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In histopathological image analysis, the morphology of histological structures, such as glands and nuclei, 

has been routinely adopted by pathologists to assess the malignancy degree of adenocarcinomas. Accu- 

rate detection and segmentation of these objects of interest from histology images is an essential prereq- 

uisite to obtain reliable morphological statistics for quantitative diagnosis. While manual annotation is 

error-prone, time-consuming and operator-dependant, automated detection and segmentation of objects 

of interest from histology images can be very challenging due to the large appearance variation, existence 

of strong mimics, and serious degeneration of histological structures. In order to meet these challenges, 

we propose a novel deep contour-aware network (DCAN) under a unified multi-task learning framework 

for more accurate detection and segmentation. In the proposed network, multi-level contextual features 

are explored based on an end-to-end fully convolutional network (FCN) to deal with the large appearance 

variation. We further propose to employ an auxiliary supervision mechanism to overcome the problem 

of vanishing gradients when training such a deep network. More importantly, our network can not only 

output accurate probability maps of histological objects, but also depict clear contours simultaneously for 

separating clustered object instances, which further boosts the segmentation performance. Our method 

ranked the first in two histological object segmentation challenges, including 2015 MICCAI Gland Segmen- 

tation Challenge and 2015 MICCAI Nuclei Segmentation Challenge . Extensive experiments on these two chal- 

lenging datasets demonstrate the superior performance of our method, surpassing all the other methods 

by a significant margin. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

With the advent of whole slide imaging scanners, tissue

istopathology slides can be digitized and stored in the form of

igital images. Meanwhile, histopathological analysis performed

n these digital images has been demonstrated as an effective

nd reliable tool for cancer diagnosis and prognosis ( Gurcan et al.,

009 ). In the routine of histopathological examination, accurate

etection and segmentation of certain histological structures, such

s glands and cancer nuclei, is one of crucial prerequisite steps to

btain reliable morphological statistics that characterize the ag-

ressiveness of tumors. Take the gland for example, a typical gland

ormally is composed of a lumen area forming the interior tubular

tructure and epithelial cell nuclei surrounding the cytoplasm, as

llustrated in Fig. 1 (left). In contrast, malignant tumours arising

rom glandular epithelium, also known as adenocarcinomas, ex-
∗ Corresponding author. 
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ibit irregularly degenerated form, see Fig. 1 (right). Therefore, the

orphology of glands has been widely used in clinical practice

or assessing the malignancy degree of several adenocarcinomas,

ncluding breast ( Elston et al., 1991 ), prostate ( Gleason, 1992 ), and

olon ( Fleming et al., 2012 ). Another example is the counting of

bject instances such as cell nuclei, which has diagnostic signif-

cance for some cancerous diseases ( Naik et al., 2008; Xu et al.,

015 ). This requires an accurate detection and segmentation of

ell nuclei, as examples shown in Fig. 2 . The nucleus morphism

as an important diagnostic value for cancer grading ( Stierer et al.,

991; Dunne and Going, 2001; Elston et al., 1991 ); and the count

f mitosis has been regarded as one of the most prognostic factors

n breast cancer ( Roux et al., 2013; Veta et al., 2015 ). 

The assessments derived from pathological examinations 

erve as the gold standard for cancer diagnosis in many clinical

rotocols. With the recent advances of techniques in digital-

zed scanning, large-scale histopathology images become readily

ccessible and need to be analyzed promptly. However, man-

al searching and segmenting histopathological structures from

arge-scale histopathology images in a conventional way can be

http://dx.doi.org/10.1016/j.media.2016.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.11.004&domain=pdf
mailto:hchen@cse.cuhk.edu.hk
http://dx.doi.org/10.1016/j.media.2016.11.004
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Fig. 1. Examples of gland segmentation in benign (left) and malignant (right) cases: original images (stained with hematoxylin and eosin) and corresponding annotations 

(individual objects are denoted with different colors) by pathologists. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article). 

Fig. 2. Examples of nuclei segmentation: original images and corresponding annotations (overlaid on the original images) by pathologists. 
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expensive, error-prone, and time-consuming. Furthermore, it often

suffers from a high inter and intra-observer variability, which

results in a limited reproducibility. Therefore, automatic detection

and segmentation methods are highly demanded in clinical prac-

tice to improve the efficiency, reliability as well as scalability for

large-scale histopathological image analysis. 

However, automated detection and segmentation of histologi-

cal structures of interest from histology images can be quite chal-

lenging for several reasons. First, there is a huge variation of ob-

ject appearance depending on the histologic grade as well as the

type of the disease. Fig. 1 shows the large difference of glandu-

lar structures between benign and malignant cases from colon tis-

sues. Second, the existence of touching clustered objects in tissue

samples makes it quite hard for automated segmentation meth-

ods to separate them into individual ones. Third, in the malignant

cases such as moderately and poorly differentiated adenocarcino-

mas, the structure of objects such as glands are seriously degen-

erated, as shown in Fig. 1 (right). Therefore, methods utilizing the

prior knowledge with glandular regularity are prone to fail in such

cases ( Sirinukunwattana et al., 2015a ). In addition, the variation

of tissue preparation procedures such as sectioning and staining

can cause deformation, artifacts and inconsistency of tissue appear-

ance, which can impede the segmentation process as well. 

1.1. Related work 

Although limited by computational resources and digital imag-

ing equipments, the analysis of histological structures from histol-

ogy images can date back to 90s from early studies of Bartels et al.

(1992) , Hamilton et al. (1994) and Weind et al. (1998) . Over the

past few decades, dramatic advance in computational power, im-

age scanning techniques, and automated analysis algorithms have

promoted considerable progress in histopathological image analy-

sis. However, obvious gap is still observed between the results ob-

tained by the automated algorithms and annotations from pathol-

ogists. 

