributions of the two datasets are made similar.

d) e)

f)

SSL training procedure for
Jigsaw puzzles. From origi-
nal unlabelled samples (d), 9
patches are extracted and shuf-
fled (e) before entering the fea-
ture extractor. Images are re-
assembled by the network (f)

closely on drusen spots in AMD images than the baselines (AUC of the precision-recall curves from
0.44 to 0.50), making it more clinically interpretable.

2 Methods and Data

The architecture proposed can be seen as an extension and revision of previous work [10] on
unsupervised domain adaptation, where we aimed to optimise the accuracy on a supervised problem
under domain shift, rather than the unsupervised one. As in [10], a shared feature extractor projects
labelled and unlabelled images to the same space. During training, the label prediction loss is
minimised for labelled samples and the domain classification loss for all samples. The domain
classifier is connected to the feature extractor by a gradient reversal layer. In this way parameters
of the feature extractor that maximise the loss of the domain classifier are learned, ensuring that the
feature distributions of the two samples are made similar. After the shared feature backbone, we also
add another classifier, solving a self-supervised task on unlabelled images, since features learned
through self-supervised tasks generalize better to new domains [1]. However, such unlabelled images
may have a negative impact if the domain shift between the unlabelled and labelled dataset is too
big [27]. For this reason, we make sure that the two datasets are projected into the same feature
space. We call the common feature extractor Gf , the label predictor for source samples Gy, the
domain classifier Gd, the classifier for the self-supervised task Gs. We would like to minimise the
prediction loss on labelled images optimising the parameters of the feature extractor θf and of the
label predictor θy , we would like to optimise the parameters of the feature extractor to maximise the
loss of the domain classifier and the parameters of the domain classifier θd to minimise the same loss.
Finally, we would like to optimize the parameters θf of the feature extractor and the parameters of
the self-supervised classifier θs to minimise the loss on the self-supervised task Gs. More formally,
we would like to find the parameters delivering a saddle point of the functional:

F (θf , θy, θd, θs) =
∑

i=1,...,N
di=0

Ly(Gy(Gf (xi; θf ); θy), yi) + β
∑

i=1,...,N
di=1

Ls(Gs(Gf (xi; θf ); θs), yi)

− λ
∑

i=1,...,N

Ld(Gd(Gf (xi; θf ); θd), yi)

=
∑

i=1,...,N
di=0

Liy(θf , θy) + β
∑

i=1,...,N
di=1

Lis(θf , θs)− λ
∑

i=1,...,N

Lid(θf , θd) (1)
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where Ly(·, ·) is the loss for the labels prediction, Ls(·, ·) for the self-supervised task and Ld(·, ·) for
the domain classification. Liy, Lisand Lid are the corresponding loss functions at the i− th training
sample, di = 0 or 1 for labelled or unlabelled data respectively, λ is the meta-parameter associated
to the gradient reversal layer and β can be used to weigh the loss related to the self-supervised task
differently. More details about our training procedure can be seen in Appendix A. For the experiments
on AMD grading, we employed 39 control, 26 early AMD and 47 late AMD images from STARE
[15] as labelled dataset and 275 images from AREDS [26] as the unlabelled one. For DR grading, 167
controls, 25 DR grade 1, 168 DR grade 2, 91 DR grade 3, 62 DR grade 4 images from IDRID [23]
and 1741 samples from Messidor-2 [9] as unlabelled dataset. For the experiments on natural images,
we used OFFICE-31 dataset [24], employing either dSLR or webcam as labelled and Amazon as
unlabelled. These are the most challenging settings since dSLR and webcam datasets have a small
domain shift, while Amazon has a bigger domain shift with the other two datasets [16].

