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Abstract

The utilisation of artificial intelligence in medicine and healthcare has led to
successful clinical applications in several domains. The conflict between data
usage and privacy protection requirements in such systems must be resolved for
optimal results as well as ethical and legal compliance. This calls for innovative
solutions such as privacy-preserving machine learning (PPML).
We present PriMIA (Privacy-preserving Medical Image Analysis), a software
framework designed for PPML in medical imaging. In a real-life case study we
demonstrate significantly better classification performance of a securely aggre-
gated federated learning model compared to human experts on unseen datasets.
Furthermore, we show an inference-as-a-service scenario for end-to-end encrypted
diagnosis, where neither the data nor the model are revealed. Lastly, we empirically
evaluate the framework’s security against a gradient-based model inversion attack
and demonstrate that no usable information can be recovered from the model.

1 Introduction

Machine Learning (ML) and Artificial Intelligence (AI) are recent approaches in biomedical data
analysis, yielding promising results. These systems can assist clinicians to improve performance
in tasks such as the early detection of cancers in medical imaging as shown in several applications
[10, 1]. The most prominent challenge regarding AI systems is fulfilling their demands for large
scale datasets. The collection of such datasets is often only achievable by multi-institutional or
multi-national efforts. Data is typically anonymised or pseudonymised at the source site and stored at
the institution performing data analysis and algorithm training [16]. The assembly and transmission
of these datasets ethically and legally requires to have measures in place to protect patient privacy
[12]. Moreover, information and control about the storage, transmission and usage of health data is a
central patient right. Conventional techniques of anonymisation and pseudonymisation have been
proven to not sufficiently protect from attacks against privacy [15, 11].

However, such concerns will likely not prevent increased data collection for future data-driven
algorithms. Therefore, AI and ML methods will require innovations to sustainably reconcile data
utilisiation and privacy protection. One of these approaches is the development of privacy-preserving
machine learning (PPML). It aims to protect data security, privacy and confidentiality, while allowing
the training and development of algorithms, as well as research in the setting of limited trust and/or
data availability.

2 Privacy-preserving medical image analysis

In this work, we present PriMIA (Privacy-preserving Medical Image Analysis), a free-and-open-
source software framework, which extends the PySyft/PyGrid ecosystem of open source privacy-
preserving machine learning tools [13]. PriMIA adds functionality to allow medical imaging-specific
applications, facilitating securely aggregated federated learning and secure inference. A broad
variety of applications, including local and distributed model training, can be triggered from an
accessible command-line interface. Furthermore, we include functional improvements increasing
the framework’s flexibility, usability, performance and security. These include gradient descent and
federated averaging weighted by the dataset size at each site, local early stopping as a technique
to counteract overfitting and catastrophic forgetting, hyperparameter optimisation over the whole
confederation and the secure aggregation of dataset means/standard deviations.

Our work is clinically validated in a case study of paediatric chest radiography classification into
one of three classes: normal (no signs of infection), bacterial pneumonia, viral pneumonia. We
utilise a publicly available imaging dataset [8] for model training and two real-life datasets for model
evaluation against clinical experts and ground-truth data. We aim to collaboratively train the model
on three computation nodes without the disclosure of patient data in an honest-but-curious scenario.
The topology of our federated learning system is shown in Figure 1a. The classification model is then
made available for performing remote inference without revealing either it or the data in plain text
(end-to-end-encrypted inference-as-a-service (Figure 1b)).
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(a) Overview of the federated learning setup. At the
beginning of training (A), the central server (Model
Owner) sends the model to the computation nodes for
training. Until convergence is achieved, the locally
trained models are securely aggregated using secure
multi-party computation (SMPC Secure Aggregation)
and redistributed for a next round of training (B). Fi-
nally (C), the central model is updated and can be used
for inference.

(b) Overview of the encrypted inference process. Ini-
tially (A) the data owner and model owner respectively
obfuscate the data and algorithm using secret sharing.
Inference is then carried out using secure multi-party
computation (B), upon which the data owner receives
an encrypted set of predicted labels, which only they
can decrypt (C).

Figure 1: Details on the training and inference process in PriMIA.