Previous studies in the literature can be broadly categorized

into two classes based on the employed features: 

Methods based on hand-crafted features. Regarding the gland de-

tection and segmentation, various hand-crafted features includ-

ing texture ( Farjam et al., 2007; Doyle et al., 2006; Sirinukunwat-

tana et al., 2015b ), color information ( Tabesh et al., 2007; Jacobs
t al., 2014 ), morphological cues ( Diamond et al., 2004; WU et al.,

005 ), structural information ( Nguyen et al., 2012 ), and Haar-like

eatures ( Sabata et al., 2010 ) were utilized to analyze the glan-

ular structure in histology images. Similarly, for the nuclei de-

ection and segmentation, various methods have been proposed

o tackle this problem ranging from relatively simple approaches,

uch as thresholding and morphological operations ( Irshad et al.,

013; Jung and Kim, 2010 ), to more sophisticated methods based

n hand-crafted features derived from boundaries/contours ( Naik

t al., 2008; Wienert et al., 2012 ), gradients ( Veta et al., 2011 ),

aplacian-of-Gaussian ( Al-Kofahi et al., 2010 ), cytological and tex-

ural features ( Nguyen et al., 2011 ), etc. Then different classi-

ers (e.g., Support Vector Machine (SVM), Adaboost and Bayesian)

ave been employed in the literature to detect and segment nu-

lei from histology images ( Irshad et al., 2014 ). However, the

and-crafted features suffer from limited representation capabili-

ies, and hence they can be vulnerable to different variations. Fur-

hermore, the piece-wise learning system separating feature ex-

raction and classification may not be optimal as well as effi-

ient for generating precise probability maps of histological struc-

ures. Aside from approaches devoting to generating more pre-

ise probability maps, several methods have been developed to

ake advantage of prior shape information of histological struc-

ures. For example, the glandular structure for gland segmen-

ation was exploited in graph based methods ( Altunbay et al.,

010; Gunduz-Demir et al., 2010 ), glandular boundary delineation

ith geodesic distance transform ( Fakhrzadeh et al., 2012 ), polar

pace random field model ( Fu et al., 2014 ), stochastic polygons

odel ( Sirinukunwattana et al., 2015a ), etc. Although these meth-

ds achieved promising results in cases of adenoma and well dif-

erentiated (low grade) adenocarcinoma, they may fail to achieve

atisfying performance in subjects where the glandular structures

re seriously deformed. 

Deep learning based methods. Deep neural networks are driv-

ng advances in image recognition related tasks with powerful fea-

ure representation capability. They achieved state-of-the-art per-

ormance in many detection and segmentation tasks in medi-

al image computing ( Zheng et al., 2015; Dhungel et al., 2015;

onneberger et al., 2015; Roth et al., 2015; Chen et al., 2015b;

ou et al., 2016a; 2016b ). In the field of histopathological im-

ge analysis, a deep learning architecture with convolutional auto-

ncoder was utilized in Cruz-Roa et al. (2013) for histopathology
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1 Project page: http://www.cse.cuhk.edu.hk/ ∼hchen/research/2015miccai _ gland. 

html . 
mage classification. Stacked sparse autoencoders (SSAE) were ex-

loited with unsupervised pre-training and following fine-tuning

or nuclei detection from breast cancer histopathology images

n Xu et al. (2015) . Although along with merit of unsupervised

re-training, which can handle the situation of limited medical

raining data, the auto-encoders usually achieved inferior perfor-

ance on image recognition tasks compared to convolutional neu-

al networks (CNNs). The success of latter one is mostly attributed

o the more elegant structures for dealing with images. Regard-

ng the convolutional neural networks, Cire ̧s an et al. (2013) em-

loyed deep convolutional neural networks for mitosis detection

nd achieved the best performance in two grand challenges ( Roux

t al., 2013; Veta et al., 2015 ). To further improve the efficiency

nd effectiveness, Chen et al. (2016a ) developed a cascaded deep

earning framework, i.e., a coarse model for retrieving candidates

nd a fine-discrimination model for singling out mitoses from

ard mimics. A spatially constrained convolutional neural net-

ork was present in Sirinukunwattana et al. (2016b ) incorporated

ith neighboring ensemble prediction, demonstrating the efficacy

f deep learning based features from CNNs. Recently, holistically-

ested networks were exploited for object segmentation problems

n the medical domain, which have demonstrated excellent perfor-

ance ( Xu et al., 2016; Roth et al., 2016; Isabella et al., 2016 ). An-

ther relevant study to our work is the U-net that employed a U-

hape deep convolutional network for biomedical image segmen-

ation problems, which set state-of-the-art performance on several

rand challenges lately ( Ronneberger et al., 2015 ). Although hier-

rchical features from low-level to high-level were well explored

n Ronneberger et al. (2015) , the very deep U-shape architecture

ould have the issue of vanishing gradients during the training,

ence decrease the segmentation performance. Moreover, the im-

licit utilization of boundaries by weighting losses among differ-

nt classes may not handle the clustered objects properly. Several

ethods have been developed for efficient boundary detection ex-

licitly ( Bertasius et al., 2015a; 2015b ). Different from above stud-

es, we formulated the object segmentation problem under a uni-

ed multi-task learning framework, which harnessed the comple-

entary object and contour information simultaneously for better

egmentation performance. 

.2. Contributions 

In this paper, we present a novel deep contour-aware network

DCAN) to meet the aforementioned challenges in object seg-

entation from histology images. We first propose a multi-level

ontextual fully convolutional network (FCN), which can effectively

enerate multi-scale feature representations in an end-to-end way

n order to deal with the large variations of histological structures.

he proposed FCN enables us to take an image as input and output

he probability map with the same resolution of the input image

irectly using one single forward propagation. In this regard, it

s quite efficient and has great potential to be applied to ana-

yze large-scale histology images. Furthermore, to overcome the

roblem of vanishing gradients when training such a deep neural

etwork employing limited training samples, we propose to add

eighted auxiliary classifiers to encourage the back-propagation

f gradient flow. Such an auxiliary supervision mechanism can

fficiently alleviate vanishing gradients and hence speedup the

raining process as well as enhance the discrimination capability

f the deep neural network. 

