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Abstract. Automatic and accurate whole-heart and great vessel seg-
mentation from 3D cardiac magnetic resonance (MR) images plays an
important role in the computer-assisted diagnosis and treatment of car-
diovascular disease. However, this task is very challenging due to ambigu-
ous cardiac borders and large anatomical variations among different sub-
jects. In this paper, we propose a novel densely-connected volumetric
convolutional neural network, referred as DenseVoxNet, to automati-
cally segment the cardiac and vascular structures from 3D cardiac MR
images. The DenseVoxNet adopts the 3D fully convolutional architecture
for effective volume-to-volume prediction. From the learning perspective,
our DenseVoxNet has three compelling advantages. First, it preserves the
maximum information flow between layers by a densely-connected mech-
anism and hence eases the network training. Second, it avoids learning
redundant feature maps by encouraging feature reuse and hence requires
fewer parameters to achieve high performance, which is essential for med-
ical applications with limited training data. Third, we add auxiliary side
paths to strengthen the gradient propagation and stabilize the learning
process. We demonstrate the effectiveness of DenseVoxNet by comparing
it with the state-of-the-art approaches from HVSMR 2016 challenge in
conjunction with MICCAI, and our network achieves the best dice coef-
ficient. We also show that our network can achieve better performance
than other 3D ConvNets but with fewer parameters.

1 Introduction

Accurate segmentation of cardiac structures in 3D cardiac MR images is crucial
for the diagnosis and treatment planning of cardiovascular disease. For example,
the segmentation results can support the building of patient-specific 3D heart
model for the surgical planning of the severe congenital heart disease [9]. The
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manual segmentation on every MR slice can be very tedious and time-consuming,
and subjects to inter- and intra-observer variability. Accordingly, an automatic
segmentation scheme is highly demanded in clinical practice.

However, the automatic segmentation is by no means a trivial task, as some
parts of cardiac borders are not very well defined due to the low contrast to
the surrounding tissues. Meanwhile, the inter-subject variation of cardiac struc-
tures may impose more difficulty for the segmentation task. One prominent
family of approaches are based on multiple atlases and deformable models [15].
These approaches needs to well consider the high anatomical variations in differ-
ent subjects and useful atlases need to be built from a relatively large dataset.
Pace et al. [9] developed an interactive method for the accurate segmentation
of cardiac chambers and vessels, but this method is very slow. Recently, con-
volutional neural networks (ConvNets) significantly improve the segmentation
performance for medical images [2,3,10]. As for this task, Wolterink et al. [13]
employed a dilated ConvNet to demarcate the myocardium and blood pool, but
the 3D volumetric information was not fully used in the study. Yu et al. [14]
proposed the 3D FractalNet to consider the 3D image information. However,
this network and other 3D ConvNets (e.g., 3D U-Net [2], VoxResNet [1]) usually
generate a large number of feature channels in each layer and they have plenty
of parameters to be tuned during training. Although these networks introduce
different skip connections to ease the training, the training of an effective model
with the limited MR images for heart segmentation is still very challenging.

In order to ease the training of 3D ConvNets with limited data, we propose a
novel densely-connected volumetric ConvNet, namely DenseVoxNet, to segment
the cardiac and vascular structures in cardiac MR images. The DenseVoxNet
adopts 3D fully convolutional architecture, and thus can fully incorporate the
3D image and geometric cues for effective volume-to-volume prediction. More
importantly, the DenseVoxNet incorporates the concept of dense connectivity [5]
and enjoys three advantages from the learning perspective. First, it implements
direct connections from a layer to all its subsequent layers. Each layer can receive
additional supervision from the loss function through the shorter connections,
and thus make the network much easier to train. Second, the DenseVoxNet has
fewer parameters than the other 3D ConvNets. Since layers can access to feature
maps from all of its preceding layers, the learning of redundant feature maps can
be possibly avoided. Therefore, the DenseVoxNet has fewer feature maps in each
layer, which is essential for training ConvNets with limited images as it has less
chance to encounter the overfitting problem. Third, we further improve the gra-
dient flow within the network and stabilize the learning process via auxiliary
side paths. We extensively evaluate the DenseVoxNet on the HVSMR 2016 chal-
lenge dataset. The results demonstrate that DenseVoxNet can outperform other
state-of-the-art methods for the segmentation of myocardium and blood pool in
3D cardiac MR images, corroborating its advantages over existing methods.
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2 Method

In this section, we first introduce the concept of dense connection. Then, we elab-
orate the architecture of our DenseVoxNet bearing the spirit of dense connection.
The training procedure is detailed in the last subsection.

