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ABSTRACT Brain tumor segmentation from medical images is a prerequisite to provide a quantitative
and intuitive reference for clinical diagnosis and treatment. Manual segmentation depends on clinicians’
experience, and is laborious and time-consuming. To tackle these issues, we proposed an encoder-decoder
neural network, i.e. deep supervised 3D Squeeze-and-Excitation V-Net (DSSE-V-Net) to segment brain
tumors automatically. We modified V-Net by adding batch normalization and using bottom residual block to
make the network deeper. Then we incorporated a squeeze & excitation(SE) module in the modified V-Net
by adding the SE block in each stage of the encoder and decoder, respectively. We also integrated 3D deep
supervision seamlessly into the network to accelerate convergence. We evaluated our model on the public
BraTS 2017 dataset for brain tumor segmentation. Our model outperformed both 3D U-Net and modified
V-Net, and obtained highly competitive performance compared with those methods winning in the BraTS
2017 challenge.

INDEX TERMS Brain tumor segmentation, v-net, squeeze-and-excitation.

I. INTRODUCTION
Accurate brain tumor segmentation from medical images is a
prerequisite to provide a quantitative and intuitive reference
for clinical diagnosis and treatment of diseases. It is also the
basis of quantitative disease progression assessment, treat-
ment planning, and virtual surgery training systems. Mag-
netic resonance imaging (MRI) is a popular auxiliary means
for diagnosis of brain tumors because of its high-quality
images with high tissue contrast. Each MRI modality is good
at differentiating some tissues. For example, the brain tis-
sue structure can be clearly seen in T1c (T1 enhancement),
while brain tumor boundaries are significantly enhanced in
FLAIR. Tomake full use of these omplementary information,
multi-model 3D MRIs are usually acquired.

At present, brain tumors are mainly manually labeled by
the clinicians slice by slice. Manual segmentation relys on
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clinicians’ experience. It is also tedious, time-consuming
and of poor repeatability. Therefore, there is a demand for
accurate and efficient automated brain tumor segmentation
approaches. However, this is challenging as a result of the
great tumor intensity changes, variable and irregular tumor
shape, size, and localization, and unclear boundaries to nor-
mal brain tissues. The Multi-modal Brain Tumor Image Seg-
mentation Benchmark (BraTS) challenges were hold along
with MICCAI since 2012 [1] to foster sdudy in this area. The
challenges indicated that deep learning based segmentation
approaches showed superiority compared with traditional
segmentation approaches [1], [2].

Specifically, convolutional neural networks (CNN)
approaches especially V-Net [3] and U-Net [4], [5] based
architectures demonstrated amazing performance in medical
image segmentation tasks. These architectures both adopted
an encoder-decoder structure with several stages and skip
connection in the same stage. The whole structure with skip
connection allowed the feature map to incorporate more
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low-level features, which also enables the fusion of fea-
tures of different scales for multi-scale prediction. Recently,
squeeze & excitation(SE) module [6] was put forward to
enhance important features by recalibrating the feature maps
adaptively. It improves the result in ImageNet classifica-
tion competition greatly when added to existing neural net-
work architectures, such as ResNet-50 and Inception. It also
improved segmentation accuracy as demonstrated in [7].

Motivated by these works, we presented a Deep super-
vised 3D Squeeze-and-excitation V-Net (DSSE-V-Net) for
automated brain tumor segmentation from multi-model mag-
netic resonance images (MRIs). Similar to standard V-Net,
our modified V-Net follows the encoder-decoder structure
of CNN. We added batch normalisation and replaced some
residual block [8] in the original V-Net with the bottom
residual block in some stages to make the network deeper.
We incorprated squeeze & excitation(SE) module in the
modified V-Net by including a SE block in each stage of
the encoder and decoder, respectively. To accelerate net-
work’s convergence, we integrated deep supervision in the
3D DSSE-V-Net. We evaluated our model on the public
BraTS 2017 datasets [9] in brain tumor segmentation. Our
model outperformed both 3D U-Net and modified V-Net,
and obtained highly competitive performance compared with
those methods winning in the BraTS 2017 challenge.