More importantly, to handle the challenging cases of touching

nd clustered objects, we propose to elegantly integrate object

ppearance (e.g., textures, colors, etc.) and contour information

nto a multi-task learning framework to form a deep contour-

ware network, in which the complementary appearance and

ontour information can further improve the discriminative ca-
ability of intermediate features, and hence more accurately

eparate the touching or clustered objects into individual ones.

ote that our method does not make any assumptions on the

rior shape of histological objects; it can be applied to biopsy

amples with various histopathological structures with different

rades, including both benign and malignant cases. In addition,

n order to further mitigate the issue of insufficient training data,

hich is a common challenge for medical image analysis tasks, a

ross-domain transfer learning approach is developed to improve

he training performance. We evaluated the proposed DCAN on

wo challenging object segmentation tasks from histology images:

land segmentation and nuclei segmentation, and ranked the first

n both challenges held conjunction with MICCAI 2015 ( Gland

egmentation Challenge and Nuclei Segmentation Challenge ), yielding

uch better performance than state-of-the-art methods. 

A preliminary version of this work was presented in Chen

t al. (2016c ). 1 In this paper, we provided comprehensive literature

eview on segmentation related tasks from histology images and

efined the methods by giving much more details on the under-

ying principles as well as running mechanisms. We reported the

esults of our method on another dataset of 2015 MICCAI Nuclei

egmentation Challenge. We also provided detailed discussions to

horoughly analyze the advantages as well as limitations of our

ethods. 

.3. Overview 

The rest of the article is organized as follows: In Section 2 ,

e first describe the architecture of the multi-level contextual

CN with auxiliary supervision, and then elaborate the proposed

ontour-aware component and the transfer learning strategy. We

eport the experiments and results in Section 3 . In Section 4 ,

e provide the implementation details and computation cost of

he proposed DCAN. We further discuss and analyze our work in

ection 5 . Finally, conclusions are drawn in Section 6 . 

. Methods 

In this section, we present the formulation of the proposed

ontour-aware network in detail. We first introduce the end-to-end

ully convolutional network, in which we elegantly fuse multi-level

ontextual information with auxiliary supervision in order to effi-

iently generate accurate likelihood maps of objects. Next, we elab-

rate the deep contour-aware network derived from the FCN by

using the complementary information of object appearances and

ontours for more robust and precise segmentation. In addition,

n order to mitigate the challenge of inadequate training samples,

e leverage the transfer learning strategy to exploit the knowledge

earned from cross domains to further improve the performance of

he proposed network. 

.1. Multi-level contextual FCN with auxiliary supervision 

Fully convolutional networks greatly advanced the state-of-the-

rt performance of image segmentation related tasks ( Chen et al.,

015d; Long et al., 2015 ). These achievements are mainly attributed

o the powerful capability of deep neural networks in feature rep-

esentations for dense inference. In a FCN, the whole network can

e trained in an end-to-end (image-to-image) way, which takes an

mage as input and outputs the probability map directly with the

ame resolution of the input image. Its architecture basically con-

ains two components: downsampling path and upsampling path.

http://www.cse.cuhk.edu.hk/~hchen/research/2015miccai_gland.html
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Fig. 3. The large variation of gland size (the size denotes the smallest rectangle that encloses the gland object). 
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Fig. 4. The schematic illustration of multi-level contextual FCN with auxiliary supervsion. 
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The downsampling path consists of convolutional and max-pooling

layers, which are extensively used in CNNs for image classification

tasks ( Ciresan et al., 2012; Krizhevsky et al., 2012 ). The upsam-

pling path is composed of convolutional and deconvolutional layers

(backwards strided convolution Long et al., 2015 ), which upsam-

ple the feature maps and output the score masks. The underlying

principle of FCN is that the downsampling path is responsible for

extracting the high level abstraction information, while the upsam-

pling path aims to predict the score map in a pixel-wise way, i.e.,

dense inference. 

However, in traditional FCN, the classification scores are usu-

ally figured out based on the intensity information from a given

receptive field (i.e., the region in the original input image that in-

fluences the recognition results LeCun et al., 1998 ). The size of re-

ceptive field should contain the targeting objects along with some

contextual information that contributes to the recognition. Unfor-

tunately, the network with single receptive field size cannot sat-

isfactorily deal with the large variation of histological structures.

For example, as shown in Fig. 3 , a small receptive field (e.g., 150

× 150) is suitable for most glands of benign cases, while malig-

nant cases usually demand a relatively larger receptive field since

the gland shape in adenocarcinomas is degenerated and elongated.

In this regard, enclosing multi-level contextual information rang-

ing from small receptive fields to larger ones can help to recognize

structures with large variations and hence improve the segmenta-

tion performance. 

We propose to improve the FCN by harnessing multi-level con-

textual feature representations, which include different levels of

contextual information, i.e., intensities appearing in various sizes

of receptive field. Fig. 4 presents the schematic illustration of

FCN with multi-level contextual feature representations. Specifi-

cally, our FCN contains a number of convolutional layers, 5 max-
ooling layers for downsampling and 3 deconvolutional layers for

psampling. A non-linear mapping layer, i.e., element-wise recti-

ed linear unit (ReLU) ( Krizhevsky et al., 2012 ), is followed for each

ayer with trained parameters. As the network goes deeper, the size

f global receptive field is becoming larger. Built upon this charac-

eristic, the upsampling layers are designed by taking the require-

ent of different receptive field sizes into account. They upsample

he feature maps and make predictions based on the contextual

ppearance information extracted from the given receptive field.

hen these predictions are fused together by a summing operation

nd final segmentation results based on multi-level contextual fea-

ures can be obtained from the softmax classification layer. 

Directly training such a deep network, however, may face the

ifficulty of optimization due to the issue of vanishing gradients.

nspired by previous studies on training neural networks with deep

upervision ( Lee et al., 2015; Xie and Tu, 2015; Chen et al., 2016b ),

e added three weighted auxiliary classifiers C1–C3 (see Fig. 4 for

llustration) into the network to further strengthen the training

ptimization process. This mechanism can effectively alleviate the

roblem of vanishing gradients, as the auxiliary supervision can

ncourage the back-propagation of gradient flow ( Lee et al., 2015 ).

urthermore, the incorporated losses on auxiliary supervision from

id-level to high-level layers are helpful to enhance the feature

epresentation capability throughout the network. 

