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Abstract—Training deep neural networks usually requires a
large amount of labeled data to obtain good performance.
However, in medical image analysis, obtaining high-quality labels
for the data is laborious and expensive, as accurately annotating
medical images demands expertise knowledge of the clinicians.
In this paper, we present a novel relation-driven semi-supervised
framework for medical image classification. It is a consistency-
based method which exploits the unlabeled data by encouraging
the prediction consistency of given input under perturbations,
and leverages a self-ensembling model to produce high-quality
consistency targets for the unlabeled data. Considering that
human diagnosis often refers to previous analogous cases to make
reliable decisions, we introduce a novel sample relation consis-
tency (SRC) paradigm to effectively exploit unlabeled data by
modeling the relationship information among different samples.
Superior to existing consistency-based methods which simply
enforce consistency of individual predictions, our framework
explicitly enforces the consistency of semantic relation among
different samples under perturbations, encouraging the model
to explore extra semantic information from unlabeled data. We
have conducted extensive experiments to evaluate our method on
two public benchmark medical image classification datasets, i.e.,
skin lesion diagnosis with ISIC 2018 challenge and thorax disease
classification with ChestX-ray14. Our method outperforms many
state-of-the-art semi-supervised learning methods on both single-
label and multi-label image classification scenarios.

Index Terms—Semi-supervised learning, medical image classi-
fication, sample relation modelling, self-ensembling model.

I. INTRODUCTION

Deep learning approaches have achieved remarkable success
on medical image classification, usually demanding large
amount of labeled data for model learning. For example,
Tschandl et al. [1] released a large scale dataset to sup-
port algorithm development for skin lesion classification.
Rajpurkar et al. [2] trained a deep model with hundreds

Manuscript received on 2 Dec 2019, revised on 11 Apr 2020, accepted on
13 May 2020. This work is supported by Hong Kong RGC TRS project T42-
409/18-R, the Hong Kong Innovation and Technology Commission (Project
No. ITS/311/18FP, ITS/426/17FP), the National Natural Science Foundation
of China with project no. U1813204, and CUHK Direct Grant for Research.
(Corresponding author: Lequan Yu.)

Q. Liu, L. Yu, L. Luo, Q. Dou and P. A. Heng are with the Department
of Computer Science and Engineering, The Chinese University of Hong
Kong (e-mails: qdliu@cse.cuhk.edu.hk, ylqzd2011@gmail.com, {lyluo, qdou,
pheng}@cse.cuhk.edu.hk).

L. Yu is also with Department of Radiation Oncology, Stanford University,
Stanford, CA 94305 USA.

Q. Dou is also with T Stone Robotics Institute, The Chinese University of
Hong Kong.

P. A. Heng is also with Guangdong-Hong Kong-Macao Joint Laboratory
of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055,
China.

Individual Consistency        Sample Relation Consistency

f1 f1'
f2 f2'

f3
f3'f4

f4'

f1 f1'
f2 f2'

f3
f3'f4

f4'

f1 f2 f3 f4

f1' f2' f3' f4'

Classifier

Unlabeled 
Data

x1

x2

x3

x4

Fig. 1. Conventional individual consistency and our proposed sample relation
consistency (SRC) paradigms. The fi and f ′i (blue/green points) denote the
features extracted from the same input sample xi under different perturba-
tions η and η′, respectively. The consistency based methods emphasize the
consistency (red arrows) between f and f ′ to explore the knowledge from
unlabeled data. The individual consistency typically enforces the prediction
consistency case by case, while the SRC further emphasizes the consistency
of the intrinsic relation among different samples to extract additional semantic
information from unlabeled data.

of thousands of chest x-rays for thorax diseases diagnosis.
However, in medical imaging domain, obtaining large amount
of high-quality labeled data is inevitably laborious and requires
expertise medical knowledge. Considering that unlabeled data
is relatively easier to collect from clinical sites, in this paper,
we aim to develop a semi-supervised medical image classi-
fication algorithm to reduce the labour of large scale data
annotation, by effectively leveraging the unlabeled data.

Semi-supervised learning has shown potential for improving
network performance when labeled data is scarce. Currently,
most of the semi-supervised methods are following consistency
enforcing strategy [3], [4], which leverages the unlabeled data
by regularizing the network predictions to be consistent under
input or network weight perturbations. Given an input sample,
consistency enforcing methods create different perturbed sam-
ples of the same input (e.g., by adding Gaussian noise), and
then encourage the model predictions on these samples to be
similar [3]. In this stream of solutions, previous consistency-
based methods mainly focus on improving the quality of
consistency targets (i.e. predictions of perturbed samples).
For example, the Temporal Ensembling (TE) method [3]
adopts an exponential moving average (EMA) of predictions
in different epochs as the consistency targets. However, this
method requires to maintain a huge prediction matrix during
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network training. To address this limitation, the Mean Teacher
(MT) [4] framework constructs an ensembled teacher model
for generating reliable consistency targets on the fly, which
has been demonstrated with state-of-the-art performance on a
variety of applications [4]–[7].

One limitation of existing consistency based methods is the
negligence of the relations among samples, which can benefit
extraction of useful semantic information from unlabeled data.
Recent studies have revealed that an entity, i.e., an image,
would become more informative when considering its intrinsic
relation with other samples [8], [9]. For example, Liu et
al. [8] demonstrated that the instance relation graph embedded
extra semantic knowledge compared with individual instance
representations in model compression. Meanwhile, such kind
of relation information also widely exists in medical imaging.
In clinical diagnosis, the experienced clinicians tend to make
diagnosis according to the reference from previous analogous
cases [10]. Based on the above observations, the central tenet
of our work is to explore such intrinsic relation between
samples in an unsupervised manner to effectively exploit the
semantic information from unlabeled data.