2.1 Dense Connection

In a ConvNet, we denote x� as the output of the �th layer, and x� can be
computed by a transformation Hl(x) from the output of the previous layer,
x�−1 as:

x� = H�(x�−1), (1)

where H�(x) can be a composite of operations such as Convolution (Conv),
Pooling, Batch Normalization (BN) or rectified linear unit (ReLU), etc. To boost
the training against the vanishing gradients, ResNet [4] introduces a kind of skip
connection which integrates the response of H�(x) with the identity mapping of
the features from the previous layer to augment the information propagation as:

x� = H�(x�−1) + x�−1. (2)

However, the identity function and the output of H� are combined by summation,
which may impede the information flow in the network.

To further improve the information flow within the network, the dense con-
nectivity [5] exercises the idea of skip connections to the extreme by implement-
ing the connections from a layer to all its subsequent layers. Specifically, the x�

is defined as:
x� = H�([x0,x1, ...,x�−1]), (3)

where [...] refers to the concatenation operation. The dense connectivity, as illus-
trated at the left bottom of Fig. 1, makes all layers receive direct supervision
signal. More importantly, such a mechanism can encourage the reuse of features
among all these connected layers. Suppose that if the output of each layer has k
feature maps, then the k, referred as growth rate, can be set to a small number
to reduce the number of parameters since there is no need to re-learn redundant
feature maps. This characteristic is quite compelling to medical image analysis
tasks, where it is usually difficult to train an effective network with a lot of
parameters with limited training data.

2.2 The Architecture of DenseVoxNet

Figure 1 illustrates the architecture of our proposed DenseVoxNet. It adopts
the 3D fully convolutional network architecture [1–3] and has the down- and
up-sampling components to achieve end-to-end training. Note that the Eq. 3 is
not applicable when the feature maps have different sizes; on the another hand,
we need to reduce the feature map size for better efficiency of memory space
and increase the receptive field to enclose more information when prediction.
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Fig. 1. The architecture of our DenseVoxNet. It consists of two DenseBlocks and all
operations are implemented in a 3D manner. The green and red color denotes the
output of blood pool and myocardium. The graph in left bottom illustrates the dense
connectivity scheme taking a 5-layer DenseBlock as an example.

We, therefore, divide the down-sampling components into two densely-connected
blocks, referred as DenseBlock, and each DenseBlock is comprised of 12 transfor-
mation layers with dense connections (Only draw 3 layers in the figure for sim-
plicity). Each transformation layer is sequentially composed of a BN, a ReLU,
and a 3× 3× 3 Conv and the growth rate, k, of our DenseVoxNet is 12. The first
DenseBlock is prefixed with a Conv with 16 output channels and stride of 2 to
learn primitive features. In-between the two DenseBlocks is the transition block
which consists of a BN, a ReLU, a 1× 1× 1 Conv and a 2× 2× 2 max pooling
layers.

The up-sampling component is composed of a BN, a ReLU, a 1× 1× 1 Conv
and two 2× 2× 2 deconvolutional (Deconv) layers to ensure the sizes of segmen-
tation prediction map consistent with the size of input images. The up-sampling
component is then followed with a 1× 1× 1 Conv layer and soft-max layer to
generate the final label map of the segmentation. To equip the DenseVoxNet with
the robustness against the overfitting problem, the dropout layer is implemented
following each Conv layer with the dropout rate of 0.2.

To further boost the information flow within the network, we implement a
kind of long skip connection to connect the transition layer to the output layer
with a 2× 2× 2 Deconv layer. This skip connection shares the similar idea of
deep supervision [3] to strengthen the gradient propagation and stabilize the
learning process. In addition, this long skip connection may further tap the
potential of the limited training data to learn more discriminative features. Our
DenseVoxNet has about 1.8M parameters in total, which is much fewer than 3D
U-Net [2] with 19.0M parameters and VoxResNet [1] with 4.0M parameters.
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2.3 Training Procedure