Finally, the FCN with multi-level contextual features extracted

rom input I can be trained by minimizing the overall loss L , i.e., a

ombination of auxiliary loss L a (I;W ) with corresponding discount

eights w a and main loss L e (I;W ) between the predicted results

nd ground truth annotations: 

 (I;W ) = λψ(W ) + 

∑ 

a 

w a L a (I;W ) + L e (I;W ) (1)
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Fig. 5. The overview of the proposed deep contour-aware network. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article). 
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here W denotes the parameters of neural network including

eights and biases; ψ( W ) is the regularization term ( L 2 norm)

ith hyperparameter λ for balancing the tradeoff with other terms.

.2. Deep contour-aware network 

By leveraging the multi-level contextual features with auxiliary

upervision ( Xie and Tu, 2015; Chen et al., 2016b ), the network

an produce satisfactory probability maps of histological structures.

owever, it is still quite hard to separate the touching and over-

apped object instances by relying only on the likelihood of objects

ue to the essential ambiguity in clustered regions. This is because

hile the downsampling path can acquire high level abstraction

eatures, it leads to spatial information loss alone with the abstrac-

ion. As we know, in segmentation tasks, the boundary information

f objects provides good complementary cues for splitting objects.

o this end, we propose to integrate contour information into the

CN to form a deep contour-aware network to more accurately seg-

ent the objects in histology images, and, in particular, separate

lustered objects into individual ones. 

Fig. 5 shows an overview of the proposed deep contour-aware

etwork. Instead of treating the histological structure segmenta-

ion and contour detection as single and independent tasks, we

ormulate them as a multi-task learning framework, which can in-

er the information of objects and contours simultaneously. Specif-

cally, the feature maps are upsampled with two different branches

as indicated by the green and blue arrows shown in Fig. 5 ) in or-

er to output the segmentation masks of objects and contours, re-

pectively. In each branch, the mask is predicted by the FCN with

ulti-level contextual features as introduced in Section 2.1 . During

he training process, the parameters of downsampling path W s are

hared and updated for both of these two tasks, while the param-

ters of upsampling layers for two individual branches (denoted

s W o and W c ) are updated independently for inferring the prob-

bility of objects and contours, respectively. Therefore, the feature

epresentations through the hierarchical structure can encode the

nformation of segmented objects and contours at the same time.

ote that multi-task network is still trained in an end-to-end way.

This joint multi-task learning process has several advantages.

irst, it can increase the discriminative capability of intermedi-
te feature representations with multiple regularizations on dis-

ntangling subtly correlated tasks ( Zhang et al., 2014 ), hence im-

rove the robustness of the segmentation. Second, in the applica-

ion of histological structure segmentation, the multi-task learning

ramework can provide the complementary contour information

hat serves well to further separate the clustered objects. Last but

ot least, when dealing with large-scale histopathological data, this

nified framework can be quite efficient. With one forward propa-

ation, it can generate the results of objects and contours simulta-

eously instead of resorting to additional post-separating steps by

enerating contours based on low-level cues ( Gunduz-Demir et al.,

010; WU et al., 2005 ). 

In the training process, the discount weights w a from auxiliary

lassifiers are decreased until marginal values with the number of

terations increasing. Therefore, we dropped these terms in the fi-

al loss for simplicity. Finally, the training of network is formulated

s a per-pixel classification problem regarding the ground truth

egmentation masks including both objects and contours: 

 total (x ; θ ) = λψ(θ ) −
∑ 

x ∈X 
log p o (x, y o (x ) ;W o , W s ) 

−
∑ 

x ∈X 
log p c (x, y c (x ) ;W c , W s ) (2) 

here the first part is the L 2 regularization term and latter two

re the data error loss terms defined with cross-entropy functions;

 is the pixel position in image space X ; p o ( x, y o ( x ); W o , W s ) de-

otes the predicted probability for true label y o ( x ) (i.e., the index

f 1 in one-hot vector encoding) of objects after softmax classifica-

ion; and p c ( x, y c ( x ); W c , W s ) is the predicted probability for true

abel y c ( x ) of object contours. The parameters θ = { W s , W o , W c } of

etwork are optimized by minimizing the total loss function L total 

ith stochastic gradient descent ( Williams and Hinton, 1986 ). 

With the predicted probability maps of objects p o ( x ; W o , W s )

nd contours p c ( x ; W c , W s ) from the deep contour-aware network,

he complementary information are fused together to generate the

nal segmentation masks m ( x ): 

 (x ) = 

{
1 if p o (x ;W o , W s ) ≥ t o and p c (x ;W c , W s ) < t c 

0 otherwise 
(3) 
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where t o and t c are the thresholds (both set as 0.5 in our experi-

ments empirically). Then, post-processing steps including smooth-

ing with a disk filter (the radius was set as 3), filling holes and re-

moving small spurious segments are performed on the fused seg-

mentation results. Finally, each connected component is labeled

with a unique value for representing one segmented object. 

2.3. Transfer learning with rich feature hierarchies from 

cross-domains 

When employing deep neural networks in medical image anal-

ysis tasks, one of the main challenges is the insufficiency of the

high quality training data with accurate annotations ( Greenspan

et al., 2016 ), due to the expensive cost and complicated acquisi-

tion procedures. Compared with the limited data in medical do-

main, much more training data can be obtained in natural im-

age recognition tasks. Previous studies ( Chen et al., 2015a; Shin

et al., 2016; Tajbakhsh et al., 2016; Chen et al., 2016d ) have evi-

denced that transfer learning can alleviate the problem of insuffi-

cient training data in deep convolutional networks. The learned pa-

rameters (convolutional filters) in the lower layers of convolutional

neural networks are inherently generic, while those in higher lay-

ers are more specific to different tasks ( Yosinski et al., 2014 ). Thus,

transferring the rich feature hierarchies with embedded knowledge

learned from cross domains could help to reduce the issue of over-

fitting on limited medical dataset and further boost the perfor-

mance. 

Therefore, we utilized an off-the-shelf model from DeepLab

of Chen et al. (2015d ), which was trained on the PASCAL VOC

2012 dataset ( Everingham et al., 2010 ). Compared to the small

scale dataset (a few hundred images) in the histopathological im-

age analysis, the PASCAL VOC dataset contains more than ten thou-

sand images with pixel-level annotations. Leveraging the effec-

tive generalization ability of transfer learning in deep neural net-

works, we initialized the layers in downsampling path with pre-

trained weights from the DeepLab model while the rest layers ran-

domly initialized with Gaussian distribution. Then we fine tuned

the whole network on our medical task in an end-to-end way

with stochastic gradient descent. In our experiments, we observed

the training process converged much faster (about four hours) by

virtue of the knowledge learned from rich dataset than the random

initialization setting trained from scratch. 

