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1 Introduction
Machine learning (ML) is routinely used to analyze medical images in radiology [4, 9, 24], oph-
thalmology [6, 11], cardiology [10, 2], and pathology [5, 7]. To effectively capitalize on these
advances, clinicians need to be able to interpret why clinical decisions are made by ML models.
These interpretations can help clinicians achieve three critical milestones — the ability to trust model
decisions [15], identify model failure modes [26], and expand clinical knowledge[20].

There are four general approaches for providing interpretability — perturbation-based, gradient-based,
locally linear, and amortized explanation methods (AEMs). Perturbation-based approaches, such as
[27, 28, 29], rely on computationally expensive perturbations of the input. Gradient-based methods
[21, 22], such as grad-CAM [19], which aim to calculate the gradient of the target with respect to
features in the input, have been shown to lack fidelity [12, 1]. Meanwhile, locally linear methods,
popularly LIME [18] and SHAP [16], require learning a new model for each sample of data and rely
on biased linear explanations. AEMs, L2X [3] and INVASE [25], are the only class of methods that
provide an objective to measure explanation fidelity and global model to quickly explain any sample
of data with a single forward pass. Given the need for high fidelity, real-time explanations in clinical
care settings, we consider AEMs as the preferred approach for interpreting medical images and focus
on addressing issues with prior AEMs.

Figure 1: L2X classifies digits with 96%
accuracy from a single selected pixel.

Existing AEMs, L2X [3] and INVASE [25], learn a global
selector model to select important feature subsets in con-
cert with a predictor model to predict the target given
this subset of features. While clinicians can benefit from
using AEMs, we show that they should not trust existing these existing methods. Figure 1 illustrates
explanations from L2X on MNIST [14] trained with a selector model that outputs a single important
pixel and achieves 96.0% accuracy. Here, the selector model makes the classification decision and
transmits it to the predictor model through the binary code of the selector variables.

We show that this phenomenon can occur even with simple medical imaging tasks, such as predicting
cardiomegaly. We propose REAL-X, a new AEM, which addresses the issues with prior AEMs by
respecting the true data generating distribution. We show that our method provides trustworthy
explanations through quantitative and expert radiologist evaluation.

2 Instance-wise feature selection (IWFS)
Let input x be a random vector in RD, and the target y ∈ {1, . . . ,K}. We refer to the jth component
of x as xj , and a subset of features as xS := {xj}j∈S , where S ⊆ {1, . . . , D}. F is a distribution
over (x,y). Instance-wise feature selection (IWFS), for every instance (x(i),y(i)) ∼ F (x,y) , seeks
to identify a minimal subset of features x(i)

S(i) such that the following condition is met:
F (y | xS(i) = x

(i)

S(i)) = F (y | x = x(i)). (1)
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2.1 Amortized explanation method (AEM)
AEMs refer to a general class of interpretability methods that learn a global selector model to identify
a subset of important features locally in any given instance of data. The selector model is a distribution
qsel(s |x;β) over a selector variable s, which indicates the important features for a given sample of
x. AEMs optimize qsel with an objective that measures the ability of the selections to predict the
target. Existing AEMs, L2X [3] and INVASE [25], learn qsel(s |x;β) in concert with a predictor model
qpred(y |m(x, s); θ). We refer to such methods as joint amortized explanation methods (JAMs).
JAMs use a regularizer R(s) to control the number of selected features and a masking function m to
hide the jth feature xj with the selector variable sj . To learn the parameters of the amortized selector
model, β, and the predictor model, θ, the JAM objective maximizes

Ex,y∼FEs∼qsel(s |x;β) [log qpred(y | m(x, s); θ)− λR(s)] . (2)

We show that both L2X and INVASE fit this objective in appendix A.

3 JAMs Simply Encode Predictions
While the selector model in JAMs makes it simple to explain new examples, in this section, we reveal
that JAMs can easily encode predictions. For noise free classification, the following lemma states that
the selector model can encode the target using the selection of at most a single feature in each sample
of data. For simplicity, we focus on independent Bernoulli selector variables sj ∼ Bernoulli(fβ(x)j).
The intuition here is that the selector variable s is a binary code that can pass quite a bit of information
to predict the target. A proof is available in appendix E.1.

Lemma 1. Let x ∈ RD and target y ∈ {1, ...,K}. If y is a deterministic function of x and K ≤ D,
then JAMs with monotone increase regularizers R will select at most one feature at optimality.

