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Abstract

Positron emission tomography (PET) is a widely used molecular imaging technique
with many clinical applications. To obtain high quality images, the amount of
injected radiotracer in current protocols leads to the risk of radiation exposure in
scanned subjects. Recently, deep learning has been successfully used to enhance
the quality of low-dose PET images. Extending this to "zero-dose," i.e., predicting
PET images based solely on data from other imaging modalities such as multimodal
MR, is significantly more challenging but also much more impactful. In this work,
we propose a attention-based framework that uses multi-contrast MRI to reconstruct
PET images using the most commonly-used radiotracer, 18F-fluorodeoxyglucose
(FDG), a marker of metabolism. We also introduce an input dropout training
strategy to handle possible missing MRI contrasts. We evaluate our methods
on a dataset of patients with brain tumors, showing the ability to create realistic
and clinically-meaningful FDG brain PET images with low errors compared with
full-dose ground truth PET images.

1 Introduction

Positron emission tomography (PET) is a widely used imaging technique in many clinical applications
including tumor detection [[1]] and neurological disorder diagnosis [2]. To obtain high quality images,
the amount of injected radiotracer in current protocols leads to the risk of radiation exposure in
scanned subjects. Moreover, PET is expensive and not offered in the majority of medical centers in
the world. On the contrary, MRI is a widely available and non-invasive technique. Therefore, it is
of great value to achieve zero-dose PET reconstruction, meaning synthesizing high-resolution and
clinically accurate PET images solely from other modalities, especially MRI.

With the boom of deep learning, there are some success on low-dose PET reconstruction: using 1%
dose PET assisting with MRI to generate standard-dose PET [3]]. However, whether it is possible
to achieve zero-dose PET reconstruction is still an open question. There are limited existing works
on it: Li et al. attempted to synthesize amyloid PET from MRI inputs using the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [4], but the outputs were of low resolution and the
synthesis had obvious deviation on AD subjects [5]]. Wei et al. designed a patch-based coarse-to-fine
architecture to generate myelin PET from multi-contrast MRI [6], but the model ignored some global
information due to the patch-based design and treated all regions of the brain equally, which might
cause errors in the disease-specific regions. Guo et al. [[7] applied a U-Net to synthesize oxygen-15
water PET cerebral blood flow by structural and functional MRI input. The method stacked 8 MRI
contrasts as input, and missing any of them can lead to inaccurate prediction.

In this work, on top of the U-Net, we design (1) a symmetry-aware spatial attention module to
generate spatial-wise attention maps that enhance the abnormal region of the brain; (2) a special
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Figure 1: The overview of the proposed method.

split-input module with channel-wise attention to enhance the most important input contrasts; (3) a
random input dropout training strategy to handle missing MRI contrasts. We evaluate the method on
a private dataset including 38 Glioblastoma (GBM) cases. The results indicate the effectiveness of
the proposed method.

2 Method

As shown in figure[T] a 2D U-Net works as the backbone, on which spatial-wise and channel-wise
attention modules were added. We combine the attention modules on the short-cut connection of the
U-Net. For the I-th layer, the weighted shortcut Y! = (1 + of 4 8')X!, where o' and 3! are spatial
and channel-wise attention maps respectively, while X' is the feature from the downstream part of
the U-Net.

Symmetry-aware spatial-wise attention module (SSA). For the [-th layer, SSA takes features with
a larger perception field from the lower upstream layer G'*! (gate signal) as the "guide" for learning
attention for the detailed features from the downstream layer X! (input signal). Moreover, given that
the normal brain is roughly symmetric, a radiologist will tend to compare the left and right sides
of the brain and take advantage of asymmetry to help them find any abnormalities. We utilize the
symmetry property by flipping the gate signal G!. More specifically, the SSA-map can be formulated
as:

ol = Softmax(W. - ReLU(W'_ - X! + Upsample(W' , - G! + ng2 GYH) (1)

where G! = abs(G — flip(G)). WL, are weights of linear layers.

Channel-wise attention module (CA). Learning from [8]], we combine the squeeze-and-excitation
mechanism in our model as the channel-wise attention module. It factors out the spatial dependency
by global average pooling to learn a channel specific value that can be used to re-weight the feature
maps and emphasize the useful channels. The CA-map can be note as:

B = Sigmoid(W', - ReLU(W', - AugPool(X'))) (2)
where W' _ are weights of linear layers.

Split input module with CA (SI). For multi-contrast inputs scenario, channels may include redun-
dant information. Some channels are more important than others (e.g. ASL), and for many cases
some of the input channels do not have strong signals (e.g. ASL). We design an input module that
first splits each channel for a separate convolutional layer, and then combine them with CA module
before feed into U-Net.