II. RELATED WORKS
Most contemporary effective brain tumor segmentationmeth-
ods utilized convolutional neural networks. These meth-
ods could be mainly classified into three categories. The
first class focuses on single segmentation network based
on encoder-decoder architecture to segment various tumor
tissues simultaneously. Myronenko [10] put forward an
encoder-decoder architecture and added another decoder path
to recover the input image. The added decoder acted as
a regularization of the shared encoder by imposing more
constraints. They obtained the first place in the 2018 BraTS
challenge. Isensee et al. [11] adopted the popular U-net archi-
tecture by making a little changes and used more training
data collected in their own institution, resulting competitive
performance. McKinley et al. [12] modified a U-net-like
structure by incorporating a DenseNet [13] module with
dilated convolutions. Pereira et al. [14] proposed a segmen-
tation network with feature recalibration based on the idea of
squeeze & excitation(SE).

The second type takes cascaded networks to segment tumor
subregions sequentially. Wang et al. [15] designed a network
structure and trained the network for the whole tumor first,
then trained a similar network for a tumor subregion with
cropped 3D bounding box of the entire tumor in the original
image as input. At last they trained another similar network
for another tumor subregion with cropped 3D bounding box
of the above tumor subregion. In this cascaded way, they
obtained a second in BraTS 2017 challenge. Lachinov [16]
trained multiple 3D U-Net cascadely to segment tumor sub-
regions sequentially. They used separate encoders for each

individual input modality and introduced a method to merge
encoded feature maps to solve the problem of heterogeneous
input. The third type fusions several segmentation models
together to obtain good performance. Kamnitsas et al. [17]
proposed an ensemble of different models and achieved the
first place in BraTS 2017 challenge. Zhou et al. [18] seg-
mented three tumor subregions in a cascaded way and utilized
an ensemble of different models as well.

III. METHODS
A. NETWORK ARCHITECTURE
We built our network 3D DSSE-V-Net based on the V-Net
in [3]. We improved V-Net in a few ways to make it
deeper and more robust. Motivated by the success of
squeeze-and-excitation module on image object classifica-
tion, we designed and included 3D squeeze-and-excitation
(SE) block in our modified V-Net. In addition, we incor-
porated deep supervision in the DSSE-V-Net to accelerate
convergence. Our network architecture is given in Fig. 1 and
will be detailed in the following subsections. The detailed
information such as the channels of each convolution about
the network are presented in Table 1.

1) MODIFIED V-NET
The standard V-Net follows the encoder-decoder architecture.
The encoder extracts multi-scale features at different stages,
while the decoder focuses on the segmentation objects and
reconstructs the features to the original size gradually. Similar
to V-Net, our modified V-Net had four stages in addition to
an input transform stage, and each stage operated at different
resolutions. At each stage, the encoder progressively reduced
image resolutions by a convolution and increased feature
maps number by 2 at the same time. We added batch nor-
malization after this convolution, and used ELU for nonlin-
ear operation instead of the original PRelu, these operations
were denoted as DownConvBnElu in Fig. 1. The convolution
kernel size was 2 × 2 × 2 and its stride was 2 × 2 × 2.
Following the DownConvBnElu, we used two residual blocks
with an additive identity skip connection followed by an ELU
operation, as seen in the green dotted rectangle in Fig. 1 and
Fig. 2(a). The residual block consisted of a few ConvBnElus,
where the size of all convolutions were 5 × 5 × 5 and the
stride was 1× 1× 1. The residual connections in the residual
block encourage training more deep networks [19]. The batch
normalization and ELU were utilized to make the network
easier for training.

To make the network deeper to extract more useful fea-
tures, we used a bottom residual block replacing a residual
block in the 2-4 stage. The bottom residual block consists
several bottom convolution units, where each unit has three
ConvBnElu, as seen in Fig. 2(b). And kernel sizes of the three
convolutionswere 1×1×1, 3×3×3 and 1×1×1, respectively.
The decoder’s structure was analogous to the encoder. The

only difference was that each decoder stage began with a 3D
transposed convolution to increase the resolution of feature
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FIGURE 1. The network architecture of our 3D DSSE-V-Net.