In this paper, we present a novel semi-supervised framework
for medical image classification by utilizing the relation be-
tween different samples. Our framework is based on the state-
of-the-art consistency-based strategy [4], which enforces the
prediction consistency of given samples under different pertur-
bations. We further develop a self-ensembling teacher model
to improve the quality of consistency targets. To better exploit
the valuable relation information of unlabeled data, we propose
a novel Sample Relation Consistency (SRC) paradigm in our
semi-supervised learning framework, by explicitly enhancing
the consistency of the intrinsic relation among different sam-
ples. As shown in Fig. 1, different from previous methods
which simply enforce the sample-level prediction consistency,
our SRC encourages the consistency of the structured relation
(similarity) among different samples, highlighting that sam-
ples with high similarity should also be highly related after
adding perturbations. Specifically, given the input mini-batch
of n images, we model the intrinsic relation among different
samples by calculating the n × n correlation matrix in the
high-level semantic feature space. The SRC then minimizes
the difference of such relation matrices under different pertur-
bations, aiming to encourage the network to learn more robust
and discriminative representation. The SRC regularization is
independent from the label information, thus helping to extract
extra semantic information from the unlabeled data for higher
performance gains. Our main contributions are summarized as
follows:

1) We present a new relation-driven semi-supervised frame-
work for medical image classification, with general effec-
tiveness on both single-label and multi-label classification
tasks.

2) We propose a novel sample relation consistency paradigm
to extract additional semantic information from the unla-
beled data by explicitly enforcing the consistency of the
relations among different samples under perturbations.

3) We have conducted extensive experiments on two large-
scale public benchmark medical image datasets, i.e. skin

lesion diagnosis with ISIC 2018 challenge and thorax dis-
ease classification with ChestX-ray14. The results demon-
strate consistent superior performance of our framework
over state-of-the-art semi-supervised learning methods.
Code of our method is available at: https://github.com/
liuquande/SRC-MT

II. RELATED WORK

We first review the consistency-based semi-supervised
methods which are closely relevant to our work, then recall
the literature of semi-supervised learning in medical image
analysis. Finally, we introduce the work for skin lesion clas-
sification and thorax disease diagnosis, on which we evaluate
the effectiveness of our method.

A. Consistency-based Semi-supervised Learning

The consistency-based methods leverage unlabeled data by
enforcing the prediction consistency under different pertur-
bations. Most previous works focus on designing effective
approaches to produce high-quality consistency targets (pre-
dictions of perturbed samples). For example, the Π model [3]
directly utilizes the network outputs as the consistency targets.
The Temporal Ensembling (TE) method [3] further adopts
an exponential moving average (EMA) predictions for each
unlabeled data as the consistency targets, which could ef-
fectively improve the quality of consistency targets due to
the ensembling information from previous epochs. However,
the TE requires to maintain a huge predictions matrix during
training, making it heavy when learning from large datasets.
To address this limitation, instead of maintaining the EMA
predictions, the Mean Teacher (MT) framework constructs a
teacher model with the EMA weights of the student model.
The predictions of the teacher model could then serve as
reliable consistency targets due to the effect of model en-
sembling. Based on these strategies, some recent works study
more effective perturbation functions to improve the benefits
from consistency regularization. For example, Xie et al. [11]
demonstrated that utilizing better augmentation methods to
create perturbed samples leads to greater improvements. Miy-
ato et al. [12] proposed the virtual adversarial perturbation to
enhance the local smoothness of the label distribution given
input samples. Different from these works above, we aim to
improve existing consistency-based methods by exploring the
intrinsic relation information of input data.

B. Semi-supervised Learning in Medical Image Analysis

Semi-supervised learning has been studied in medical imag-
ing community for a long period [13]–[16], for reducing
the human effort on labelling data. The self-training ap-
proaches, which iteratively update the network parameters
and the pseudo label for unlabeled data with an expectation-
maximization procedure, have been utilized in a variety of
medical image analysis tasks [17]–[19]. Besides, co-training
is also introduced for liver segmentation [20] and breast cancer
analysis [21] in a semi-supervised manner, where multiple
classifiers are trained with independent sets of features and

https://github.com/liuquande/SRC-MT
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the classifiers rely on each other for estimating the confi-
dence of their predictions. Some other approaches extract
discriminative information from unlabeled data via feature
space alignment [22] and image reconstruction [23], achieving
promising progress in sclerosis lesion segmentation and left
atrium segmentation tasks.

More recent semi-supervised learning methods in medical
image analysis domain can be grouped into three categories:
1) adversarial-learning-based approach [24], [25], 2) graph-
based approach [26], and 3) consistency-based approach [27].
For the first category, Dong et al. [28] introduced adversarial-
learning for semi-supervised lung segmentation, based on the
assumption that unlabeled data has similar segmentation masks
as labeled data. Meanwhile, Diaz-Pint et al. [29] introduced
the generative adversarial network into glaucoma assessment,
where both labeled and unlabeled data is used to train an
image synthesizer for data augmentation. As a typical example
for graph-based methods, Aviles-Rivero et al. [26], [30] con-
structed a graph model for thorax disease diagnosis from chest
X-rays under extreme limited supervision, where the pseudo
labels for unlabeled data are assigned via label propagation.
Recently, the consistency-based methods have been success-
fully extended to medical imaging domain. For example, Li et
al. [31] extended the Π model [3] for semi-supervised skin
lesion segmentation with a transformation consistency strategy.
Drawing spirit from Mean Teacher, other approaches [5]–[7]
enforced the prediction consistency between the student model
and a self-ensembling teacher model. Su et al. [32] improved
the consistency based methods by constraining the feature
space to learn more separable inter-class features and more
compact intra-class features.

C. Skin Lesion Classification

Accurate classification of skin lesions, especially melanoma
recognition, is essential for assisting clinical diagnosis. Due
to the inter-class similarity and intra-class variation of skin
lesions, lots of efforts have been dedicated on addressing this
challenging problem [33]–[38]. Early studies [33] apply hand-
crafted features, e.g., shape, color and texture, to distinguish
different lesions types, while depending heavily on the quality
of extracted features. More recent works make use of the
remarkable representation learning ability of convolutional
neural networks (CNNs) to solve this problem. For example,
Codella et al. [34] integrated CNNs, sparse coding and support
vector machine for melanoma recognition. Yu et al. [35] pro-
posed a very deep residual network to distinguish melanoma
from non-melanoma lesions. Zhang et al. [37] proposed an
attention residual model that exploits self-attention ability
of CNNs to focus on semantically meaningful regions of
lesion. Shi et al. [38] have recently proposed an active learn-
ing method for reducing annotation efforts, however, semi-
supervised learning has not been explored within this scenario.