3 Results and Discussion

In the following, our method is compared with the baseline obtained initialising a CNN with the
weights learned from training on ImageNet and fine-tuning the network on the labelled samples.
Using 100 samples from dSLR as labelled data and Amazon as target, our method improves average
test accuracy of the fine-tuning approach from 77.83% to 80.92% using VGG-16 and from 77.10% to
78.03% using ResNet-18. With 200 labelled samples, from 93.30% to 93.96% and from 90.68% to
91.41% using VGG-16 and ResNet-18 respectively. With 70% of dSLR as training data, fine-tuning
achieves 95.52% and 94.91% using VGG-16 and ResNet-18 respectively. These figures are improved
by our method to 96.00% and 95.73%. Using 70% of webcam as labelled data and Amazon as
unlabelled data, our approach improves the results of fine-tuning from 98.59% to 98.83% using
VGG-16 and from 98.59% to 99.00% using ResNet-18. For AMD grading, we trained our models
to discriminate between controls, early AMD and late AMD. The results achieved are displayed in
Table 1, presenting average test accuracies and standard errors over 5 runs. We can observe how our
approach improves the baseline from 78.83% to 83.53% with VGG-16 and from 75.29% to 81.18%
with ResNet-18. AUC of the ROC curves improved from 0.89 to 0.96 with VGG-16 and remained the
same at 0.93 with ResNet-18. We also created precision-recall curves of the saliency maps obtained
with the two approaches and verified how our method achieves AUC of 0.5, while the baseline 0.44
when compared against the ground truth lables of drusen coordinates. The precision-recall curves and
more results and details on AMD grading are in Appendix B. For DR grading, we trained our models

Table 1: Average test accuracies and standard errors obtained grading AMD on STARE dataset with
our method and with transfer learning from ImageNet followed by fine-tuning. Our method shows
better results both using VGG-16 and ResNet-18

VGG-16 ResNet-18
Fine-tuning 78.83%± 3.94% 75.29%± 4.53%

Ours - Jigsaw puzzles 83.53%± 1.05% 78.82%± 3.94%
Ours - RotNet 81.18%± 1.97% 81.18%± 4.53%

to discriminate between controls and DR of grade 1 to 4, having a 5-class classification task. In Table
2, we report the results obtained. We can observe how our method is able to improve the fine-tuning
baseline from 59.22% to 67.79% using VGG-16 and from 60.00% to 63.38% using ResNet-18. We
were also able to improve AUC of the ROC curves from 0.88 to 0.90 with VGG-16 and from 0.87 to
0.89 with ResNet-18. More results and details on DR grading are reported in Appendix C.

Table 2: Average test accuracies and standard errors obtained grading DR on IDRID dataset with our
method and with transfer learning from ImageNet followed by fine-tuning. Our method shows better
results both using VGG-16 and ResNet-18 as the backbone.

VGG-16 ResNet-18
Fine-tuning 59.22%± 2.95% 60.00%± 2.63%

Ours - Jigsaw puzzles 66.23%± 2.77% 63.38%± 3.25%
Ours - RotNet 67.79%± 2.47% 61.82%± 1.93%
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We also performed ablation studies to test whether all the components of our architecture are needed
to obtain the best results and we obtained that the full architecture is necessary both on AMD and
Office-31 data, especially in the low data regime. More details are presented in Appendix D. It is also
worth noting that all the results described in this study were achieved without particularly focusing on
hyperparameter tuning, with parameters weighing the sum of the three losses in Equation 1 fixed at 1,
to prove the effectiveness of our idea in general settings. We believe that the self-supervised approach
to learn more transferable features is a promising one and our work shows its potential to leverage
unlabelled data, which is typically available in medical imaging, to improve the classification on
labelled data. It also allows to learn more clinically relevant features, as shown through the saliency
maps analysis. Our work could foster further research into this area to achieve better detection of
several other pathologies.

Broader Impact

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are two of the leading causes
of blindness worldwide [2, 18]. Early detection of retinal changes in colour fundus photographs, such
as drusen in AMD and the growth of new vessels (neovascularisation) in DR, are vital for referral of
a patient to a specialised eye hospital services to receive sight preserving treatment. Deep learning is
continuously producing state-of-the-art results and have been used to develop methods for automatic
AMD and DR prediction and screening [5, 4, 22, 9, 8, 19]. However, a significant challenge in
developing high performance retinal image deep learning models is the availability of labelled data,
where the amount of unlabelled data often exceeds that of labelled data [28]. In a clinical environment
images are captured on a variety of devices, have different poses (e.g. optic disc centred, macular
centred), high interpatient variability (e.g. retinal pigment epithelium characteristics) and image
quality (e.g. media opacity, artefact) and will exhibit a large shift in data distribution [20, 14]. For
this reason, deep learning methods sometimes are not able to replicate their results in real world
settings [3]. In this paper, we propose a method that is able to exploit unlabelled datasets, possibly
with a domain shift, to improve predictions on the labelled data and the generalisation capability of
our model. This idea could be applied for early screening and detection of several pathologies and
ultimately achieve better health outcomes for the general population
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Appendix