3. Experiments and results 

We evaluated the proposed method on two challenging object

segmentation tasks from histology images: gland segmentation and

nuclei segmentation. We participated two challenges held conjunc-

tion with MICCAI 2015: Gland Segmentation (GlaS) Challenge Con-

test 2 and Segmentation of Nuclei in Digital Pathology Images 3 , and

ranked the first in both of the challenges. We first introduce the

datasets employed in these two challenges and then report the ex-

perimental results in detail. 

3.1. Datasets and pre-processing 

Dataset of gland segmentation challenge. The histology im-

ages were acquired by a Zeiss MIRAX MIDI slide scanner from

colorectal cancer tissues with a resolution of 0.62 μm/pixel

( Sirinukunwattana et al., 2016a ). The dataset consisted of a wide

range of histologic grades from benign to malignant subjects. It is
2 2015 MICCAI gland segmentation challenge: http://www2.warwick.ac.uk/fac/sci/ 

dcs/research/combi/research/bic/glascontest/ . 
3 2015 MICCAI nuclei segmentation challenge: http://miccai.cloudapp.net:80 0 0/ 

competitions/37 . 

h  

r  

d

 

F  
orth noting that poorly-differentiated cases were also included

o more comprehensively evaluate the performance of partici-

ated algorithms. The training data were composed of 85 (be-

ign/malignant = 37/48) images with ground truth annotations

rovided by experienced pathologists. The testing data contained

 total of 80 (benign/malignant = 37/43) images for evaluation.

articipants were required to detect and segment the glands from

istology images into individual ones. The ground truths of testing

ata were held out by the challenge organizers for independent

valuation. 

Dataset of nuclei segmentation challenge. The training data con-

ained more than 500 manually segmented nuclei in 15 image

iles, which were extracted from a set of Glioblastoma and lower-

rade Glioma whole slide tissue images. The testing data included

8 images for evaluation and the ground truths were held out by

he challenge organizers for independent evaluation. Participants

ere asked to detect and segment all the nuclei in the testing im-

ges and the results were compared with the ground truth anno-

ations provided by experienced pathologists. 

In order to increase the robustness and reduce overfitting in

raining process, we utilized the strategy of data augmentation to

nlarge the training dataset. The augmentation transformations in-

luded translation, rotation, and elastic distortion (e.g., pincushion

nd barrel distortions). 

.2. Results of the gland segmentation challenge 

.2.1. Qualitative evaluation 

Some typical segmentation results of the testing images, includ-

ng both benign cases and malignant cases, are shown in Fig. 6 .

or diagnosing the role of complementary contour information,

.e., the contour-aware branch network, we performed an ablation

tudy and compared the performance of the proposed DCAN and

hat of the network relying only on the prediction of gland ob-

ects without employing contour information. From the segmen-

ation results, we can observe that the FCN leveraging the multi-

evel contextual features without contour-aware component can

lso effectively segment the gland objects in both benign and ma-

ignant cases. However, compared with the results of DCAN, there

re some touching gland objects that cannot be separated very

ell. The situation is further deteriorated when the touching ob-

ects are clustered together, as shown in the third column of Fig. 6 .

n contrast, thanks to the contributions of the contour-aware com-

onent, the DCAN is capable of separating these touching gland

bjects into individual instances clearly (as the yellow arrows indi-

ate in the figures), and hence achieves more accurate segmenta-

ion results. These examples qualitatively demonstrate the superi-

rity of the DCAN obtained by exploring the complementary infor-

ation of object appearances and contours under a unified multi-

ask learning framework. 

.2.2. Quantitative evaluation and comparison 

The evaluation metrics employed in the grand challenge in-

lude F1 score, object-level Dice index and Hausdorff distance,

hich reflect the performance of gland detection, segmentation

nd shape similarity, respectively. We submitted two entries to

ssess the performance of the proposed methods. The first one,

amely CUMedVision1 , is the multi-level contextual FCN without

ntegrating contour-aware component, as shown in Fig. 4 . The sec-

nd one, namely CUMedVision2 , is the proposed DCAN, as shown in

ig. 5 . In order to probe the performance of submitted methods on

istology images with different histologic grades, the results are

eported on three categories of testing data: overall data, benign

ata and malignant data. 

Gland detection. For the gland detection evaluation, the metric

1 score is utilized, which is the harmonic mean of precision P and

http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/
http://miccai.cloudapp.net:8000/competitions/37
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Fig. 6. Segmentation results of benign cases (left two columns) and malignant cases (right two columns). From top to bottom shows the original images, segmentation 

results of our network without integrating contour information, and segmentation results of our contour-aware network, respectively. Different colors denote individual 

gland objects. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Table 1 

The detection results (F1 score) of different methods in 2015 MICCAI GlaS Challenge 

(only top 10 entries are shown here). 

Method Overall Benign Malignant 

CUMedVision1 0 .856 0 .872 0 .788 

CUMedVision2 0 .887 0 .919 0 .771 

CVML 0 .637 0 .691 0 .439 

ExB1 0 .868 0 .915 0 .698 

ExB2 0 .868 0 .920 0 .686 

ExB3 0 .875 0 .919 0 .714 

Freiburg2 ( Ronneberger et al., 2015 ) 0 .849 0 .916 0 .616 

Freiburg1 ( Ronneberger et al., 2015 ) 0 .804 0 .893 0 .521 

LIB 0 .704 0 .800 0 .388 

vision4GlaS ( Kainz et al., 2015 ) 0 .620 0 .651 0 .478 
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4 https://en.wikipedia.org/wiki/Ranking . 
ecall R , defined as 

 1 = 

2 P R 

P + R 

, P = 

N t p 

N t p + N f p 

, R = 

N t p 

N t p + N f n 

(4)

here N tp , N fp , and N fn denote the number of true positives, false

ositives, and false negatives, respectively. According to the chal-

enge evaluation, the ground truth for each segmented object is

he object in the manual annotation that has maximum overlap

ith that segmented object. A segmented gland object that in-

ersects with at least 50% of its ground truth is considered as a

rue positive, otherwise it’s considered as a false positive. A ground

ruth gland object that has no corresponding segmented object or

as less than 50% of its area overlapped by its corresponding seg-

ented object is considered as a false negative. 