D. Thorax Disease Diagnosis

Establishing automatic diagnosis platform to understand
chest radiography is of great significance in clinical practice.
To this end, nearly million-level chest x-rays datasets [39], [40]

have been developed recently to support relevant studies. Early
studies on this task are based on handcrafted classification,
which depend heavily on the quality of extracted feature.
With the appearance of large scale dataset, more researchers
adopt CNNs for solving this challenging task [2], [39]–[41].
For example, Wang et al. [39] demonstrated the feasibility
to detect and even localize the thorax disease from chest
radiography using a multi-label learning framework. After the
releasing of ChestXray14 [39] dataset, Rajpurkar et al. [2]
proposed the state-of-the-art model, i.e., CheXNet, to detect
14 common thorax diseases. However, the effectiveness and
accuracy of these aforementioned approaches rely heavily on
a large corpus of labelled data for network training. To address
this problem, Aviles-Rivero et al. [26], [30] have recently
proposed a graph-based semi-supervised framework for X-ray
classification under extreme limited supervision.

III. METHOD

The Fig. 2 depicts our proposed sample-relation-consistent
mean-teacher framework (SRC-MT) for semi-supervised med-
ical images classification. The sample relation consistency
paradigm models the intrinsic relation among samples by
calculating the relation matrix from the high-level semantic
feature of each sample. Our framework regularizes this relation
structure to be stable between teacher model and student
model under different perturbations to extract richer semantic
information from the unlabeled data.

A. The Backbone Semi-supervised Learning Framework

We denote the labeled set as SL = {(xi, yi)}Ni=1 and the
unlabeled set as SU = {xi}N+M

i=N+1, where xi is the input
2D medical image, e.g., dermoscopy image or chest X-ray,
yi is the one hot ground-truth label. Our semi-supervised
learning framework roots in the consistency regularization
mechanism, by imposing various perturbations onto the same
inputs and regularizing the consistency of model predictions
to explore the “dark knowledge” [3] from the unlabeled data.
The total optimization objective of the whole framework can
be formulated as following:

min
θ

N∑
i=1

Ls(f(xi; θ), yi) + λLu({xi}N+M
i=1 ; f(·), θ, η, θ′, η′)),

(1)
where Ls denotes the supervised loss (e.g., cross-entropy loss)
for evaluating the network outputs on labeled inputs; Lu
represents the unsupervised consistency loss to measure the
consistency of the same inputs under different perturbations.
Here, f(·) denotes the classification network; θ and θ′ are
the parameters weights of the student model and teacher
model respectively; while η and η′ represent the different
input perturbations (e.g., adding Gaussian noise) applied to the
two models respectively. λ is a ramp-up weighting factor that
controls the trade-off between the supervised and unsupervised
loss.

Recent progress [4] on semi-supervised learning reveals
that ensembling weights of student model at different train-
ing process helps build a more reliable teacher model to
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Fig. 2. The overview of our relation-driven framework for semi-supervised medical image classification. The teacher weights θ′ are updated as the exponential
moving average (EMA) of student weights θ. The objective function to optimize the student model includes the supervised loss (Ls) on labeled set SL and
two unsupervised consistency loss (Lc and Lsrc) on both unlabeled set SU and labeled set SL. The sample relation consistency (SRC) paradigm calculates
the relation matrix from the semantic feature space to estimate the semantic relation between different samples. The whole framework regularizes such relation
matrix to be stable between student model and teacher model under different perturbations η′ and η of the input by minimizing Lsrc.

produce consistency targets. Inspired by this observation, in
our framework, we employ a teacher model and update its
weights θ′ as the exponential moving average (EMA) of the
weights θ of student model and only optimize the student
model in network training. Specifically, the teacher weights
θ′t at training iteration t are updated as following:

θ′t = αθ′t−1 + (1− α)θt, (2)

where α is a smoothing coefficient hyper-parameter that con-
trols the weights updating rate.

To encourage the consistency of teacher model and student
model outputs, our framework preserves the conventional
individual consistency mechanism [3], [4], which emphasizes
the prediction consistency of each individual sample under
different perturbations. This mechanism is expressed as fol-
lowing:

Lc =

N+M∑
i=1

Eη′,η ‖f(xi, θ
′, η′)− f(xi, θ, η)‖22 , (3)

where xi denotes each training sample.

B. Sample Relation Consistency (SRC) Paradigm

Recall from the introduction and recent study on graph
neural network [9], we can learn extra semantic information
for an entity, e.g., an radiography image, when considering
the relation with other analogous entities. Based on this
assumption, we propose to model such intrinsic relation to a
consistency paradigm, i.e., sample relation consistency, which
regularizes the network to maintain the consistency of the
semantic relation between samples under different perturba-
tions, and thereby encourage the network to explore additional

semantic information from the input data to improve the
network performance.

We model the structured relation among different samples
with a case-level Gram Matrix [42]. Given an input mini-batch
with B samples, we denote the activation map of layer l as
F l ∈ RB×C×H×W , where H and W are the spatial dimension
of feature map, and C is the channel number. We reshape the
feature map F l into Al ∈ RB×HWC , and then the Case-wise
Gram Matrix Gl ∈ RB×B is computed as:

Gl = Al · (Al)T , (4)

where Gij is the inner product between the vectorized ac-
tivation map Al(i) and Al(j), whose intuitive meaning is the
similarity between the activations of ith sample and jth sample
within the input mini-batch. The final sample relation matrix
Rl is obtained by conducting the L2 normalization for each
row Gli of Gl, which is expressed as:

Rl = [
Gl1∥∥Gl1∥∥2 , ..., GlB∥∥GlB∥∥ 2

]T . (5)

The SRC requires the relation matrix Rl to be stable
under different perturbations to preserve the semantic relation
between samples. We then define the proposed SRC-loss as:

Lsrc =
∑

X∈{SU∪SL}

1

B

∥∥Rl(X ; θ, η)−Rl(X ; θ′, η′)
∥∥2
2
, (6)

where X is the sampled mini-batch from training set {SU ∪
SL}, Rl(X ; θ, η) and Rl(X ; θ′, η′) are the sample relation
matrices computed on X under different wights and perturba-
tions pair (θ, η) and (θ′, η′), respectively. By minimizing Lsrc
during the training process, the network would be enhanced
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Fig. 3. Sample relation matrix Rl calculated with the same mini-batch (batch
size = 96) from the ISIC 2018 skin lesion classification dataset. The two sub-
figures show Rl calculated with the features before (left) and after (right)
the last pooling layer of a fully-supervised classification network. For both
two sug-figures, the i-th row in the figure represents the similarity of the i-th
sample with all samples within this mini-batch. Note that the batch of samples
have been grouped by their ground truth label class along each axis before
visualization.

to capture more robust and discriminative representation that
benefits for preserving the intrinsic relation between samples
under different perturbations, thus helping to extract additional
semantic information from unlabeled data.