A Training of our architecture

We observe that the weighting parameter for the loss associated to the source samples classifier
can be assumed to be 1 without loss of generality, since if we called such a weighting parameter
α, it would always be possible to divide the entire expression by α (for α 6= 0), obtaining the new
hyperparamaters β′ = β

α , λ′ = λ
α .

In our optimisation, we are looking for the parameters θ̂f , θ̂y, θ̂s, θ̂d producing a saddle point of
Equation 1, that is:

(θ̂f , θ̂y, θ̂s) = argmin
θf ,θy,θs

F (θf , θy, θs, θ̂d) (2)

θ̂d = argmax
θd

F (θ̂f , θ̂y, θ̂s, θd) (3)

The saddle point satisfying 2 and 3 can be found by SGD, updating the parameters with the following
stochastic updates:

θf ← θf − µ

(
∂Liy
∂θf

+ β
∂Lis
∂θf
− λ∂L

i
d

∂θf

)
(4)

θy ← θy − µ
∂Liy
∂θy

(5)

θs ← θs − µβ
∂Lis
∂θs

(6)

θd ← θd + µλ
∂Lid
∂θd

(7)

where µ is the learning rate, determining the step size at each iteration.

As self-supervised task we tested predicting image rotations [11] and solving Jigsaw puzzles [21],
since recently [12] and [17] compared different self-supervised tasks and concluded that they are
among the most effective. On the other hand, we didn’t choose SimCLR, even though it reached
state-of-the-art results on ImageNet because it requires very large batch sizes and consequently big
amounts of data [7], while we are working in the low data regime. When predicting image rotations,
each image in the unlabelled dataset is rotated by 0, 90, 180 or 270 degrees (cfr. Figure 2) and the
self-supervised classifier is trained on the 4-class image classification task of recognizing one of
the four image rotations. To be able to recognise the rotation that was applied, the network need to
understand the concept of the objects displayed in the image, such as their type, their pose and their
location in the image [11].

(a) (b) (c) (d)

Figure 2: Examples of images rotated by 0◦ (a), 90◦ (b), 180◦ (c), 270◦ (d). The key idea is that it is
necessary to understand the concepts of the images to predict their rotation
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When solving Jigsaw puzzles we extracted tiles from the unlabelled images and shuffled them. The
goal of the network is to re-assemble the image and restore each tile in the correct position. In order
to do so, we first defined a set of Jigsaw puzzles permutations and assigned an index to each entry. An
example permutation for 3× 3 Jigsaw puzzles can be P = (2, 9, 3, 1, 5, 4, 6, 8, 7). During training,
we randomly picked a permutation, re-arranged the patches of the image in that order and tasked the
network to output the index of the permutation used. As in [6], after extracting the patches from the
image, we re-assembled them in the order given by the selected permutation, so that we could deal
with a classification task on the recomposed image, which has the same dimension of the original one.
In this way, we were able to exploit the same feature extractor used for the other tasks, something
that would not have been possible if we followed the classic approach of dealing with different image
patches separately and re-assemble them only towards the end of the learning process. In particular,
we used a 3× 3 grid to decompose the images in 9 patches which are then shuffled according to the
permutation. However, if we considered every possible permutation of 9 elements, we would have
9! = 362, 880 of them. For this reason, we picked only 30 permutations and in order to maximise
training capacity we chose these 30 permutations according to the Hamming distance algorithm in
[21]. The Hamming distance is the number of different tiles locations between 2 permutations. Large
Hamming distances are desirable because they make the task less ambiguous [21]. For example if
the difference between two permutations is only in the position of two tiles that are very similar, the
prediction task will be almost impossible. At the same we don’t want the task to be too simple [21].
For this reason, we tried to remove the shortcuts that may be exploited by the network to solve the
classification task. In particular, since adjacent patches have similar low-level statistics, like mean and
standard deviation, that may allow the network to find the arrangement of the patches, we normalised
the mean and standard deviation of each patch separately. Furthermore, we removed the continuity of
edges. In order to do so, we first resized each patch to 75× 75, than we extracted a centered crop of
size 64× 64 and resized it back to 75× 75. Finally, we jittered the color channels of the images to
prevent the network from estimating the position of the tiles from the chromatic aberration, i.e. the
spatial shift between channels that increases from the center of the images to the borders. For the
feature backbone and source labels classifier architecture, we tested VGG-16 [25] and ResNet-18
[13]. In bith cases, we modified the fully connected layers to reflect the number of classes in our
experiments. The domain classifier was defined with three linear layers of decreasing dimensions
with ReLUs activations, while for the classifier of the self-supervised task we followed the same
architecture of the fully connected layers of the CNN employed for predicting the labels of source
images. As data augmentation, we performed horizontal and vertical flips and rotations up to 45◦.
Each labelled dataset was split into training, validation and test sets, each containing 70%, 15% and
15% of the data respectively.