FIGURE 2. (a) A residual block with two ConvBnRelu, (b) A bottom
residual block with bottom convolution unit, and each unit has three
ConvBnRelu.

maps by 2 while decrease the feature maps number by 2.
And a skip connection, i.e, a concatenation of each encoder
stage’s output with a dropout and the feature maps of the cor-
responding decoder stage was performed to incorporate more
low-level features. Then, the same bottom residual block as
in the corresponding encoder stage was used.

2) MODIFIED V-NET WITH SQUEEZE-
AND-EXCITATION(SE) BLOCK
SE block was initially presented in [6], which improved chan-
nel interdependencies at almost no computational cost. It is
a feature recalibration process to selectively enhance useful
feature maps through adaptively adjusting the weighting of
each feature map. The SE block is shown in Fig. 3(a) (For
clarity, 2D feature maps are used). For any given CNN feature
maps U , a global pooling operation was used to obtain a
weight matrix sized 1 × 1 × 1 × ch. ch denotes the the
convolutional channels number. Then an excitation operation
was performed. The excitation operation consisted a fully
connected layer, a ReLU adding necessary nonlinearity, and a
sigmoid function following a second fully connected layer to
rescale the activations to [0, 1]. This produced a gathering of
per-channel adjusting parameters. The output of the SE block
was obtained by multiplying the parameters to U .

The above SE block generated per-channel modulation
weights, so it could be denoted as cSE. Motivated by cSE,
spatial Squeese and Excitation Block (sSE) was presented in
[7]. sSE was a recalibration by squeezing the feature maps
spatially. This process enhanced the salient spatial locations.
The sSE block is given in Fig. 3 (b). For more details, please
refer to [7]. As illustrated in Fig.3 (c), [7] also combined the
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TABLE 1. The detailed information such as the channels of each convolution about the 3D DSSE-V-Net. Batch normalization, ELU operation and the
SEBlock in each stage of the encoder and decoder are not listed in this table for simplicity.
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FIGURE 3. (a) Channel Squeeze & Excitation Block (cSE), (b) Space
Squeeze & Excitation Block (sSE), (c) Space and channel Squeeze &
Excitation. For clarity, 2D feature mas are used in the Figure.

cSE block and sSE block to generate a scSE block by adding
the channel and spatial excitation element-wisely. The scSE
block is supposed to concurrently encourage the network to
learn more relevant features both spatially and channel-wise.

We implemented 3D cSE block, sSE block and csSE
block, and added them after the second residual block or
bottom residual block in each encoder and decoder stage,
respectively, as seen in Fig.1. The SE block was supposed
to facilitate the network focus on more informative features
maps in each scale and improve segmentation accuracy.

3) MODIFIED V-NET WITH SE BLOCK AND
DEEP SUPERVISION
Relatively deep networks are usually used to encode highly
representative features. Deep supervision is helpful to reduce
overfitting and facilitate network convergence when training
a deep neural network [20]. It is also useful to extract more
meaningful features [21]. Here, deep supervision were uti-
lized in each stage, so that the output of the middle stage
can be directly utilized as a supervision. Specifically, the out-
puts of each decoder stage were resized to the same size
as the training patches by upsampling, resulting in Dsv4,
Dsv3, Dsv2, and Dsv1, as seen in Fig. 1. Then, Dsv4, Dsv3,
Dsv2, and Dsv1 with the same size were concatenated, and
a convolution with kernel size 1 × 1 × 1 was used to fusion
all the outputs with different scales. Finally, the probability
map was obtained by a softmax operation. The loss could
be calculated between ground truth and the softmax output.

In this way, the outputs of themiddle stages and the final stage
all contributed to the loss and gradients back propagation
implicitly, which forced the update process of the middle
stage filters to favor highly discriminative features.