We also study which layer to choose for estimating the
semantic relation among different samples. Generally, the
activations from deeper layers are preferable in our method,
as they contain more high-level semantic information than the
activations from middle layers. We therefore only compare the
sample relation matrix Rl (see Eq. (5)) calculated using the
activations before and after the last global average pooling
layer (i.e., the pooling layer before the fully connected layer
in the employed DenseNet [43]). As shown in Fig. 3, the left
and right figures denote the Rl from the same sampled mini-
batch, but calculated with the features before and after the last
pooling layer, respectively. For each of the two sub-figures,
the i-th row represents the similarity between the i-th sample
and all samples in this mini-batch. Note that the input batch
of samples have been grouped by their ground truth class to
better observe the relation among samples. The block-wise
patterns in the sub-figures indicate that the samples of the
same class have high similarity in their semantic feature space.
In addition, we observe that the right sub-figure has higher
response in the diagonal boxes than the left one, indicating
that the semantic relation among different samples are better
presented in the feature space after the last pooling layer.
The reason maybe that the last pooling layer helps reduce
the spatial difference of the semantic features. Suppose two
images have the same lesion type while the lesions appear on
different positions in the images, then the similarity calculated
with activations before last pooling layer would be relatively
small due to the spatial discrepancy. Therefore, we choose the
activations after the last pooling layer to calculate Rl in our
framework.

C. Overall Loss Function and Technical Details

The total objective functions to train our relation-driven
semi-supervised framework is as follows:

L = Ls + λLu, with Lu = Lc + βLsrc, (7)

where Ls is the supervised objective; Lu is the unsupervised
objective composed of the conventional consistency loss Lc
and the sample relation consistency loss Lsrc; β is a hyper-
parameter to balance Lc and Lsrc, which is generally set as 1
and we also study the effect of this hyper-parameter in ablation
experiments; λ is the trade-off weight between the supervised
and unsupervised loss.

We used the weighted cross-entropy loss as Ls to mitigate
the class imbalance problem for the two tasks in our experi-
ments. Two types of perturbations were added during training,
including: 1) Random rotation, translation, horizontal flips
to input samples: We conducted random transformation for
each sample separately in the given mini-batch. The random
rotation degree was in range of -10 to 10. The pixel number
for horizontal and vertical translation ranged from -2% to 2%
of the image width. We also conducted random horizontal
and vertical flipping for the inputs with a 50% probability;
2) Dropout layer in the network: We added dropout layer
before the last pooling layer in the employed DenseNet, with
dropout rate as 0.2. The magnitude of these perturbations were
chosen based on our empirical observations in preliminary
experiments. We turned on the dropout during training while
turned it off during validation and testing phase. We set
the EMA decay rate α as 0.99, following [4]. We applied
a Gaussian warming up function λ(t) = 1 ∗ e(−5(1−t/T )2)

to control the value of trade-off weight λ. The function
value would gradually ramp-up from 0 to 1 in the first T
training epochs, and then we fixed the value of λ as 1 for
the subsequent training. Such design could guarantee that the
training loss would not be dominated by the unsupervised loss
at the beginning of network training when the consistency
targets for unlabeled data are unreliable.

IV. EXPERIMENTS

We have evaluated our proposed semi-supervised learning
approach on both skin lesion classification (single-label) from
dermoscopy images and thorax diseases diagnosis (multi-label)
from chest x-ray images, with extensive ablation analysis and
comparison with state-of-the-art methods.

A. Datasets and Experimental Setup

ISIC 2018 skin lesion analysis dataset: We performed
single-label skin lesion classification on the dataset from ISIC
2018: Skin Lesion Analysis Towards Melanoma Detection [1],
[44]. The training set consists of 10015 skin lesion dermoscopy
images, labeled by 7 types of common skin lesions. We
resized all images into the size of 224 × 224. To employ the
pre-trained model, each image was normalized with statistic
collected from ImageNet dataset [45] before feeding into the
network. Since the ground truth of official validation and
testing set was not released, we randomly divided the entire
training set to 70% for training, 10% for validation and 20%
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TABLE I
COMPARISON WITH STATE-OF-THE-ART SEMI-SUPERVISED LEARNING METHODS ON ISIC 2018 DATASET.

Method
Percentage Metrics

Labelled Unlabelled AUC Sensitivity Specificity Accuracy F1
Upper Bound 100% 0 95.43 75.20 94.94 95.10 70.13

Baseline 20% 0 90.15 65.50 91.83 92.17 52.03
Self-training [14] 20% 80% 90.58 67.63 93.31 92.37 54.51
SS-DCGAN [29] 20% 80% 91.28 67.72 92.56 92.27 54.10

TCSE [31] 20% 80% 92.24 68.17 92.51 92.35 58.44
TE [3] 20% 80% 92.70 69.81 92.55 92.26 59.33
MT [4] 20% 80% 92.96 69.75 92.20 92.48 59.10

SRC-MT (ours) 20% 80% 93.58 71.47 92.72 92.54 60.68

for testing. We employed DenseNet121 [43] pre-trained on
ImageNet as our network backbone.