B More results and details about AMD grading

We report the average ROC curves, obtained with VGG-16 and ResNet-18, in Figures 3 and 4
respectively. We can observe how with VGG-16 our method shows a good improvement over the
fine-tuning baseline. In particular, using RotNet as self-supervised task the AUC increases from 0.89
to 0.96. On the other hand, with ResNet-18 all the methods show very similar AUC and the standard
errors intervals of the ROC curves largely overlap.

To recap the results of AMD grading, in terms of accuracy our method outperformed the fine-tuning
baseline with both VGG-16 and ResNet-18, while in terms of AUC it improved the baseline with
VGG-16 and achieved very similar results with ResNet-18. A possible explanation for the different
performance of the two CNNs could be the following: VGG-16 has 138 million parameters [25],
while ResNet-18 only 11 million [13]. This means that VGG-16, being an order of magnitude
wider, can learn more high dimensional and general representations. This is particularly important
since target images, on which the self-supervised task is trained, have a different distribution than
source images, to which the representations learned will be transferred. For this reason, the broader
representation learned by VGG-16 may allow to identify more components of the images that can
be later recycled for the supervised classification task. This result is also in line with the latest
developments in the self-supervised literature, according to which wider networks perform better in
self-supervised tasks [7, 17].

We also show some saliency maps, through which we are able to show how our approach is able
to focus more closely on drusen spots than the fine-tuning baseline and therefore is more clinically
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Figure 3: Average ROC curves obtained for AMD grading on STARE, using AREDS as target data
and VGG-16 as CNN. Our method improves the AUC of the fine-tuning baseline, particularly when
using RotNet as self-supervised task

Figure 4: Average ROC curves for AMD grading on STARE, obtained using AREDS as target data
and ResNet-18 as CNN. In this case our method achieves AUC comparable to the baseline.

interpretable. We created the saliency maps with VGG-16 as CNN and RotNet as self-supervised
task.

We start with a qualitative analysis of saliency maps. For each image considered, we created three
saliency maps: two related to the baseline method and one to our method. In particular, saliency
maps created for the baseline method were obtained when fine-tuning only the fully connected layers
(b) or the entire network (c) and were compared with the ones obtained with our approach (d). In
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(a) (b)

(c) (d)

Figure 5: Original early AMD image (a) and saliency maps obtained with transfer learning, fine-
tuning only the fully connected layers (b) or all the network (c) and with our approach (d). Our
method is able to focus more precisely on drusen spots (circled in (a))

Figure 5 we present saliency maps related to an early AMD image. By observing the image, we may
get the idea that saliency maps related to the baseline (b,c) tend to be more spread out and in general
do not focus very well on drusen spots. On the other hand, the saliency map created after applying
our method (d), gives the impression to be able to capture these areas of interest a bit more precisely.
In any case, a quantitative analysis would be needed to have a more precise answer.