This idea can be generalized to settings where y is not a deterministic function of x and is formally
captured in lemma 2 found in appendix D and proved in in appendix E.2.

4 REAL-X, Let Us Evaluate and Explain!
Evaluate. In order to trust the explanations provided by AEMs, selections need to be quantitatively
evaluated. The goal of IWFS is to satisfy the condition in eq. (1). The evaluation of IWFS should reflect
the goal—the selections should be evaluated on the true conditional distribution F (y | xS(i) = x

(i)

S(i)).
More generally, evaluating the selection of any potential subset of features R requires access to
F (y | xR). This distribution can be estimated with qeval, trained by maximizing the follow objective,
which yields the true F (y | xR) at optimality (see appendix F):

Ex,y∼FEr∼Bernoulli(0.5) [log qeval(y |m(x, r); η)] . (3)

Explain. Now we describe a method to ensure that the learned selections also respect the true data
distribution given subsets of the input F (y |xR). JAMs learn to select features and make predictions
in concert. This flexibility allow JAMs to learn to make predictions from information encoded in the
choice of selections. We propose learning the predictor model disjointly to approximate F (y |xR)
and eliminate this possibility. We introduce the following new AEM as REAL-X:

max
β

Ex,yEsi∼Bernoulli(fβ(x)i)
[

log qpred(y | m(x, s); θ)− λ‖s‖0
]
,

max
θ

Ex,yEri∼Bernoulli(0.5)
[

log qpred(y | m(x, r); θ)
]
. (4)

Implementation. REAL-X samples the selection variable for each feature si independently from
a Bernoulli distribution. To control the number of features selected REAL-X sets R(s) = ||s||0. To
optimize this discrete process REAL-X uses score function, REBAR gradients [23] (see appendix B),
where relaxed continuous selections are used within a control variate to lower the variance of the
gradient estimates. The training procedures for REAL-X and qeval are described in appendix C.
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Figure 2: REAL-X makes trustworthy along the margins of the heart and chest wall. 5 random samples
of Cardiomegaly and Normal Chest X-Rays are presented for each method, with the selections overlaid in red.

5 Explaining Cardiomegaly
Set-Up. A simple explanation of the data, one with fewer features selected, allows for greater human
interpretability [8]. On imaging data this is likely to come at the cost of predictive accuracy. This
trade-off can be encoded in the model selection process by tuning the hyper-parameter controlling
the number of features selected and selecting the model that provides the simplest explanations
while achieving sufficient predictive accuracy. We tune across k = {1, 5, 15, 50, 100} for L2X and
λ = {0.1, 1.0, 2.5, 5.0, 50.0} for INVASE, REAL-X, and BASE-X, selecting the hyper-parameter that
results in the simplest explanations such that the accuracy (ACC) is within 5% of a model trained
on the full feature set. We introduce BASE-X as a JAM that mimics the gradient optimization
procedure of REAL-X to ensure that the results we obtain on REAL-X are not due to changes in
the optimization procedure. Post-hoc evaluation metrics, eAUROC and eACC, are then obtained by
evaluating selections with qeval.

Data. The NIH ChestX-ray8 Dataset1 [24] contains 112, 120 chest X-rays from 30, 805 patients,
each labeled with the presence of 8 diseases. We selected a small subset of 5, 600 X-rays labeled
either cardiomegaly or normal, including all 2, 776 X-rays with cardiomegaly.

Model training. We used 5, 000, 300, and 300 images for training, validation, and testing re-
spectively. UNet and DenseNet121 architectures were used for the selector and predictor models
respectively providing 16× 16 super-pixel selections. All methods were trained for 50 epochs using
a learning rate of 10−4.

Table 1: real-x (REAL-X) yields superior post-hoc
evaluation.

Method ACC AUROC eACC eAUROC k\λ
All Features 78.0% 0.887 77.0% 0.884 –

REALX 75.0% 0.838 70.3% 0.777 2.5
L2X 75.0% 0.848 54.0% 0.581 10

INVASE 74.3% 0.819 52.3% 0.548 2.5
BASEX 74.3% 0.818 51.7% 0.595 2.5

Results. Table 1 shows that while
each method makes selections that allow
for high predictive performance (ACC≥
73.0%), REAL-X yields superior perfor-
mance upon evaluation. Looking at selec-
tions of random Chest X-rays in fig. 2, we
see that L2X, BASE-X and INVASE seem to
make counterintuitive selections that omit
many of the important pixels, resulting in
a sharp decline in eACC.