ChestX-ray14 dataset: We performed multi-label thorax
disease diagnosis using the ChestX-ray14 dataset [39]. It
contains in total 112120 frontal-view chest x-rays of 30805
unique patients, in which each radiography is labeled with one
or multiple classes of 14 common thorax diseases. We resized
the original images from size 1024 × 1024 into 384 × 384 for
training a deep neural network. The images were normalized
in the same way as task 1. To ensure the fair comparison
with previous methods [2], [26], we adopted the official data
split of ChestX-ray14, which split the entire dataset into 70%
for training, 10% for validation and 20% for testing. Since
this dataset is much larger than the dataset in task-1, we
adopted a deeper network, i.e., DenseNet169 [43] pre-trained
on ImageNet, as our network backbone.

Evaluation metric: Following the literature of these two
applications, we adopt four metrics in the evaluation of ISIC
2018 dataset, including AUC, Accuracy, Sensitivity and Speci-
ficity. For the evaluation on ChestX-ray14 dataset, we refer to
the previous work [26] and adopt AUC metric for evaluation.

Implementation details: Our framework was implemented
in Python with PyTorch library. We used 3 NVIDIA TitanXp
GPUs in parallel for training. The network was trained using
Adam optimizer with default parameters setting [46]. The
batch size was set to 48, containing 12 annotated images and
36 unannotated images in each mini-batch. We totally trained
60 epochs for skin lesion classification and 20 epochs for
ChestX-ray diagnosis, with ramp-up epoch T set as 30 and
10 respectively. The learning rate was initialized as 1e−4 and
decayed with a power of 0.9 after each epoch.

B. Comparison on Skin Lesion Classification Dataset

We implemented current state-of-the-art semi-supervised
classification methods on the skin lesion classification dataset
for comparison, including self-training based method [14],
GAN based method [29], Π model based method [31] and
Temporal Ensembling (TE) [3]. We also conducted compari-
son with the original mean teacher (MT) framework to evalu-
ate the effect of our proposed SRC paradigm. In self-training
based method, we employed the model from previous epoch
to generate soft probability and selected probability vectors
with zero norm higher than 0.9 to produce high-confidence
labels for unlabeled data. The latent variable to generate
fake images in GAN based method was a 256-dimensional

vector sampled from Gaussian distribution. The generator was
composed of six deconvolutional block (Deconv-BN-ReLU),
followed by a deconvolutional layer of 3 output channel with
Tanh activation function. We adopted mean squared error as
the GAN loss function. All consistency-based methods applied
the same perturbations to the input samples, as elaborated
in the technical details of our method. In addition, all the
comparison methods were implemented with the same network
backbone for fair comparison.

Table I presents the performance of these approaches under
20% (1400) labeled data setting. The fully supervised model
trained with 100% (7000) labeled data serves as the upper-
bound performance and fully supervised model trained with
20% (1400) labeled data serves as the baseline performance.
As we can see, the self-training based method obtains higher
Specificity than the other approaches, while the improvements
over baseline model on AUC and Sensitivity are limited. Such
result indicates that the self-training methods mainly helps
to improve the classification for negative samples while the
performance improvements on positive samples are relatively
poor. Compared with self-training, the SS-DCGAN improves
the AUC by 0.70%, showing that the generated samples of
GAN based methods indeed help to improve the network
training in semi-supervised learning. The TCSE and TE
achieve large improvements over SS-DCGAN, demonstrating
the effectiveness of consistency regularization mechanism for
exploiting the unlabeled data. Meanwhile, the TE performs
slightly better than TCSE, since it ensembles the predictions
in different epochs to generate more reliable consistency
targets. In addition, the MT obtains a higher AUC of 92.96%
than all other methods, which is consistent with the find-
ings in [4], demonstrating the superiority of MT in semi-
supervised learning. Notably, by using SRC to enforce the
consistency of the semantic relation among different samples,
our approach achieves consistent improvements on all metrics
over MT, with considerable increases on AUC, Sensitivity
and F1 score, highlighting that the proposed SRC paradigm
indeed helps to exploit the unlabeled data more effectively. We
also reference the state-of-the-art method [47] on skin lesion
classification to validate our backbone implementation. They
report performance of 96.7% AUC for 5-fold cross validation
on the training set, using Densenet121 as network backbone.
Compared with their results, our upper-bound implementation
with 95.43% AUC can be regarded as reasonable.
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TABLE II
QUANTITATIVE EVALUATION OF OUR METHOD ON CHESTXRAY14 DATASET WITH AUC METRIC.

Method Fully-Supervised Baseline MT [4] SRC-MT
Labeled 100% 20% 20% 20%
Unlabeled 0 0 80% 80%
Atelectasis 77.32 74.06 75.12 75.38
Cardiomegaly 88.85 87.39 87.37 87.70
Effusion 82.11 80.49 80.81 81.58
Infiltration 70.95 69.78 70.67 70.40
Mass 82.92 76.93 77.72 78.03
Nodule 77.00 71.90 73.27 73.64
Pneumonia 71.28 65.00 69.17 69.27
Pneumothorax 86.87 82.58 85.63 86.12
Consolidation 74.88 71.27 72.51 73.11
Edema 84.74 80.84 82.72 82.94
Emphysema 93.35 87.54 88.16 88.98
Fibrosis 84.46 78.22 78.24 79.22
Pleural Thickening 77.34 74.50 74.43 75.63
Hernia 92.51 84.91 87.74 87.27
Average AUC 81.75 77.52 78.83 79.23

TABLE III
COMPARISON WITH STATE-OF-THE-ART SEMI-SUPERVISED LEARNING

METHOD ON CHEST X RAY 14 DATASET.

Labeled Percentage 2% 5% 10% 15% 20% 100%
GraphXNET [26] 53 58 63 68 78 N/A
SRC-MT(Ours) 66.95 72.29 75.28 77.76 79.23 81.75

C. Comparison on Thorax Disease Diagnosis Dataset

To evaluate our method on multi-label classification
task, we compare our method with the graph-based model
GraphXNET [26], which achieves the state-of-the-art semi-
supervised performance on thorax disease diagnosis. The
GraphXNET constructs a graph model with all training sam-
ples and then performs semi-supervised learning by correcting
the initially mislabelled samples through finding smooth solu-
tions to the created global embedding. We directly reference
their reported performance for comparison as they also adopt
the official data split of ChestX-Ray14 [39].