To this aim, we created precision-recall curves, averaged over three runs, to compare saliency maps
of early AMD images with the ground truth coordinates of drusen. The result is shown in Figure 6.
We can observe how the average AUC of the precision-recall curves related to the usual fine-tuning
baseline where we fine-tune all the network is 0.44, while the AUC obtained fine-tuning only the fully
connected layers of the CNN is 0.19, confirming how fine-tuning also the deeper layers is crucial.
Furthermore, as we were presuming during our qualitative analysis, our method achieves the best
results, with an average AUC of 0.50. It is also important to note that the result obtained by random
chance would not be 0.5 as one may think, but a horizontal line approximately corresponding to
precision = 0.2 (giving an AUC of around 0.2), as shown in Figure 6. 0.2 is the ratio P

P+N between
the positive examples and the total samples in our data (sum of positive and negative examples). This
is true in general and can be easily proven in the case of a random classifier C assigning the i-th
sample yi to the positive class with a random probability p. In this case, the expected value for the
precision is: E( TP

TP+FP ) =
pP

pP+pN = P
P+N by definition of precision, where P is the number of

positive samples and N the number of negative ones. Similarly, the expected value for the recall is
E( TP

TP+FN ) = pP
pP+(1−p)P = p.
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Figure 6: Precision recall curves for the saliency maps of early AMD images. Our method outperforms
the fine-tuning baseline in average precision-recall AUC

Figure 7: Average ROC curves obtained with IDRID dataset as source, Messidor-2 as target and
VGG-16 as CNN. Our method improves the average AUC of the fine-tuning baseline, even if there
some overlapping between standard errors intervals

C More results and details about DR grading

In Figures 7 and 8 we display the average ROC curves obtained with VGG-16 and ResNet-18
respectively. In both cases, our approach has better average AUCs than the baseline, even if there is
some overlapping between standard errors intervals.
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Figure 8: Average ROC curves obtained with IDRID fine-tuning baseline, even if some overlapping
between standard errors intervals is present

Table 3: Average numbers of images that are predicted to be more than one grade away from the
ground truth (lower is better). The proposed method improves the transfer learning baseline from
12.8 to 7.2 and from 10 to 8.8 such mistakes with VGG-16 and ResNet-18 respectively

VGG-16 ResNet-18
Fine-tuning 12.8 10

Ours - Jigsaw puzzles 8 8.8
Ours - RotNet 7.2 10.6

If we look at the confusion matrices obtained when predicting the class of images in the test set
with the different methods, we can further observe how in our approach most errors happen when
misclassifying an image either one grade below or one grade above, while the fine-tuning approach
makes bigger mistakes on average, sometimes misclassifying images of several grades. We report the
average confusion matrices in Figure 9, using VGG-16 (a) and Resnet-18 (b). The average number
of images predicted to be more than one grade away from the ground truth are displayed in Table 3.
The biggest difference is observed with VGG-16 as CNN, where the standard fine-tuning approach
commits 12.8 such mistakes on average, while our approach 8 and 7.2, with Jigsaw and RotNet
respectively as self-supervised task. On the other hand, with ResNet-18 our approach using Jigsaw
puzzles as self-supervised task improves the fine-tuning baseline from 10 to 8.8 mistakes of this type.
However, with RotNet, it is slightly worse with 10.6 mistakes. As reported in previous occasions,
this difference in performance may be attributed to the ability of VGG-16 of learning more general
representations from the unlabelled data, being a wider network.

D Ablation Studies

We repeated some experiments both for AMD grading and on Office-31, considering the results
obtained with all the combinations of two classifiers that follow the common feature extractor Gf , i.e.
Gy and Gd, Gy and Gs, Gd and Gs. For Office-31, we start considering the case of dSLR with 100
training labels as source (with Amazon as target), since as observed this is the case where the biggest
difference in performance among different methods is observed and also where the amount of labels
available is similar to the case of AMD grading. Later, we will also present the results obtained with
the full dSLR dataset as source. The results for AMD grading are presented in Table 4, while the
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(a) (b)

Figure 9: Average confusion matrices obtained grading DR with the baseline and our approach, using
VGG-16 (a) and Resnet-18 (b) as CNN. On average our method makes less prediction that are wrong
by more than one grade

Table 4: Ablation study performed grading AMD images on STARE, using AREDS as target. Our
method achieves better performance than each combination of two of its components