Table 2: Average rankings by expert radiologists.

REALX L2X INVASE BASEX

1.08 (0.04) 3.57 (0.10) 2.85 (0.11) 2.29 (0.09)

Physician Evaluation. We asked two expert
radiologists to rank each method based on the
explanations provided. We randomly selected
50 chest X-rays from the test set and displayed
each method’s selections for each X-ray in a
random order to the radiologists. For a given chest X-ray, the radiologists then evaluated which selec-
tions provided sufficient information to diagnose cardiomegaly and ranked the four options provided,
allowing for ties. In table 2 we report the average rank each method achieved. We see that REAL-X
consistently provides explanations that are meaningful to board-certified radiologists.

1https://nihcc.app.box.com/v/ChestXray-NIHCC
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6 Broader Impact
We began our discussion by acknowledging that model interpretations enable clinicians to trust
model decisions, account for failure modes, and acquire new knowledge. However, all of these
benefits hinge on the ability to trust the interpretations provided. If clinicians cannot trust model
interpretations, they may loose faith in ML models or make decisions that negatively impact patient
care. We examine a class of interpretability methods, amortized explanation methods (AEMs), that
have the potential to seamlessly supplement the deployment of machine learning models in the clinic
by offering computationally efficient, real-time interpretations. With this work, we hoped enable
the community to trust AEMs, recognizing that prior AEMs may instead provide interpretations that
encoding the prediction. We provide a way to check the interpretations provided by AEMs, and offer
medical practitioners a new AEM, REAL-X, that addresses the issues with prior AEMs.

In practice, it may be unethical to provide unreliable explanations to clinicians or users in any
field. We have addressed how this may affect patient care, but these issues extend to many other
applications, such as criminal justice and finance, where providing poor model explanations can
result in wrongful acquittals/convictions or unwise financial decisions. Additionally, for practitioners
hoping to learn something new from the superhuman abilities of their models, incorrect explanations
can shift understanding and have long term consequences.

While we focus our work on medical imaging, we believe that our work is broadly applicable to any
field. We hope to both advance the ability of any machine learning practitioner to understand model
decisions and bring attention to the need for trustworthy interpretations.
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A L2X and INVASE are JAMs
INVASE is a JAM that models the selector variable s using independent Bernoulli distributions
denoted B whose probabilities are given by a function f of the features. It sets R(s) = `0(s) to
enforce sparse feature selections and uses the following masking function:

m(x(i), s(i))j =

{
x
(i)
j if s(i)j = 1

[mask] if s(i)j = 0
. (5)

INVASE also uses qcontrol(y | x;φ) as a control variate within the objective to reduce the variance of
the score function gradients during optimization. The INVASE objective for learning θ and β is

Ex,y∼FEsj∼Bernoulli(fβ(x)j)
[

log qpred(y | m(x, s); θ)− log qcontrol(y | x;φ)− λ‖s‖0
]

The use of qcontrol does not alter INVASE’s objective with respect to the selector or predictor model, so
it fits into the form of eq. (2).

L2X is a JAM that uses k independent samples from a Concrete distribution [17, 13] to define the
selector model in order to make use of reparameterization gradients during optimization. In L2X, s is
sampled from qsel(s |x;β), where

cj ∼ Concrete(fβ(x)), C = [c1, . . . , ck] ∈ RD×k, si = max
1≤j≤k

Cij .

Selection with the mask function is accomplished with multiplication: m(x, s) = x � s. Sparse
selections are enforced by limiting the number of samples taken from a Concrete distribution,
assigning a hard bound k on the number of features selected. This results in the following objective
for learning θ and β:

Ex,y∼FEs∼qsel(s |x;β) [log qpred(y | x� s; θ)] , (6)

assuming the form of eq. (2).

B Applying REBAR Gradient Estimation to REAL-X

Computing the gradient of an expectation of a function with respect to the parameters of a discrete
distribution requires calculating score function gradients. Score function gradients are high variance.
To reduce the variance, control variates are used within the objective. REBAR gradient calculation
involves using a highly correlated control variate that approximates the discrete distribution with its
continuous relaxation.

The REAL-X procedure involves

max
β

Ex,yEsi∼B(fβ(x)i)
[

log qpred(y | m(x, s); θ)− λ‖s‖0
]
.

This is accomplished through stochastic gradient ascent by taking

∇βEsi∼B(fβ(x)i)
[

log qpred(y | m(x, s); θ)− λ‖s‖0
]
, (7)

which requires score function gradient estimation.