Table 1 shows the detection results of various methods partic-

pated in the challenge. We just listed the top 10 entries in the

able. Note that all the top 5 entries utilized CNN-based meth-

ds. For examples, the team ExB utilized a two-path network by

ropping global and local patches from the image and the seg-

entation results were generated by fusing these features from

hese two branches. The team Freiburg designed a very deep U-

haped network and has achieved the best results in several other

rand detection and segmentation challenges ( Ronneberger et al.,

015 ). Other teams, such as LIB and SUTECH , utilized hand-crafted

tructural and textural features. However, the performance of these
ethods is much worse than deep learning based methods, as il-

ustrated in Table 1 . 

Our submitted entry CUMedVision2 with the proposed DCAN

chieved the best results on overall testing data, and competitive

erformance (ours vs. the first = 0.919 vs. 0.920) on benign test-

ng data, which demonstrated the effectiveness of the proposed

CAN in gland detection. Meanwhile, the other entry CUMedVi-

ion1 employing the multi-level contextual FCN without integrat-

ng contour-aware component achieved the best results on malig-

ant testing data, highlighting the advantages of the multi-level

ontextual FCN with auxiliary supervision. From Table 1 , read-

rs can notice that all methods yielded a relatively lower perfor-

ance on the malignant testing data than the benign data. This

s mainly due to the difficulties incurred by the seriously degener-

ted structures in malignant subjects. Nevertheless, our two sub-

itted entries ranked first and second on the malignant testing

ata with an obvious advantage over other methods, demonstrat-

ng the multi-level contextual features learned from our architec-

ure can more efficiently deal with the large variations of malig-

ant cases. The CUMedVision2 achieved lower but comparable per-

ormance (0.771 vs. 0.788) compared to CUMedVision1 on malig-

ant testing data. By carefully investigating the results, especially

hose of malignant cases, we observed that some inaccurate con-

ours in interior structures may cause the deformed glands frag-

ented in some seriously degenerated cases. Overall, the proposed

CAN achieved the best performance on the evaluation of gland

etection according to the standard competitive ranking, 4 which

as employed by the challenge organizers. 

Gland segmentation. Given a set of pixels G annotated as a

round truth object and a set of pixels S as a segmented gland

bject, Dice index is often employed for segmentation evaluation,

hich is defined as D (G, S) = 2(| G ∩ S| ) / ( | G | + | S| ) . However, Dice

ndex is not suitable for evaluation of segmentation results of indi-

idual objects. To the end, an object-level Dice index is utilized in

he challenge. It is defined as 

 object (G, S) = 

1 

2 

[ 

n S ∑ 

i =1 

ω i D (G i , S i ) + 

n G ∑ 

j=1 

˜ ω j D ( ̃  G j , ̃  S j ) 

] 

(5) 

https://en.wikipedia.org/wiki/Ranking
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Table 2 

The segmentation results (object-level Dice index) of different methods in 2015 

MICCAI GlaS Challenge. 

Method Overall Benign Malignant 

CUMedVision1 0 .850 0 .873 0 .826 

CUMedVision2 0 .868 0 .907 0 .827 

CVML 0 .647 0 .663 0 .630 

ExB1 0 .858 0 .892 0 .823 

ExB2 0 .851 0 .902 0 .799 

ExB3 0 .855 0 .900 0 .810 

Freiburg2 ( Ronneberger et al., 2015 ) 0 .853 0 .903 0 .801 

Freiburg1 ( Ronneberger et al., 2015 ) 0 .852 0 .903 0 .798 

LIB 0 .744 0 .817 0 .668 

vision4GlaS ( Kainz et al., 2015 ) 0 .705 0 .738 0 .673 

Table 3 

The shape similarity results (Hausdorff distance) of different methods in 2015 MIC- 

CAI GlaS Challenge. 

Method Overall Benign Malignant 

CUMedVision1 94 .515 67 .862 122 .187 

CUMedVision2 74 .731 43 .025 106 .979 

CVML 160 .506 128 .250 192 .555 

ExB1 79 .761 53 .979 105 .986 

ExB2 89 .180 49 .330 129 .422 

ExB3 83 .483 52 .617 114 .722 

Freiburg2 ( Ronneberger et al., 2015 ) 79 .842 49 .115 111 .959 

Freiburg1 ( Ronneberger et al., 2015 ) 79 .326 49 .118 111 .037 

LIB 130 .345 78 .436 184 .510 

vision4GlaS ( Kainz et al., 2015 ) 133 .158 102 .277 164 .005 
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where S i denotes the i th segmented object, G i denotes a ground

truth object that maximally overlaps S i , ˜ G j denotes the j th ground

truth object, ˜ S j denotes a segmented object that maximally over-

laps ˜ G j , ω i = | S i | / ∑ n S 
m =1 

| S m 

| , ˜ ω j = | ̃  G j | / ∑ n G 
n =1 

| ̃  G n | , n S and n G are

the total number of segmented objects and ground truth objects,

respectively. 

Table 2 reports the segmentation results of various methods

participating in the challenge according to the object-level Dice in-

dex. It is observed that our results of CUMedVision2 achieved the

best performance on all three categories of testing data, outper-

forming all the other methods. 