The DenseVoxNet is implemented with Caffe [6] library1. The weights were ran-
domly initialized with a Gaussian distribution (μ = 0, σ = 0.01). The optimiza-
tion is realized with the stochastic gradient descend algorithm (batch size = 3,
weight decay = 0.0005, momentum = 0.9). The initial learning rate was set to
0.05. We use the “poly” learning rate policy (i.e., the learning rate is multiplied
by (1− iter

max iter )power) for the decay of learning rate along the training iteration.
The power variable was set to 0.9 and maximum iteration number (max iter)
was set as 15000. To fit the limited 12 GB GPU memory, the input of the Den-
seVoxNet is sub-volumes with size of 64× 64×64, which were randomly cropped
from the training images. The final segmentation results were obtained with the
major voting strategy [7] from the predictions of the overlapped sub-volumes.

3 Experiments and Results

Dataset and Pre-processing. The DenseVoxNet is evaluated with the dataset
of HVSMR 2016 Challenge. There are in total 10 3D cardiac MR scans for train-
ing and 10 scans for testing. The scans have low quality as they were acquired
with a 1.5T scanner. All cardiac MR images were scanned from the patients with
congenital heart diseases (CHD). The HVSMR 2016 dataset contains the anno-
tations for the myocardium and great vessel, and the testing data annotations
are held by organizers for fair comparison. Due to the large intensity variance
among different images, all cardiac MR images were normalized to have zero
mean and unit variance. We did not employ spatial resampling. To leverage the
limited training data, simple data augmentation was employed to enlarge the
training data. The augmentation operations include the rotation with 90, 180
and 270◦, as well as image flipping along the axial plane.

Qualitative Results. In Fig. 2, we demonstrate 4 typical segmentation results
on training images (the first two samples, via cross validation) and testing images
(the last two samples). The four slices are from different subjects but with the
same coronal plane view. The blue and purple color denotes our segmentation
results for blood pool and myocardium, respectively, and segmentation ground
truth is also presented in white and gray regions in the first two samples. As can
be observed, there exists large variation of cardiac structures among different
subjects in both training and testing images. Our method can still successfully
demarcate myocardium and blood pool from the low-intensity contrast cardiac
MR images, demonstrating the effectiveness of the proposed DenseVoxNet.

Comparison with Other Methods. The quantitative comparison between
DenseVoxNet and other approaches from the participating teams in this chal-
lenge is shown in Table 1. According to the rules of the challenge, methods were

1 https://github.com/yulequan/HeartSeg.
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Fig. 2. Segmentation results on training images (the first two) and testing images
(the last two). The blue and purple color denotes our segmentation results for blood
pool and myocardium, respectively, and segmentation ground truth is also presented
in white and gray regions in the first two samples.

ranked based on Dice coefficient (Dice). Meanwhile, other ancillary measures like
average surface distance (ABD) and symmetric Hausdorff distance (Hausdorff)
are also computed for reference. Higher Dice values suggest a higher agreement
between segmentation results and ground truth, while lower ABD and Hausdorff
values indicate higher boundary similarity. Three of the six approaches employed
traditional methods based on hand-crafted features, including random forest [8],
3D Markov random field and substructure tracking [12] and level-set method
driven by multiple atlases [11]. The other three methods, include ours, are based
on ConvNet. Wolterink et al. [13] employed 2D dilated ConvNets to segment the
myocardium and blood pool, while Yu et al. [14] utilized 3D ConvNets.

Table 1. Comparison with different approaches on HVSMR2016 dataset.

Method Myocardium Blood pool

Dice ADB [mm] Hausdorff [mm] Dice ADB [mm] Hausdorff [mm]

Mukhopadhyay [8] 0.495± 0.126 2.596± 1.358 12.796± 4.435 0.794± 0.053 2.550± 0.996 14.634± 8.200

Tziritas [12] 0.612± 0.153 2.041± 1.022 13.199± 6.025 0.867± 0.047 2.157± 0.503 19.723± 4.078

Shahzad et al. [11] 0.747± 0.075 1.099± 0.204 5.091 ± 1.658 0.885± 0.028 1.553± 0.376 9.408± 3.059

Wolterink et al. [13] 0.802± 0.060 0.957 ± 0.302 6.126± 3.565 0.926± 0.018 0.885± 0.223 7.069± 2.857

Yu et al. [14] 0.786± 0.064 0.997± 0.353 6.419± 2.574 0.931± 0.016 0.868 ± 0.218 7.013 ± 3.269