B. LOSS FUNCTION
Themodel was supposed to predict whether a pixel was a spe-
cific brain tumor tissue or background. Our model output was
the segmentation mask of the input. The cross-entropy (CE)
loss was popularly used to train CNN segmentation models.
Because brain tumor especially the tumor core are usually
rather small in the whole image, the CE loss is not good
at this unbalanced segmentation problem. The well-known
Dice overlap coefficient was also adopted as a regional
loss function, outperforming CE in this kind of tasks [3].
The Dice coefficient for multi-class segmentation can be
calculated by:

LDice = 1−
C∑
c=1

2ωc
∑N

i=1 pm(c, i)gt(c, i)∑
i=1 pm(c, i)2 + gt(c, i)2

(1)

where N is the voxel number,pm(c, i) ∈ [0, 1] and gt(k, i) ∈
{0, 1} represents the softmax output and the one-hot encoder
of the ground truth label for class c, respectively. C is the
class of brain tumor tissues.

∑
cωc = 1 where ωc are the

class weights. It was set to ωc = 1/C empirically.
We also tried the Lovasz loss, differentiable surrogate for

optimizing Intersection-over-union(IoU) recently proposed
in [22], but found no clear performance improvement com-
pared with Dice.

IV. EXPERIMENTS AND DISCUSSIONS
We first did experiments with different model designs on
BraTS 2017 dataset. Then we reported and discussed results
of our best model and those of the published top approaches.

A. EVALUATION DATASETS
BraTS 2017 dataset consisted multi-modal MRIs from multi-
ple institutions. It aimed for intrinsically heterogeneous brain
tumors segmentation. There were a training, validation and
test dataset. The training dataset included 285 samples with
manually annotated and confirmed ground truth labels. For
each sample, four modalities, T1, T1c, T2 and FLAIR sized
240×240×155 and the corresponding annotations were pro-
vided. The BraTS 2017 validation dataset consisted 46 cases
without given the annotations.

B. DATA PREPROCESSING AND AUGMENTATION
The MR images have artifacts because of different imaging
protocols and equipments [23]. The same as in [2], we used
N4BiasFieldCorrection algorithm in ITK [24] for the T1, T1c
and T2 modalities for bias correction. Then normalization
was performed the same as that in [25] for each modality
respectively.

Considering the GPUmemory limit, we randomly cropped
patches sized 128× 128× 128 within the brain tissue mask.
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We adopted a simple data augmentation strategy by randomly
flipping each patch along a randomly selected axis with a
probability 0.5.

C. IMPLEMENTATION DETAILS
We adopted PyTorch [26] to implement all models. Our work-
station was equipped with four NVIDIA Titan 1080 TI 11GB
GPUs. As there were four MRI modalities, we concatenated
the images obtaining a four-channel image as input. With the
random crop operation, our input patch size was 4 × 128 ×
128× 128.
As previously described, the BraTS 2017 dataset included

285 training samples and 46 validation samples. We trained
all models on the same 275 cases and evaluated their per-
formance on the validation cases. The ground truth of the
validation samples were not offered. So we submitted our
segmentations of all models to the BraTS 2017 on line evalu-
ation system and obtained quantitative evaluations in term of
Dice and Hausdorff distances of each tumor tissue class to
compare with other methods.

We trained the network from scratch with the He normal
weight initialization [27] for the convolutional kernel param-
eters. We used adam optimizer and dice loss for optimization.
The initial learning rate was lr = 2e4. The batch size was
4 according to our GPU number to enable data parallelism.
The input images were shuffled to ensure that each training
case was selected once per epoch. The dropout before the SE
block in each decoder stage was to 0.2. The hyper-parameters
were chosen experimentally. We trained all models with the
same hyper-parameters. The total training epoch was 1000.
It took about 3 minutes per epoch and about 43 hours for
training the DScSE-V-Net model on four NVIDIA GPUs.

For prediction, each sample was cropped regularly with
stride 16×16×16. There were 192 patches for a sample sized
4×255×255×255.We combined outputs of all the patches of
a sample to reconstruct probability maps to the same volume
size of the sample, and obtained the segmentationmasks from
the reconstructed probability maps.