Random input dropout. When using multi-modality (contrast) inputs, it is common that some
modalities are missing. Thus it is significant for the model to generate robust results based on
incomplete information. We introduce a random input dropout training strategy [9] such that, for n
modalities, 7' ("

2) = 2™ — 1 types of dropout scenario with selected probabilities are simulated

during the training.

3 Results

Dataset and data preprocessing. Our dataset consists of 38 GBM cases with paired FDG PET
and MRI (T1 with contrast (T1c), T2-FLAIR, and ASL) exams. For image pre-processing, MRI



U-Net Att.  U-Net Proposed

(U) [10] (1] (U+SSA) (U+SSA+CA) (U+SSA+CA+SI)
PSNR | 26.979£9.500 28.773£12.312| 29.246+13.138 29.491+12.562 29.677+£12.907
SSIM | 0.799+£0.007  0.850+0.006 | 0.861£0.006  0.860+0.005  0.868-0.005
RMSE| 0.303£0.007  0.2544+0.010 | 0.243£0.008  0.2404+0.006  0.226+0.005

Table 1: Quantitative results.
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Figure 2: Qualitative results: (a) Inputs and results from each model. (b) Spatial attention maps from
the middle two layers. (c) Channel attention histogram from the split-input module.

images were co-registered to PET images using SPM12. To better utilize the symmetry of the brain,
PET and registered MRI images were further normalized to a standard template, with the size of
189 x 157 x 156. Then, the volumes were normalized by the mean of the non-zero regions. Flipping
along the X axis was used to avoid overfitting. Case-wise 5-fold validation was adopted.

Results without missing contrasts. Quantitatively, the reconstructed image quality was assessed
by three metrics: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean
square error (RMSE). The statistics for each slice (with the top and bottom 20 slices removed) were
averaged to obtain the metrics. We also compared our results with U-Net [L0] and attention U-Net
(Att. U-Net) [L1]. Meanwhile, we did an ablation study gradually adding each component. As shown
in Table[T} the proposed method improved 10.00% in PSNR, 8.63% in SSIM, and 25.41% in RMSE
comparing to the baseline U-Net, suggesting the effectiveness of SSA and CA as well as SI module.

Qualitatively, a typical example is shown in Figure [2}(a). All three methods performed similarly on
the normal regions of the brain. However, the proposed method generated images with more accurate
pathological features on the tumor region. We show the attention maps for the middle two layers in
Figure 2}(b). The attention map from the proposed method precisely highlighted the tumor region,
while maps from the attention U-Net only had weak signals, which might lead to the incorrect output.
Figure [2}(c) presents the channel-wise attention weight distributions from the split input module. In
this example, T1c provides the most information for the tumor and some parts of ASL have weak
signal, which is consistent with the distribution that T1c is the most highly-weighted channel, while
other two channel weights are lower.

Results with missing contrasts. Figure[3|demonstrates results from the proposed model with random
input dropout strategy. Though not as good as model without input dropout, it achieved acceptable
results except for ASL only as input, as ASL has weak signal and does not provide fine-grained
structural information.

4 Conclusion

In this work, we proposed a U-Net based network with symmetry-aware spatial attention module
to capture the abnormal region of the brain, and split-input with channel-wise attention module
to enhance the most important contrasts, as well as a random dropout training strategy to handle
missing input contrasts. The results on the GBM dataset illustrated the possibility of zero-dose
PET reconstruction using multi-contrast MRI. Future work includes adopting advanced backbone
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Figure 3: Results with missing contrast. For outputs from model with input dropout, missing: No,
ASL, T2-FLAIR, Tlc, T2-FLAIR+ASL, T1c+ASL, T1c+T2-FLAIR.

network, designing better way for missing contrasts, and evaluating the reconstructed image by tumor
segmentation.

Broader Impact Statement

From the methodology aspect, the proposed modules can be easily plugged into any other network
structure, even those not based on a U-Net-like segmentation/reconstruction network. SSA is a
significant contribution that takes advantage of how radiologists use symmetry to guide their attention;
this will be particularly applicable to neuroimaging. SI can be used whenever multiple input channels
are available and is a more intelligent way of combining them than simple channel-stacking. Random
dropout training strategy is a broadly applicable way to handle missing inputs, which is important for
real-world applications.

From the applications aspect, many sites do not have access to advanced imaging such as PET.
Developing a method than can synthesize the most common PET imaging examination (FDG) from
multimodal MRI is an excellent starting point, given the close ties between metabolism (FDG PET)
and blood flow (ASL MRI). Further work can explore the potential to use this or similar methods
to other PET radiotracers, such as the dementia imaging agents amyloid and tau. Removing the
need to dose the patient with radiation would allow this technology to be used in more vulnerable
patients, such as pregnant women and children. Zero-dose PET will “level the playing field” between
the few centers that can provide advanced technologies like PET and the many sites that cannot,
democratizing imaging and acting as a force for more equitable medical care.
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