Let s be a discrete random variable, L = Es∼qβ [h(s)], and E[ĝβ ] = ∇βL, the REBAR gradient
estimator [23] computes ĝβ . Then, letting z be a continous relaxation of s, REBAR estimates the
gradient as

ĝβ = [h(s)− h(z̃)]∇β log qβ(s)−∇βh(z̃) +∇βh(z),

where s = B(z), z ∼ qβ(z), z̃ ∼ qβ(z|s).

To estimate eq. (7) using REBAR, REAL-X sets

h(s) = log qpred(y | m(x, s ); θ).

Here, s is Bernoulli distributed and REAL-X sets z to be distributed as the binary equivalent of the
Concrete distribution [17, 13], which we refer to as the RelaxedBernoulli distribution. s, z, and z̃ are
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sampled as described by Tucker et al. [23] such that

pi = fβ(x)i,

si = B(zi) = 1(zi > 0), (8)
zi ∼ qβ(z |x) = RelaxedBernoulli(pi; τ = 0.1), (9)

z̃i ∼ qβ(z |x, s) =
1

0.1

(
log

pi
1− pi

+ log
v′

1− v′

)
, (10)

where v ∼ Unif(0, 1) and v′ =

{
v(1− pi) if si = 0

vpi + (1− pi) if si = 1
.

Then to estimate eq. (7) notice that

∇βEsi∼B(fβ(x)i)
[
λ‖s‖0

]
= λ∇βfβ(x).

REAL-X, therefore, estimates eq. (7) by calculating ĝβ as

ĝβ = [log qpred(y | m(x, s))− log qpred(y | m(x, z̃))]∇β log qsel(s |x;β)− λ∇βfβ(x)

−∇βqpred(y | m(x, z̃)) +∇βqpred(y | m(x, z)) (11)

C Algorithms
C.1 REAL-X algorithm

Algorithm 1 REAL-X Algorithm
Input: D := (x,y), where x ∈ RN×D, feature matrix; y ∈ RN , labels
Output: qsel(s |x), function that returns feature selections given an instance of x
Select: λ, regularization constant; α, learning rate; M , mini-batch size, T , training-steps
for 1, ..., T do

Randomly sample mini-batch of size M , (x(i),y(i))Mi=1 ∼ D
for i = 1, ...,M do

Sample Selections:
r(i) ∼ Bernoulli(0.5)
Sample s(i), z(i), and z̃(i) as in eqs. (8) to (10)

end
Optimize Models:

θ = θ + α∇θ
[

1
M

∑M
i=1 log qpred(y(i)|m(x(i), r(i); θ)

]
β = β + α 1

M

∑M
i=1 ĝβ , where ĝβ is calculated as in eq. (11)

end

C.2 Evaluation Algorithm

Algorithm 2 Algorithm to Train Evaluator Model qeval

Input: D := (x,y), where x ∈ RN×D, feature matrix; y ∈ RN , labels
Output: qeval(y |m(x, · ); η), function that returns the probability of the target given a subset of

features.
Select: α, learning rate; M , mini-batch size
while Converge do

Randomly sample mini-batch of size M , (x(i),y(i))Mi=1 ∼ D
for i = 1, ...,M do

Sample Selections:
r(i) ∼ Bernoulli(0.5)

end
Optimize:

η = η + α∇η
[

1
M

∑M
i=1 log qeval(y

(i)|m(x(i), r(i)); η)
]

end
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D Additional Lemmas
Lemma 2. Let x ∈ RD, target y ∈ {1, ...,K}, and ∆ be a set of K dimensional probability

vectors, then for J = arg minj
∑j
i=0

(
D

i

)
≥ |∆| and x ∼ F , there exists a qsel and qpred, where

{qpred(y = k |m(x, s))}Kk=1 = δ(x) ∈ ∆ and E[||s||0] ≤ J .

E Proofs
E.1 Proof of Lemma 1
Lemma 1. Let x ∈ RD and target y ∈ {1, ...,K}. If y is a deterministic function of x and K ≤ D,
then JAMs with monotone increase regularizersR will select at most one feature at optimality.

As mentioned in section 3, the lemma considers the masking function from eq. (5) and on independent
Bernoulli selector variables sj ∼ Bernoulli(fβ(x)j).

s ∈ RD is binary and, therefore, has the capacity to transmit D bits of information. Given that
y ∈ {1, ...,K} is a deterministic function of x ∈ RD, the true distribution is F (y | x) ∈ {0, 1} for
each of the K realizations of y. Therefore, m(x, s) must pass at least log2K bits of information to
the predictor model qpred(y |m(x, s)).