DenseVoxNet (Ours) 0.821 ± 0.041 0.964± 0.292 7.294± 3.340 0.931 ± 0.011 0.938± 0.224 9.533± 4.194

Table 1 reports the results of different methods. It can be observed that
the ConvNet-based methods (the last three rows) can generally achieve better
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performance than the other methods do, suggesting that ConvNets can generate
more discriminative features in a data-driven manner to better tackle the large
anatomical variability of patients with CHD. Regarding the segmentation of
myocardium, our method achieves the best performance with the Dice, i.e., the
ranking metric in the Challenge, of 0.821± 0.041 and outperforms the second one
by around 2%. For the segmentation of blood pool, our method also achieves the
best Dice score of 0.931± 0.011 with a small deviation. The ADB and Hausdorff
scores of our method are also competitive compared to the best performance. It
is worth noting that the dice scores of myocardium in all methods are lower than
the Dice scores of blood pool, suggesting that the segmentation of myocardium
is relatively more challenging due to the ambiguous borders of the myocardium
in the low-resolution MR images. While other two ConvNet-based approaches
achieve quite close Dice scores to our DenseVoxNet in blood pool segmentation,
our method is obviously better than these two methods in the dice scores of the
myocardium, demonstrating our densely-connected network with auxiliary long
side paths has the capability to tackle hard myocardium segmentation problem.

We further implement other two state-of-the-art 3D ConvNets, 3D U-Net [2]
and VoxResNet [1], for comparison. We also compare the performance of the
proposed DenseVoxNet with and without auxiliary side paths. The quantitative
comparison can be found in Table 2, where “DenseVoxNet-A” denotes the Den-
seVoxNet without the auxiliary side paths. As can be observed, our DenseVoxNet
achieves much better performance than the other two 3D ConvNets in both
myocardium and blood pool segmentation. It suggests that our DenseVoxNet
can benefit from the improved information flow throughout the network with
the dense connections. In addition, our method achieves better performance with
much fewer parameters than our competitors, corroborating the effectiveness of
the feature map reusing mechanism encoded in the densely-connected architec-
ture, which is quite important to enhance the capability of ConvNet models
under limited training data. It is also observed that the auxiliary side path can
further improve the segmentation performance, especially for the myocardium.

Table 2. Quantitative analysis of our network

Method ParametersMyocardium Blood pool
Dice ADB[mm] Hausdorff[mm] Dice ADB[mm] Hausdorff[mm]

3D U-Net [2] 19.0M 0.694± 0.076 1.461± 0.397 10.221± 4.339 0.926± 0.016 0.940± 0.192 8.628 ± 3.390

VoxResNet [1] 4.0M 0.774± 0.067 1.026± 0.400 6.572 ± 3.5510.929± 0.013 0.981± 0.186 9.966± 3.021

DenseVoxNet-A 1.7M 0.787± 0.042 1.811± 0.752 17.534± 7.838 0.917± 0.018 1.451± 0.537 15.892± 6.772

DenseVoxNet 1.8M 0.821 ± 0.0410.964 ± 0.292 7.294± 3.340 0.931 ± 0.0110.938 ± 0.2249.533± 4.194

4 Discussion and Conclusion

A DenseVoxNet is proposed to automatically segment the cardiac structures in
the 3D cardiac MR images. The DenseVoxNet is equipped with dense connectiv-
ity and spares network architecture from a large number of redundant features.
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It is because the learned features from previous layers can be reused. Therefore,
the DenseVoxNet may enjoy better parameter efficiency and has less chance to
encounter the overfitting problem when training with limited data. We use lots
of Conv layers in downsampling path and hence equip the network with large
receptive fields to learn sufficient higher level features. The denseVoxNet can
attain best Dice scores for the segmentation of myocardium and blood pool on
the challenge dataset. On the other hand, it is also interesting to observe that
the 2D ConvNet method [13] can outperform some 3D ConvNet methods on
some metrics. It may be because the dataset in the HVSMR 2016 challenge is
quite limited and it is very difficult to train an effective 3D network with such
limited data. On the other hand, the DenseVoxNet can achieve better segmen-
tation performance than the three 3D ConvNets do. Therefore, the efficacy of
the DenseVoxNet can then be well corroborated.
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