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1 Introduction

Staggering compute resources are used in the largest artificial intelligence (AI) models, a trend that
has been increasing exponentially (doubling time of 3.4 months since 2012) [1]. Meanwhile, the
expected doubling time of computational power (Moore’s Law) has remained steady at 2 years, and
compute and network infrastructure in the developing world improves inconsistently, if at all [1, 3].
Commercial compression schemes provide excellent compression rates but result in image quality
losses that are unacceptable in a diagnostic radiology setting [10]. The development of a lightweight
medical image compression machine learning (ML) algorithm that preserves diagnostic features can
alleviate resource requirements for ML algorithm training and image interpretation.

2 Related Works

Autoencoders reduce the number of features that describe data via a type of dimensionality reduction
[9]. Previous attempts to compress high-dimensional data, like radiological images, using autoen-
coders have failed to retain intricate details with high fidelity and diversity at high compression ratios
and thus eliminated clinical utility [2, 16]. Recently, autoencoders have been more prominently incor-
porated as part of generative models rather than compression algorithms [5, 17, 13]. In particular, a
vector quantized variational autoencoder (VQ-VAE) framework has been previously used to generate
images with greater fidelity and diversity to compress radiographs while maintaining diagnostically
relevant features [13]. In the VQ-VAE framework, the encoder models a categorical distribution
to obtain integer values used as indices to a dictionary of embeddings, from which indexed values
are passed to the decoder [13]. The dictionary that is learned during training remains fixed after
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deployment and is input agnostic. A VQ-VAE can thus encode images to a set of integer indices in a
latent space of an even smaller size that can be transferred and subsequently decoded to the original
image. To further increase the diversity of reconstructed images from a discrete set of latent values, a
multi-level encoder approach (VQ-VAE-2) can extract both local and global features (Figure 1A).

3 Materials and Methods

We used the radiographs from the CheXpert dataset for training and previously unseen MIMIC-CXR
dataset for testing [8, 7]. For the classification task, we used original images, its compressed latent
vectors, or the reconstructed images of MIMIC-CXR dataset to train the DenseNet-121 classifier as
previously described in Rajpurkar et al. [12] (Figure 1B).

Our models are based on the architecture of the two-level VQ-VAE-2 model from Razavi et al. [13].
2D convolutions were of filter size 4, stride 2, and padding 1. There were 2 convolutions in the first
level, 1 convolution in the second level. Each encoding layer had an output of 1 channel depth. We
used the DenseNet-121 architecture that was first pre-trained on ImageNet, similar to the CheXNet
study [4, 6, 12]. For DenseNet-121 training with compressed latent vectors, there was an additional
transpose convolution layer that converted the two-channel input (concatenated decoder outputs
from two layers) into three-channel output. We measured the MAC (multiply accumulate), memory
consumption, and time per epoch of training on a single NVIDIA® V100 Tensor Core GPU. We
compared the per-class AUROC for the classification performance.

4 Results

In all models, uncompressed inputs were represented by 16 bit floating point numbers from the
original decoded .jpg files. VQ-VAE-2 resulted in a mean compression ratio (CR) of 24.0, Fréchet
inception distance (FID) of 3.81, peak signal to noise ratio (PSNR) of 45.12, and structural similarity
index measurement (SSIM) of 0.953. On visual inspection, VQ-VAE-2 preserved anatomical details
and even the numbers and letters found on the images (Figure 2). JPEG2000, currently widely used
compression algorithm, resulted in a mean CR of 15.4, FID of 2.13, PSNR of 46.05, SSIM of 0.968
when configured to give a similar FID (2.13) as that of VQ-VAE-2 (Figure 2). VQ-VAE-2 was also
resistant to various input manipulations (e.g. random noise, blocks, swirls) and even generalized to
other modalities (transesophageal echocardiography, TEE, shown in (Figure 3).