D. EXPERIMENT RESULTS
We implemented 3D U-Net, 3D U-Net with deep supervision
(DS), and the modified V-Net with DS. We also tried the
attention-gated U-Net in [28] and added the attention gates in
V-Net as similar as that in U-Net. Finally, we integrated the
squeeze & excitation(SE) module in our model by adding the
cSE block and the csSE block in each encoder and decoder
stage, respectively. Thus there were seven models in total and
we called them (1) 3D U-Net, (2) DS-U-Net, (3) DS-V-Net,
(4) DS-Att-U-Net, (5) DS-Att-V-Net, (6) DS-cSE-V-Net (the
modified V-Net with DS and cSE block), and (7) DS-csSE-
V-Net (the modified V-Net with DS and csSE block), respec-
tively. Table 2 lists the Dice and Hausdorff distances of each
tumor tissue class of the implemented models. Wt denotes
whole tumor, Et represents enhancing tumor while Tc is short
for tumor core.

TABLE 2. The quantitative results on BraTS 2017 validation datasets of
different models. Wt denotes the whole tumor, Et represents the
enhancing tumor while Tc is short for tumor core. The implemented
models include: (1) 3D U-Net, (2) DS-U-Net, (3) DS-V-Net,
(4) DS-Att-U-Net, (5) DS-Att-V-Net, (6) DScSE-V-Net and (7) DScsSE-V-Net.

Comparing results of (1) and (2) (The first two rows
in Table 2, we observed that the Dices of WT and TC of
DS-U-Net increased to 0.8953 and 0.7828 from 0.8799 and
07693 of 3D U-Net, respectively, and the Hausdorff dis-
tances ofWTwas also decreased by adding deep supervision.
The improvement of most of the metrics demonstrated that
deep supervision was helpful to extract more discriminative
features. Comparing results of (2) and (3), we observed
that the Dices of all tumor tissue types of DS-V-Net
were better than those of DS-U-Net. This indicated that
V-Net outperformed U-Net in this task. There were no
clear improvements between the results of DS-Att-U-Net
and DS-Att-V-Net and the corresponding models without
attention gates. The results of DS-cSE-V-Net outperformed
DS-V-Net with improvements of almost all metrics (the Dices
of ET and TC increase to 0.7474 and 0.8005 from 0.7343 and
07716, and the Hausdorff distance of ET, WT and TC reduce
to 4.1977, 4.5295, and 5.5724 from 5.8534, 6.5209 and 8.12,
respectively). This demonstrated the effectiveness of the cSE
block by global pooling to adaptively enhance salient features
and ignore unimportant ones by adjusting the weighting of
each featuremap of CNN features. Therewas nomuch perfor-
mance gain of the results of DS-csSE-V-Net, perhaps because
the large patch size in 3D makes the relative importance of a
spatial pixel in the csSE block not notable. One segmentation
example of our best model (DS-cSE-V-Net) is shown in Fig.4.

E. COMPARISON WITH STATE-OF-THE-ART ON
BRATS 2017 VALIDATION DATASET
Table 3 gives the Dice and Hausdorff distances of each tumor
tissue class of our best model and those of the top published
methods on the BraTS 2017 validation dataset. The methods
in [15], [17] and [11] are the top three methods on test
data of BraTS 2017. Kamnitsas’ s method [17], EMMA,
demonstrated the effectiveness of ensemble of different mod-
els. Wang’s method [15] took the first place on the BraTS
2017 validation dataset, showing the power of cascaded net-
works. However, it had to train several networks, and errors
produced by the forward network could not be corrected by
the following networks. Isensee’s method [11] shown a U-net
architecture with small changes and more training data could
achieve competitive performance. Our model modified the
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FIGURE 4. A MRIs (FLAIR, T1, T2, T1c) and its segmentation of our top
performing model DS-cSE-V-Net in the BraTS validation data-set in three
orientations viewed with ITKSNAP [29]. The first, third and fifth column
images are slices of the input images, while the second, fourth and last
column images are the segmentation overlapped on the corresponding
input slice. (Axial:the first two column images, Sagittal: the third and
fourth column images, Coronal: the last two column images),and the
whole tumor (green, yellow, red), tumor core (yellow and red), enhanced
tumor (yellow).