Self-supervised task VGG-16 ResNet-18

Ours - Gy, Gd, Gs
Jigsaw puzzles 83.53%± 1.05% 78.82%± 3.94%

RotNet 81.18%± 1.97% 81.18%± 4.53%
Gy, Gd – 78.83%± 3.57% 76.47%± 2.88%

Gy, Gs
Jigsaw puzzles 82.36%± 4.08% 76.47%± 1.66%

RotNet 75.30%± 3.87% 77.65%± 3.07%

Gd, Gs
Jigsaw puzzles 45.88%± 8.39% 77.65%± 3.07%

RotNet 56.47%± 6.36% 78.83%± 3.94%

first experiments on Office-31 in Table 5. As we can see from the tables, in both cases our method
including all the three components achieves the best results, validating our idea that all of them are
needed, at least in the low data regime.
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Table 5: Ablation study performed on Office-31, using dSLR as source with 100 training labels
available and Amazon as target. Our method is able to obtain better classification accuracy than each
combination of two of its components

VGG-16 ResNet-18

Ours - Gy, Gd, Gs
Jigsaw puzzles 79.34%± 1.13% 78.03%± 1.16%

RotNet 80.92%± 0.47% 77.30%± 1.34%
Gy, Gd – 78.12%± 0.55% 75.99%± 1.13%

Gy, Gs
Jigsaw puzzles 80.79%± 0.55% 76.51%± 1.22%

RotNet 80.79%± 0.80% 76.10%± 0.97%

Gd, Gs
Jigsaw puzzles 78.29%± 0.73% 76.38%± 0.96%

RotNet 78.82%± 0.64% 76.05%± 1.29%

Taking a closer look at the results, we can observe that with VGG-16 the second best performance is
achieved by the combination of Gy and Gs for both datasets. On the other hand, with ResNet-18,
the second best result is achieved by the same combination of classifiers on Office-31 images and by
Gd and Gs on the AMD dataset. Interestingly, Gd and Gs also achieve the worst performance - by a
large margin - with VGG-16 on the AMD dataset, from which we may assume that the classification
of source images - done by Gy - is necessary to maintain stable performance across all settings.
To sum up, while the best results are achieved with our method, we can suppose that the two most
important components are Gy and Gs, that alone achieve the second best results in three out of four
cases. Gd and Gs achieve the best performance in the remaining case - on the AMD dataset with
ResNet-18 - but also show unconsistent results, obtaining very poor results with VGG-16 on AMD
grading. All these considerations come with the caveat that in some cases there is some overlapping
among standard errors intervals, due to the small size of the datasets available.

Table 6: Ablation study performed on Office-31, using dSLR as source with 70% of the full dataset
in the training set and Amazon as target. Our method still achieve the best average performances but
with ties or small margin and overlapping between standard errors intervals

VGG-16 ResNet-18

Ours - Gy, Gd, Gs
Jigsaw puzzles 95.73%± 1.16% 94.93%± 1.27%

RotNet 96.00%± 1.13% 95.73%± 1.38%
Gy, Gd – 96.00%± 0.84% 94.40%± 1.57%

Gy, Gs
Jigsaw puzzles 94.93%± 1.16% 94.93%± 1.27%

RotNet 95.73%± 0.88% 94.93%± 1.03%

Gd, Gs
Jigsaw puzzles 95.47%± 0.16% 95.2%± 1.11%

RotNet 94.67%± 1.00% 95.73%± 0.88%

In Table 6 we display the results obtained using the full dSLR dataset as source, with 70% of the
data in the training set, and again Amazon as target. In this case, our approach is still able to achieve
the best average accuracy, but the results are less clear since there are ties with results achieved
with some combination of two components of the architecture and in general all the results appear
very close. At the same, the combinations of two components tying the best performance achieved
by the full architecture are different for different CNNs and thus employing all the components
of our method would still seem the best choice. We can conclude that while our method is able
to outperforms standard fine-tuning on labelled samples for natural images also with more labels
available, the biggest improvements are displayed in the low data regime. Moreover, it is less clear
whether our approach is better than any combination of two of its components when more training
data is available. This could be explained considering that with more training data, a model is able
to generalise better and the benefit achievable by transferring features from external datasets is less
signficant.
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