Shape similarity. The shape similarity is measured by using the

Hausdorff distance between the shape of segmented object and

that of the ground truth object. It is defined as 

H(G, S) = max 

{
sup 

x ∈ G 
inf 
y ∈ S 

‖ x − y ‖ , sup 

y ∈ S 
inf 
x ∈ G 

‖ x − y ‖ 

}
(6)

Likewise, an object-level Hausdorff is defined for the challenge 

H object (G, S) = 

1 

2 

[ 

n S ∑ 

i =1 

ω i H(G i , S i ) + 

n G ∑ 

j=1 

˜ ω j H( ̃  G j , ̃  S j ) 

] 

(7)

The shape similarity results of different methods are shown

in Table 3 . In comparison to the CUMedVision1 , the CUMedVision2
Table 4 

The final ranking of participants in 2015 MICCAI GlaS Ch

Method Ranking score 

Overall Ben

CUMedVision2 1 1 

ExB1 2 6 

Freiburg2 ( Ronneberger et al., 2015 ) 5 2 

ExB3 3 5 

Freiburg1 ( Ronneberger et al., 2015 ) 4 4 

ExB2 6 3 

CUMedVision1 7 7 

LIB 8 8 

vision4GlaS ( Kainz et al., 2015 ) 9 9 

CVML 10 10 
ith contour-aware branch can dramatically reduce the Hausdorff

istances (around 20, 25, and 15 pixels decrement for category of

verall, benign and malignant testing data, respectively). This high-

ights the superiority of contour-aware branch in DCAN for sepa-

ating touching glands into individual object instances. Our results

f CUMedVision2 achieved the smallest Hausdorff distances on both

he overall and benign testing data, outperforming other methods

y a significant margin. Meanwhile, the results of CUMedVision2

re comparable to the best results achieved by ExB1 on malignant

esting data (106.979 vs. 105.986 as shown in Table 3 ). 

Final ranking. For the final ranking, each team is assigned

ne ranking number for each category of testing data based on

he three metrics mentioned above using a standard competition

anking. 4 The sum score of these numbers is used for the final

anking, i.e., a smaller score stands for better overall segmentation

erformance. The final ranking is reported in Table 4 (only top 10

ntries are shown). Our deep contour-aware network yielded the

est performance in terms of whole results out of 13 teams, out-

erforming all the other methods by a significant margin. This cor-

oborates the superiority of our method by harnessing object ap-

earance and contour information explicitly under a unified multi-

ask learning framework. 

.3. Results of the nuclei segmentation challenge 

.3.1. Qualitative evaluation 

Some typical nuclei segmentation results of the testing images

re shown in Fig. 7 . It is observed that both the FCN without inte-

rating contour information and the DCAN can effectively segment

ost nuclei from the testing images. However, compared with the

esults of DCAN, there are some touching nuclei that cannot be

eparated into individual ones in the results of FCN without con-

our information, as indicated by the yellow arrows overlaid in the

mages. By integrating the object and contour prediction maps, the

CAN clearly separated the touching nuclei into individual nucleus,

nd achieved more precise segmentation results. 

We also carefully studied the errors in the results. We found

hat the errors were mostly observed in following cases: high-

egree of clustering resulting in under-segmentation, irregular nu-

lei, noisy background and poor edge information. Although there

re still some errors in our results, our method can achieve good

etection and segmentation performance on most testing images. 

.3.2. Quantitative evaluation and comparison 

The nuclei segmentation challenge employed two metrics for

valuation: traditional Dice coefficient ( D 1 ) and object-level Dice

oefficient ( D 2 ). The D 1 metric was applied to measure the amount

f overlap between the results of algorithms and human annota-

ions in terms of the nuclei regions that was detected and seg-

ented. D 1 does not take into account the cases of split and

erge. A split is the case in which the human segments a region
allenge (top 10 entries are shown here). 

Sum score Final ranking 

ign Malignant 

1 3 1 

2 10 2 

5 12 3 

4 12 3 

6 14 5 

7 16 6 

3 17 7 

9 25 8 

8 26 9 

10 30 10 
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Fig. 7. Segmentation results of nuclei. From left to right in each row: original image, segmentation result of our network without integrating contour information, and 

segmentation result of our contour-aware network, respectively. The boundaries of segmentation masks are overlaid on the original images, and best viewed in color. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Table 5 

Results in 2015 MICCAI nuclei segmentation challenge. 

Team D 1 D 2 Score Ranking 

Ours (with contour-aware component) 0 .876 0 .748 0 .812 1 

Ours (w/o contour-aware component) 0 .877 0 .722 0 .799 2 

Team2 (Jbarker) 0 .826 0 .694 0 .760 3 

Team3 (Sofiev) 0 .792 0 .642 0 .717 4 

Team4 (Czakon) 0 .813 0 .617 0 .715 5 
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n a single nucleus, but the algorithm segments the same region

n multiple nuclei. A merge is the case in which the algorithm

egments a region into a single nucleus, but the human segments

he same region in multiple nuclei. D 2 is calculated based on the

bject-level segmentation, which provides a measure of splits and

erges. Readers can refer to the challenge website 3 to learn more

etails of D 1 and D 2 . The final ranking score was made by consid-

ring both of D 1 and D 2 : score = 

D 1 + D 2 
2 . 

Table 5 listed the results of the challenge. Compared with other

eams, our method without contour-aware component outweighed

ther teams by a great margin on the performance of D 1 (5%

igher than Team2) and D 2 (3% higher than Team2). By incorpo-

ating the contour information into the unified framework, we fur-

her improved the D 2 by 2.6% (0.748 vs. 0.722) while obtaining

imilar D 1 (0.876 vs. 0.877). Our DCAN achieved the highest score

f 0.812 in the challenge with the proposed multi-level contextual

CN ranking second. These results corroborated the effectiveness of

he proposed methods, especially the contour-aware network, for

bject segmentation tasks in histology images. 

. Implementation details and computation cost 

Our framework was implemented based on the open-source

eep learning library of Caffe ( Jia et al., 2014 ). The network ran-
omly cropped a 480 × 480 region from the original image as in-

ut and output the prediction masks of individual objects and con-

ours. The score masks of whole testing image were generated with

n overlap-tile strategy. For the label of contours, we extracted the

oundaries of connected components based on the object annota-

ions from pathologists, then dilated them with a disk filter (ra-

ius was set as 3 empirically) to enlarge the number of pixels for

ontours. In the training phase, the learning rate was set as 0.001

nitially and divided by a factor of 10 every 10,0 0 0 iterations till

0 −7 (around 40,0 0 0 iterations). The discount weight w a was set as

 initially and decreased by a factor of 10 every 10,0 0 0 iterations

ntil a marginal value 10 −3 . In addition, dropout layers in Hinton

t al. (2012) (dropout rate was set as 0.5) were incorporated in the

ast two convolutional layers for preventing the co-adaption of in-

ermediate features. 