Table III shows the AUC of the GraphXNET and our
method under different labelled data percentage. It is observed
that the GraphXNET works pretty well under 20% labeled
data percentage, with 78% AUC achieved on the official
testing set, demonstrating the effectiveness of graph model
for semi-supervised multi-label classification task. However,
this method is very sensitive to the change of labeled data
percentage. The AUC of GraphXNET catastrophically drops
by 10% when the labeled data percentage decreases from
20% to 15%, and even falls to 53% under 2% labeled data
percentage. A possible reason is that the graph model relies
heavily on a widespread labeled samples to ensure the cor-
rectness of the label propagation among labeled and unlabeled
data. Remarkably, our approach overwhelmingly outperforms
the GraphXNET under all labeled data percentage. Compared
with GraphXNET , our method presents smaller performance
decay when the labeled data percentage decreases, reflecting
that our method is more robust to the fluctuations of labeled
data percentage. In addition, our method trained with only 5%

labeled data even outperforms the GraphXNET trained with
15% labeled data, demonstrating that our method performs
better than graph model under extreme limited supervision.
We also validate our backbone implementation. To the best
of our knowledge, the current state-of-the-art performance on
ChestX-ray14 dataset is achieved by Yan et al. [48]. Their
method obtains an average AUC of 83.02% on the official data
split, but relying on complicated network architecture design
and testing model ensembling. They also report a 81.80%
average AUC using DenseNet as network backbone. Compared
with their results, our implemented fully-supervised DenseNet
with 81.75% AUC on the official split can be regarded as valid.

We also compare our method with the original MT frame-
work to analyze the effect of SRC paradigm on the multi-label
classification task. As shown in Table II, the MT framework
trained with 20% labeled data achieves average AUC of
78.83%, with AUC improvements on 13 out of 14 types
of thorax diseases (except Cardiomegaly) compared with the
fully-supervised baseline model, demonstrating the effective-
ness of consistency-based method on semi-supervised multi-
label classification task. We notice that the performance gain of
MT over baseline model on AUC (1.31%) is not as significant
as the performance gain in skin lesion classification (2.81%),
which could be due to the annotation noise in ChestXray14
dataset [39]. These noise in the training set would influ-
ence the discrimination ability of the trained model, which
further decreases the quality of the consistency targets for
unlabeled data and thus reduces the benefits from consistency
regularization mechanism. Notably, by leveraging the SRC to
explore the semantic relation information, our method further
improves the average AUC to 79.23%, with increase on 12 out
of 14 diseases compared with MT framework, which could
demonstrate the effectiveness of the proposed SRC paradigm
on multi-label classification task.
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TABLE IV
QUANTITATIVE EVALUATION OF OUR METHOD ON ISIC 2018 DATASET UNDER DIFFERENT PERCETAGE OF LABELED DATA.

Method
Percentage Metrics

Labelled Unlabelled AUC Sensitivity Specificity Accuracy F1
Upper Bound 100% 0 95.43 75.20 94.94 95.10 70.13

Baseline 5% 0 84.24 59.69 87.28 84.73 38.57
SRC-MT (ours) 5% 95% 87.61 62.04 89.36 88.77 46.26

Baseline 10% 0 87.04 64.22 89.88 87.45 44.43
SRC-MT (ours) 10% 90% 90.31 66.29 90.47 89.30 50.02

Baseline 20% 0 90.15 65.50 91.83 92.17 52.03
SRC-MT (ours) 20% 80% 93.58 71.47 92.72 92.54 60.68

Baseline 30% 0 91.80 71.63 92.78 92.55 57.83
SRC-MT (ours) 30% 70% 94.27 74.59 92.85 93.11 63.54

TABLE V
QUANTITATIVE EVALUATION OF OUR METHOD ON ISIC 2018 DATASET WITH DIFFERENT LOSS WEIGHT β .

Method
hyper-parameter Metrics

weight β AUC Sensitivity Specificity Accuracy F1
MT 0 92.96 69.75 92.20 92.48 59.10

SRC-MT (ours) 0.01 93.08 70.64 92.49 92.57 59.68
SRC-MT (ours) 0.1 93.47 71.01 92.20 92.63 59.88
SRC-MT (ours) 0.5 93.57 70.45 92.41 92.90 62.41
SRC-MT (ours) 1.0 93.58 71.47 92.72 92.54 60.68
SRC-MT (ours) 5.0 93.39 69.99 92.25 92.95 60.15
SRC-MT (ours) 10.0 92.87 68.66 92.51 92.04 58.50

D. Analytical Ablation Studies

We provide ablation analysis on skin lesion classification
dataset to further investigate the learning behavior of the
proposed method.

1) Different percentage of labeled data: We study the
impact of different percentage of labeled data in our semi-
supervised learning method and show the results in Table IV. It
is observed that our method achieves consistent improvements
over the supervised-only baseline model under 5%, 10%,
20% and 30% labeled data setting. In addition, using only
30% labeled data for network training, our method achieves
AUC of 94.27% and Sensitivity of 74.59% , which are close
to the performance of upper-bound model trained on 100%
labeled data. These results demonstrate the effectiveness of
our approach in exploiting the unlabeled data for performance
gains. Moreover, we observe that the model trained with 5%
labeled data presents comparable performance gains over the
supervised-only baseline as 20% labeled data setting, even
though we have utilized more unlabeled data for training in
5% labeled data setting. One possible reason is that for the
class imbalanced problem, e.g., skin lesion classification, using
very limited labeled data (5%, i.e., 350 images) for network
training cannot guarantee reliable consistency targets for the
unlabeled rare lesion types, which would reduce the benefits
from consistency regularization mechanism.

2) The impact of different loss weight β: We study the
effect of different hyper-parameter setting for β in Eq. (7).
Specifically, we adopt different values of β in range from 0 to
10, and report the network performance under 20% labeled
data setting in Table V. Note that the setting of β = 0
corresponds to the original MT framework. It is observed that

our method generally improves the classification performance
over MT framework with β in range from 0.1 to 5, and the
performance is not very sensitive to the value of β. When
decreasing β to 0.01, the improvement over MT is marginal,
since the training loss would be dominated by the classification
loss and the conventional consistency loss. Meanwhile, we
notice a limitation from Table V that the value of β cannot be
set too high (e.g., 10). Otherwise, the SRC paradigm might be
a too strict constraint with negative effects. We thereby set β
as 1 in our experiments.