On a single NVIDIA V100 GPU, average memory utilization and time per epoch for training with
latent vectors were reduced by 93.0% (11960 MB to 840 MB). The amount of computation per
iteration decreased by 93.8% (60.22 GMAC (Giga multiply–accumulate operations) to 3.76 GMAC).
The time per epoch during training was also reduced by 48.5% (25.55 min to 13.15 min). The
DenseNet-121 algorithm gave an average AUROC of 0.8373 with the original image input, 0.9182 on
the reconstructed image input, and 0.9100 on the latent vector input (Table 1).

5 Discussion

Most successful ML algorithms are using increasingly larger amounts of compute [1]. Compression of
larger medical imaging data, including higher resolution data and 3D or 4D data, can allow researchers

Figure 1: A) Two level VQ-VAE architecture. B) Training scheme with various inputs.
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Figure 2: Image reconstructions and associated quantitative metrics from JPEG2000 and VQ-VAE-2.

Figure 3: Robustness of VQ-VAE-2 to input manipulations and previously unseen modality trans-
esophageal echocardiography (TEE). Top: original image input. Bottom: VQ-VAE reconstructions.

to train ML algorithms that showed promising results with 2D data but could not accommodate
larger inputs due to memory or computational constraints. The advancement of novel compression
schemes shown to retain classification performance and, in this case, diagnostic utility, have the
potential to significantly democratize medical ML research to those with limited computational
capacity, such as single-GPU systems with limited on-device memory. Even for the training of
smaller networks, compression of data can lead to faster prototyping and less memory utilization. We
have demonstrated similar AUROC performance when training classification methods with inputs
from both the original image input and compressed latent vector representations, demonstrating the
possible utility of VQ-VAE-2 in reducing the input file size and memory constraints. Furthermore,
reducing bandwidth constraints for image transfer can increase access to radiological services in the
most remote areas of the world.

Inputs Original Reconstructed Latent Vectors
AUROC 0.8373 0.9182 0.9100
Train Time 25.55 min 25.57 min 13.15 min
Memory 11960 MB 11960 MB 840 MB
# Computes 60.22 GMAC 60.22 GMAC 3.7 GMAC

Table 1: AUROC and training metrics of DenseNet-121 trained with the original images, reconstructed
images, or the compressed latent vectors.
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Interestingly, the AUROC increased when the DenseNet-121 classifier was trained with the latent
vectors and reconstructed images of VQ-VAE-2 as inputs compared to the original image alone
tab:metrics. In fact, we obtain greater than the state of the art AUROCs in classifying such pathologies
on certain pathologies [7]. This was an unexpected outcome. We interpret these results as a likely
denoising effect driven by the VQ-VAE-2 encoder and reconstruction, improving the robustness
of the classification task – a phenomenon extensively reported in engineering and medicine alike
[18, 11, 15]. We have planned future studies to investigate the robustness of this phenomenon.

VQ-VAE-2 not only addresses the image compression but also does so with a relatively small number
of layers (3 convolution layers total) in its network. Training of VQ-VAE-2 requires only images
and no additional labels because the loss function is calculated based on how well the reconstructed
image (i.e. output) resembles the original image (i.e. input). That is, training here is a self-supervised
learning task. VQ-VAE-2 is robust to both small and large scale input manipulations that have
previously impacted the performance of neural networks [14]. We have also demonstrated promising
reconstruction for a previously unseen modality. Given that training is self-supervised, variational
autoencoders may be adapted for other imaging modalities and anatomy without a need for a labeled
dataset and alleviate resource requirements for faster ML algorithm training.

6 Broader Impact

Staggering compute resources are used in the largest artificial intelligence (AI) models, a trend
that has been increasing exponentially (doubling time of 3.4 months since 2012). Meanwhile, the
expected doubling time of computational power (Moore’s Law) has remained steady at 2 years,
while compute and network infrastructure in the developing world improves inconsistently, if at all.
Commercial compression schemes provide excellent compression rates but result in image quality
losses that are unacceptable in a diagnostic radiology setting. The development of a lightweight
medical image compression machine learning (ML) algorithm that preserves diagnostic features
can alleviate resource requirements for ML algorithm training and image interpretation. We hope
to inspire an in-depth discussion of various techniques to alleviate technical resources required for
machine learning research and lowering the barrier for new researchers to enter the field.
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