3 Experiments, Results & Conclusion

In this work we evaluate the performance of a model trained using securely aggregated federated
learning (federated secure model) against the same model without secure aggregation (federated
non-secure) and a locally trained model. All models are ResNet-18 [6] architectures pre-trained on
the ImageNet dataset [3]. We compare securely aggregated federated learning to models trained on
locally accumulated data to assess the influence of encryption on model classification performance.
Furthermore, we evaluate the performance of expert radiologists to obtain a human baseline as a
benchmark for our models. Two separate test sets derived from clinical routine with a total of 497
images (Test Set 1 N=145, Test Set 2 N=352 images) are used. The ground truth is obtained based
on clinical patient records. The evaluation measures employed are accuracy, sensitivity/specificity,
receiver-operator-characteristic-area-under-the-curve (ROC-AUC) and the Matthews Correlation
Coefficient (MCC) [9]. The latter is also the criterion by which we optimise the model hyperpa-
rameters during training. Model and expert classification results can be found in Table 1a. The
federated secure model performs on par with the federated non-secure and locally trained models
(Mc-Nemar test p>0.05, Table 1b). All models significantly outperform both human experts (Table
1b). Inter-observer/model agreement, evaluated using Cohen’s kappa (κ) is moderate between experts,
substantial between models and experts and almost perfect between models (Table 1c).

Furthermore, we empirically evaluate the models’ resilience against inversion attacks [4], whereby
a reconstruction of input data features is attempted. We apply the improved deep leakage from
gradients method [5] to re-identify patients from all three models. For the quantification of the
reconstruction success we use the mean squared error (MSE) and Frechet Inception Distance (FID)
[7]. Both metrics are significantly higher in the setting of securely aggregated federated learning vs.
non-secure federated learning and locally trained models, indicating the highest resistance to model
inversion attacks. The average±standard deviation MSE was 2.26±1.26, 2.62±1.46, 3.22±1.41;
FID 2112±1207, 2119±1173, 2651±1293 for locally trained, federated non-secure and federated
secure, respectively (both one-way analysis of variance (ANOVA) p<0.001, MSE locally trained vs.
federated secure Student’s t-test p<0.001, federated non-secure vs. federated secure Student’s t-test
p=0.03; FID locally trained vs. federated secure and federated non-secure vs. federated secure both
Student’s t-test p=0.03). Lastly, we implement secure inference using the Function Secret Sharing
[2] protocol expanded and adapted for neural networks [14] and observe a significant reduction in
inference latency vs. the current state-of-the-art SecureNN [17] especially in the high network latency
setting (35% average latency reduction vs. SecureNN at 10ms latency, 47% at 100ms, both Student’s
t-test p<0.001).

In conclusion, we present a free-and-open-source framework for securely aggregated federated
learning and end-to-end encrypted inference in a medical context. We showcase a clinically relevant
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Table 1: Statistical evaluation of model and expert classification performance

(a) Classification performance comparison of the federated secure, non-secure and locally trained models
vs. the experts on the Validation set and on Test Sets 1 and 2. Sensitivity/Specificity metrics refer to
normal/bacterial/viral, respectively. ROC-AUC: Receiver-operator-characteristic-area-under-the-curve (class-
weighted average), MCC: Matthews Correlation Coefficient.

(b) McNemar test results on Test Set 1. Bold text signifies p<0.05

(c) Cohen’s κ between models and observers on Test Set 1.

real-life case study and outperform human experts with a model trained in a federated and secure
manner. Further research and development will enable the larger-scale deployment of our framework,
the validation of our findings on diverse cross-institutional data and further the widespread utilisation
of privacy-preserving machine learning techniques in healthcare and beyond.

Broader Impact

Our work’s aim is to develop a technical solution providing objective guarantees of security and
privacy to patients and algorithm developers in medical data science approaches. Concretely, we
propose a framework for privacy-preserving machine learning on confidential patient data, as well as
the provision of algorithmic diagnosis services under a premise of asset protection.

Our work advances the utilisation of privacy-enhancing tools in medically focused artificial intelli-
gence. Such developments are warranted both from an ethical and a legal perspective: The creation of
algorithms which assist clinical decision-making hinges on their training on diverse, large datasets to
ascertain high performance and fairness and to counteract bias. However, the massive accumulation,
transmission or release of private patient health data for this purpose removes sovereignty and control
over the data from its owners and thus infringes on patient rights. Concurrently, algorithm owners
wish to protect their models from theft or misuse during inference. Our work proposes a solution
that will assert both: the safeguarding of data privacy and the protection of algorithms developed for
clinical decision support. It promotes the training of models on larger datasets as well as making
these models more broadly accessible.
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