TABLE 3. Comparison of our best model with the top published
approaches on BRATS’17 validation dataset. Wt denotes whole tumor,
Et represents enhancing tumor while Tc is short for tumor core.

standard V-Net, incorporated deep-supervision and Squeeze-
and-Excitation modules, achieving comparable results with
those of the top published methods. The method in [14]
also adopted a SE block for feature recalibration. The results
in Table 3 show that our model outperforms [14] in both Dice
score and Hausdorff distance. Compared to the full convolu-
tional network (FCN) used in [14], our base network VNet
is able to reconstruct more multi-scale features. In addition,
our network incorporated deep surpervision in each stage of
VNet, obtaining a better performance than themethod in [14].

F. DISCUSSIONS
Brain tumors have great tumor intensity changes, vari-
able and irregular tumor shape, size, and localization, and
unclear boundaries to normal brain tissues. Most recent
semantic segmentation approaches utilized multi-scale fea-
ture fusion or encoder-decoder structures to improve seg-
mentation accuracy of multi-scale objects. We presented
an encoder-decoder neural network DS-cSE-V-Net with 3D
squeeze-and-excitation and deep supervision for automated
brain tumor segmentation.

We extracted the output feature maps of each decoder
stage (Dsv4, Dsv3, Dsv2, and Dsv1) of DS-cSE-V-Net in
prediction on BraTS validation dataset, the same as we did in

FIGURE 5. Multi-scale output feature maps of each decoder stage of
DS-cSE-V-Net in prediction on BraTS validation dataset.

the deep supervision training process. Since the brain tumor
tissues were classified to 3 classes, each decoder stage output
had 4 feature maps. Fig. 5 displays the output feature maps
of all stages. For clarity, we combined outputs of all the
patches of a sample to reconstruct probability maps with the
same volume size of the sample, the same as we did in the
prediction. Fig. 5 indicated that the encoder-decoder structure
with multiple stages did learn multi-scale feature maps. The
deep supervised loss calculated from them was helpful to
extract more discriminative features.

Besides, the feature maps of each decoder stage compos-
ited the feature maps from the next decoder stage and those
from the corresponding encoder stage by a concatenation
followed by a residual block, a residual block or a bottom
residual block and a SE block. The SE block were added
both in the encoder stage and the decoder stage to adaptively
enhance salient features and ignore unimportant ones by
adjusting the weighting of each feature map of CNN features.
Fig. 6 shows prediction results with the DS-cSE-V-Net at
training epochs. The prediction results got better with the
training epoch increasing. Fig.7 shows visual segmentation
results of DS-V-Net and DS-cSE-V-Net overlapped on the
FLAIR in the BraTS validation dataset in three orienta-
tions viewed with ITKSNAP [29]. From Fig.7 we could see,
DS-cSE-V-Net outperformed DS-V-Net. The prediction
results of DS-cSE-V-Net fitted more to the tumor boundaries,
and little false positive tumors were removed in the prediction
results of DS-cSE-V-Net.

Although we had achieved promising segmentation per-
formance by our DS-cSE-V-Net, there were still a few bad
prediction cases. And our best model didn’t outperformed
the cascaded method [15] on most metrics. One limitation of
our model is the receptive field problem, which is the general
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FIGURE 6. Segmenation result of DS-cSE-V-Net at different epochs.

FIGURE 7. A segmentation result of DS-V-Net and DS-cSE-V-Net
overlapped on FLAIR in the BraTS validation dataset in three orientations
viewed with ITKSNAP [29] (Axial: images in the first row, Sagittal: images
the middle row, Coronal: images in the bottom row), Wt (green, yellow,
red), Tc (yellow and red), Et (yellow).

drawback of CNN based segmentation. Themodel lacks large
context information due to the limited size of CNN kernels.
We will try to incorporate context information in the model.
In addition, pixels relationships can be extracted and utilized
in the model to obtain more robust results.

V. CONCLUSION
We presented a DSSE-V-Net for automated brain tumor
segmentation frommulti-modelMRIs.We enhanced the orig-
inal V-Net with a few modifications. The adoption of deep
supervision forces the middle stage filters to favor highly
discriminative features and accelerates network convergence.
The introduction of Squeeze-and-excitation into encoder
and decoder stage facilitates the model to focus on more

informative features. Experimental results on BraTS
2017 validation dataset showed our model outperformed the
traditional encoder-decoder network, and was also highly
competitive comparedwith thosemethodswinning the BraTS
2017 challenge.
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