With m of the form eq. (5), this information content can come from s. s has a capacity of

log2

(∑n
i=1

(
D

i

))
bits when restricted to realizations of s ∼ qsel with at most n non-zero el-

ements. The maximal number of non-zero elements J in any given realization of s required to
minimally transmit log2K bits of information with s can be expressed as

J = arg min
j

j∑
i=0

(
D

i

)
≥ K.

GivenK ≤ D, the maximal number of selections required is given by J = 1, where
(
D

1

)
= D ≥ K.

Therefore there exists a qpred and qsel such that E[qpred(y |m(x, s))] = E[F (y |x)] and E[‖s‖0] ≤ 1.
For monotone increasing regularizer R, any solution that selects more than a single feature will have
a lower JAM objective. Therefore, at optimally, JAMs will select at most a single feature.

E.2 Proof of Lemma 2
Lemma 2. Let x ∈ RD, target y ∈ {1, ...,K}, and ∆ be a set of K dimensional probability

vectors, then for J = arg minj
∑j
i=0

(
D

i

)
≥ |∆| and x ∼ F , there exists a qsel and qpred, where

{qpred(y = k |m(x, s))}Kk=1 = δ(x) ∈ ∆ and E[||s||0] ≤ J .

This proof follows from the proof in appendix E.1. Given x ∈ RD and target y ∈ {1, ...,K},
there exists a distribution qpred(y |m(x, s)) such that each realization of s ∈ {0, 1}D has a bijective
mapping to a unique probability vector obtained as {qpred(y = k |m(x, s))}K

k=1
∈ RK .

As stated in the proof of lemma 1 s has a capacity of log2

(∑n
i=1

(
D

i

))
bits when restricted to

realizations of s ∼ qsel with at most n non-zero elements. Given a set of K dimensional probability
vectors ∆, the maximal number of non-zero selections in s required to produce at least |∆| unique
realizations of s, denoted by J , can be expressed as

J = arg min
j

j∑
i=0

(
D

i

)
≥ |∆|.

Then there exists a qpred and qsel such that there are at least |∆| unique probability vectors
{qpred(y = k |m(x, s))}K

k=1
= δ(x) ∈ RK where δ(x) ∈ ∆ and the average number of features

selected E[||s||0] ≤ J .
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F Optimality of the Evaluator Model
The evaluator model qeval is learned such that eq. (3) is maximized as follows:

max
η

Ex,y∼FEri∼Bernoulli(0.5) [log qeval(y |m(x, r); η)] .

We aim to show that this expectation is maximal when qeval(y |m(x, r)) = F (y |xR) for any sample
of r identifying the corresponding subset of featuresR in the input xR.

The expectations can be rewritten as

max
η

Eri∼Bernoulli(0.5)Ex,y | r∼F [log qeval(y |m(x, r); η)] .

Let the power set over feature selections Pr = {r ⊂ {0, 1}D} and equivalently for the corresponding
feature subsets PR = {R ⊂ 2D}. Given ri ∼ Bernoulli(0.5), the probability

p(r) =
1

|Pr|
=

1

|PR|
.

Recognizing that x,y ⊥ r, the expectation over r can be expanded as

max
η

∑
r∈Pr

1

|Pr|
Ex,y∼F [log qeval(y |m(x, r); η)] .

Here, the expectation is with respect to a given r in the power set Pr. In this case, neither r nor
the subset of features masked by m(x, r) provide any information about the target. Therefore, the
likelihood is calculated with respect to the corresponding fixed subsetR as

max
η

∑
R∈PR

1

|PR|
Ex,y∼F [log qeval(y |xR; η)] .

A finite sum is maximized when each individual element in the sum is maximized, therefore it suffices
to find

max
η

Ex,y∼F [log qeval(y |xR; η)] ∀R ∈ PR

Let qeval := {fR( · ; ηR)}R∈PR , such that when given r as an input for the corresponding R,
fR( · ; ηR) is used to generate the target. The key point here is that the subset R provided to
the model as r can uniquely identify which fR generates the target. Then, for any given R, each
expectation is maximized when the corresponding fR is equal to the true data generating distribution
given by

max
η

Ex,y∼F [log qeval(y |xR; η)] = max
ηR

Ex,y [log fR(y |xR; ηR)]

= Ex,y[logF (y |xR)] ∀R ∈ PR.
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