In order to investigate the time performance of the DCAN, we

eport the computation cost on the gland segmentation challenge.

he time performance of the nuclei segmentation is similar to

hat of the gland segmentation. Generally, it took about four hours

o train the deep contour-aware network on a workstation with

.50 GHz Intel(R) Xeon(R) E5-1620 CPU and a NVIDIA GeForce

TX Titan X GPU. Leveraging the efficient inference of fully con-

olutional architecture, the average time for processing one testing

mage with size 755 × 522 was about 1.5 s, which was much faster

han other methods in the literature, such as Sirinukunwattana

t al. (2015a ) and Gunduz-Demir et al. (2010) . Considering the

arge-scale histology images are demanded for prompt analysis

ith the advent of whole slide imaging, the fast speed implies that

ur method has great potential to be employed in clinical practice.

. Discussion 

Pathological examinations are regarded as the gold standard in

any medical protocols and, in particular, play a key role in can-
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cer diagnosis process ( Gurcan et al., 2009 ). Aiming at improving

the efficiency and robustness of automated histopathological image

analysis, we present a novel deep contour-aware network. Exten-

sive experiments conducted on two challenging histopathological

object detection and segmentation tasks demonstrate the effective-

ness of the deep contour-aware network as well as the contribu-

tions of its components. It is worthwhile to note that the proposed

CNN-based method does not employ any prior on object shape

along with the cancer status of histopathological images. Therefore,

it is general enough to be applied to various objects and cancerous

tissues of different histologic grades. This is evidenced by the suc-

cesses of the proposed method on two different object segmenta-

tion tasks with both benign and malignance cases. 

It is observed from the detection results on GlaS Challenge that

our method without the contour-aware component achieves a lit-

tle better detection performance than that with the contour-aware

component on malignant testing data. Through a careful study, we

find it probably arises from the fact that irregular structures in

some seriously degenerated malignant cases may reduce the effect

of contour information. For example, the interior structures with

dense nuclei as a result of high proliferation may lead to false

contours, and hence the method more likely fails in such cases.

Nevertheless, on the detection evaluation of overall test data as

well as benign data, the results of CUMedVision2 were much better

than those of CUMedVision1 , which validated the effectiveness of

introducing contour-aware branch. In addition, the CUMedVision2

achieved better performance than the CUMedVision1 in terms of all

metrics (including Dice index and Hausdorff distance) in the seg-

mentation task. These results clearly highlighted the superiority of

our unified framework by incorporating contour-aware branch. In

general, as the histological structures of glands are seriously de-

generated in some malignant cases, the segmentation task can be

much more challenging. We will further investigate this as part of

our future work with more histology images. 

The detection and segmentation of clustered object instances

are crucially important and have a wide range of applica-

tions, such as gland segmentation for colon cancer diagno-

sis ( Sirinukunwattana et al., 2015a ), nuclei segmentation for can-

cer grading ( Irshad et al., 2014 ), and cell segmentation and track-

ing for understanding cellular mechanisms ( Meijering, 2012 ), etc.

Previous methods such as U-net in Ronneberger et al. (2015) and

SDS in Hariharan et al. (2014) focusing only on appearance infor-

mation may not perform well in the situation where many clus-

tered object instances exist. Unfortunately, this is a common phe-

nomenon in histology images. It is worth noting that contour de-

tection and object segmentation are two complementary tasks and

previous studies showed preliminarily promising results by explor-

ing semantic contours on PASCAL dataset ( Bertasius et al., 2015a;

Chen et al., 2015c ). In this paper, we propose a more efficient and

effective solution by harnessing the information of object appear-

ances and contours simultaneously. Furthermore, the efficiency is

greatly boosted with our unified framework within one forward

propagation (about 1.5 s), which was much faster than state-of-

the-art methods (for instance, 200+ s in Sirinukunwattana et al.,

2015a ). 

The separation of clustered histological structures (e.g., nuclei)

in high-level density is a long-standing problem, which usually re-

quires to incorporate domain-specific shape prior. While different

methods have been developed to segment clustered or overlapping

nuclei with great improvements, this problem has not been com-

pletely solved yet. Some high-degree clustered nuclei can be fur-

ther separated with other advanced post-separating steps by in-

corporating specific shape prior of nuclei, such as maker-controlled

watershed algorithm in Cheng and Rajapakse (2009) and spatially

adaptive active physical model in Plissiti and Nikou (2012) . This

topic is out of scope of this paper since our main aim is to segment
ouching objects and provide initially good segmentation results

or high-degree clustered cases. As Al-Kofahi et al. (2010) indicated

hat the segmentation performance depends crucially on the accu-

acy and reliability of the initial seed points or shape markers, our

ethod can provide such good probability maps, which can serve

s ‘seeds’ or ‘markers’ in the subsequent algorithms for delineating

he spatial extent of each nucleus. 

Another notoriously difficult issue in histopathological image

nalysis rests with the large variation of tissue appearance, which

s regarded as one of the major obstacles for developing a robust

utomated analysis tool ( Veta et al., 2015 ). The variation is sub-

ected to several factors, including different scanners for image ac-

uisition, different sectioning and staining operations, etc, which

re quite common when tissue samples are acquired from differ-

nt patients or at different time slots. Pre-processing normalization

teps ( Khan et al., 2014 ) can potentially address the inconsistent is-

ue of tissue appearance and further improve the performance. 

Currently, our method has been evaluated on two applications

ith hundreds of histology images. In the future, we shall assess it

n more large-scale histopathological datasets acquired from vari-

us scanners under different conditions. 

. Conclusions 

We present a deep contour-aware network that integrates

ulti-level contextual features to accurately detect and segment

istological objects from histology images. We formulate this chal-

enging segmentation problem as a unified multi-task learning

rocess by harnessing the complementary appearance information

such as textures and colors) and contour information explicitly,

hich further boost the object instance segmentation performance.

xtensive experimental results on two challenging object segmen-

ation tasks from histology images demonstrate the superior per-

ormance of our method, surpassing state-of-the-art methods by a

reat margin. The proposed DCAN is inherently general and can be

pplied to other similar problems in histopathological image anal-

sis. Future investigations include evaluating our method on more

istology images and promoting its applications in clinical practice.
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