3) Evolution of sample relation matrix: To better un-
derstand the learning behavior of SRC paradigm in network
training, in Fig. 4, we visualize the sample relation matrices
Rl calculated from the student model and teacher model in
different training epochs. To clearly show the alignment of
these two matrices, we also compute their absolute distance
matrix, see the right red column. From Fig. 4, it is observed
that at the beginning of network training, the intrinsic rela-
tion structure among different samples is not well presented
(Note that samples in the mini-batch are grouped by their
ground-truth label class), and the calculated relation matrices
show large difference due to the input perturbations. As the
training goes on, the model gradually produces meaningful
relation matrices, with higher response between samples of
the same lesion types. Meanwhile, the absolute difference
between the two relation matrices gradually reduces as the
model converges, indicating that the model gradually learns
robust representations to preserve the semantic relation among
samples under perturbations.

We also visualize the absolute distance of the mean teacher
framework and our method at 50th training epoch when model
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Fig. 4. Visualization of the evolution of the sample relation matrices from
student model (left column) and teacher model (middle column) as training
going on. We also show the difference of these two relation matrices in the
right column (with values amplified by three-times). The first to fourth rows
correspond to the results from 1, 10, 20, and 50 epochs during network training
under 20% labeled data setting.

converges to further analyze the impact of the SRC paradigm.
As shown in Fig 5, the absolute distance matrices in mean
teacher framework present relatively high responses, reflecting
that the sample relationships would be disturbed when the per-
turbations are introduced, even though the model has learned
meaningful features at convergence. Notably, with the regu-
larization from our SRC paradigm, the distance matrices turn
cleaner, highlighting that our approach successfully captures
more robust and discriminative representations that benefits
for stabilizing the relation structure under perturbations. Such
observation could also explain the performance improvements
of our method.

4) Analysis of training behavior: To analyze the training
behavior of our model, we further show the training curves
of the classification loss, conventional consistency loss, SRC
loss and the consistency weight β. As shown in Fig. 6, the
consistency weight β gradually ramps up as the training goes
on, which guarantees that the training would not be misled by
the unreliable unsupervised loss at the beginning of training.
It is observed that when the model is randomly initialized,
the SRC loss is relatively low, which can be explained by

O
ur

s
M

ea
n 

Te
ac

he
r
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Fig. 5. Visualization of the absolute distance (with values amplified by three-
times) of the relation matrices Rl calculated from the student model under
two different perturbations, at 50th training epoch with 20% labeled data
setting. The first row and second row are the absolute distance matrices of
mean teacher and our approach respectively. Each column corresponds to the
results from a certain sampled mini-batch.

Fig. 6. Learning curves of different loss functions and consistency weight β.

that the relation matrix Rl is also random and meaningless
with no much difference under different perturbations. When
the training starts, the SRC loss increases as the model
starts learning discriminative features and produces meaning-
ful relation matrix with differences under perturbations. With
the consistency weight increasing, both the SRC loss and
conventional consistency loss gradually decrease, leading to a
higher classification performance with decreased cross entropy
loss.

5) Performance on other consistency-based frameworks:
Our proposed sample-relation-consistency paradigm is a gen-
eral mechanism to enhance the consistency-based semi-
supervised learning framework. The choice of the baseline
framework is flexible. Here, we incorporate the proposed SRC
paradigm into two additional popular consistency-based frame-
works, i.e., Π model and Temporal Ensembling (TE). The
performance of original semi-supervised learning framework
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TABLE VI
EVALUATION OF SRC WITH DIFFERENT CONSISTENCY-BASED

FRAMEWORKS ON ISIC 2018 DATASET.

Method
Percentage Metrics

Labelled Unlabelled AUC F1
Π [3] 20% 80% 92.24 58.44

SRC-Π 20% 80% 92.90 60.17
TE [3] 20% 80% 92.70 59.33

SRC-TE 20% 80% 93.57 59.70

TABLE VII
COMPARISON OF THE FEATURE CONSISTENCY AND SAMPLE RELATION

CONSISTENCY ON ISIC2018 DATASET.

Method
hyper-parameter Metrics

weight β AUC Sensitivity Specificity Accuracy F1
MT 0 92.96 69.75 92.20 92.48 59.10

FC-MT 0.01 93.04 69.71 92.72 92.43 58.21
FC-MT 0.1 93.13 70.13 92.35 92.51 59.81
FC-MT 1.0 92.32 63.36 92.01 92.18 55.04

SRC-MT (ours) 0.01 93.08 70.64 92.49 92.57 59.68
SRC-MT (ours) 0.1 93.47 71.01 92.20 92.63 59.88
SRC-MT (ours) 1.0 93.58 71.47 92.72 92.54 60.68

and sample-relation-consistency enhanced version are listed
in Table VI. As we can see, under 20% labeled data setting,
the SRC paradigm consistently improves the performance of
Π model and TE on AUC and F1 score metric, demonstrating
that enforcing the relation consistency to better exploit the un-
labeled data is a general and effective strategy under different
semi-supervised frameworks.

V. DISCUSSIONS

Automated disease classification from medical images is
essential for assisting clinical diagnosis and treatment plan-
ning. For the sake of high performance, current deep learning
approaches usually require a large amount of labeled data for
network training. However, acquiring high-quality label for
medical data is laborious and tedious work for the doctors.
It has great potential to study semi-supervised medical image
classification method to reduce the demand on labeled data by
effectively exploiting the unlabeled data. Drawing spirit from
the recent consistency enforcing methods in semi-supervised
learning [4], we adopt consistency mechanism to leverage
the unlabeled data, which enforces the prediction consistency
for the same input samples under different perturbations. A
self-ensembling teacher model is further employed to produce
more reliable consistency targets for the unlabeled data. More
importantly, based on the observation that the doctors refer
to previous analogous cases to make accurate diagnosis, we
propose a novel sample-relation-consistency (SRC) paradigm
to better exploit the unlabeled data by exploring the valuable
relation information among different samples.

The SRC paradigm requires the consistency of the intrinsic
relation of data under different perturbations. Trained in this
way, the network would be enhanced to learn more robust
and discriminative representations for maintaining the seman-
tic relation consistency, and thus helps to extract additional
semantic information from unlabeled data. Theoretically, con-
straining the consistency of the semantic embedding Al could
also guarantee the consistency of relation structure Rl. Here

we explore how the model would preform if we directly
enforce the consistency of Al under perturbations. We call
this approach as feature consistency, and compare it with
the proposed SRC paradigm. Specifically, we applied these
two consistency mechanisms respectively on the mean teacher
framework, and evaluated their performance under different
loss weight β. For the feature consistency strategy, we adopted
the mean squared error as the regularization objective, which
is the same as the SRC paradigm. As shown in Table VII,
the performance of feature consistency method (FC-MT) is
inferior to the original mean teacher (MT) framework under
the setting of β = 1, indicating that directly regularizing the
consistency of latent features might be a too strict constraint
that leads to negative effects. When relaxing this direct feature
constraint by adjusting the loss weight β to 0.1, the FC-MT is
slightly superior to MT, whereas the improvements is marginal
compared with our SRC-MT. When further decreasing β
to 0.01, both FC-MT and SRC-MT show limited advantage
over MT, since the training loss would be dominated by
the classification loss and the conventional consistency loss.
Overall, the feature consistency approach would introduce
too strict regularization into the framework. It is sensitive
to the loss weight β setting and can marginally improve the
original MT framework. While our sample relation consistency
paradigm could effectively exploit the relationship information
among samples by adding regularization to the sample relation
matrix Rl not directly to feature Al.

There are a variety of ways for estimating the relation
(similarity) among samples. For example, the cosine similarity
was utilized in face recognition to measure the similarity
among feature vectors of different samples [49], and further
extended for similarity measurement in lesions identifica-
tion [50]. In addition, Liu et al. [8] constructed an instance
relation graph to model the relation structure of data. In this
work, we formulate the similarity as the inner product of two
vectors, inspired by the Gram matrix. As part of our future
works, we would explore different approaches to estimate the
similarity between samples and analyze their effect to the
classification performance. Besides, designing more effective
perturbation scheme is able to improve the performance of
consistency-based methods. There are some recent automatic
data augmentation works [51] that automatically search the
best transformations for a specific dataset. It is an interesting
future work to explore how to utilize automatic data transfor-
mations to create better perturbation and maximize the benefits
of consistency mechanism in semi-supervised learning. More-
over, how to extend the relational consistency mechanism into
semi-supervised segmentation problem, to effectively exploit
the unlabeled data collected from other clinical centers [52]
or other modalities [53] is also an interesting direction for our
future work.

We visualize some typical samples with the best and worst
predictions of our model on the two applications in Fig. 7,
from which we see that the classification performance of
our method still leaves room for improvement. In this work,
we adopted the basic DenseNet not other complex network
designs [47], [48] as backbone since we focus on studying
how to effectively exploit unlabeled data by leveraging the
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Atelectasis：0.1838
Cardiomegaly：0.0059
Effusion：0.0103
Infiltration：0.0535
Mass：0.0078
Nodule：0.0330
Pneumonia: 0.0443
Pneumothorax: 0.0162
Consolidation: 0.0174
Edema: 0.0017
Emphysema: 0.0206
Fibrosis: 0.2121
Pleural_Thickening: 0.0216
Hernia：0.3719

Melanoma：3.4e-7
Melanocytic nevus：3.1e-7
Basal cell carcinoma：3.6e-9
Actinic keratosis：3.4e-9
Benign keratosis：1.3e-8
Dermatofibroma：1.1e-10
Vascular lesion: 0.9999

Melanoma：0.5142
Melanocytic nevus：0.2430
Basal cell carcinoma：0.0001
Actinic keratosis：0.0012
Benign keratosis：0.2410
Dermatofibroma：0.0002
Vascular lesion: 0.0003

Atelectasis：0.0002
Cardiomegaly：0.9991
Effusion：0.0005
Infiltration：4.5e-5
Mass：1.6e-6
Nodule：1.0e-5
Pneumonia: 1.7e-5
Pneumothorax: 9.6e-6
Consolidation: 4.2e-5
Edema: 1.2e-5
Emphysema: 1.3e-5
Fibrosis: 5.2e-5
Pleural_Thickening: 1.9e-5
Hernia：1.5e-5

Fig. 7. Typical examples with accurate and inaccurate predictions on the two
applications. Classes with red color denote the ground truth label.

intrinsic relation of data. Integrating our proposed semi-
supervised mechanism into other well-designed networks is
one of our future works, for more accurate medical images
classification in semi-supervised manner. In addition, even
though our method achieves comparable AUC and Sensitivity
with the upper-bound model on the skin lesion classification
task, the improvement on Specificity is relatively limited.
Based on this observation, in the future, we plan to study
how to consistently improve discrimination ability on positive
and negative samples, by exploring the class re-balancing
techniques [54].

In general, our proposed semi-supervised framework can be
applied to different medical image classification applications,
as we have demonstrated its effectiveness on both single-label
and multi-label disease classification tasks. Meanwhile, the
proposed SRC paradigm is of general feasibility to be in-
corporated to other semi-supervised frameworks, as illustrated
in Table VI. It is worth noting that under fully supervised
scenario, the SRC paradigm could also be utilized as another
type of data augmentation scheme. Conventional data aug-
mentation mechanism emphasizes the output to be invariant
under different perturbations (e.g., rotation, translation and
flipping). It is interesting to investigate whether the invariance
of the semantic relation among different samples would help
to alleviate the over-fitting in fully-supervised scenario.

VI. CONCLUSION

In this work, we study the semi-supervised medical image
classification problem to reduce the human effort of labeling
medical image data. We present a new semi-supervised self-
ensembling framework by introducing a novel sample relation
consistency (SRC) paradigm. Our framework can better exploit
unlabeled data by exploring the intrinsic relation between
samples. Extensive experiments on two large-scale public
benchmark datasets demonstrate the superiority of our method
over the state-of-the-art semi-supervised learning methods on
both single-label and multi-label medical image classification
tasks. Moreover, the proposed SRC paradigm is a general
strategy, which is feasible to be incorporated with other semi-
supervised learning approaches.
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