FPGA Architectures

Steve Wilton
stevew@ece.ubc.ca

Course web site: http://www.ece.ubc.ca/~eece583

But this isn’t an architecture course?!?!?

A lot of the CAD algorithms we will talk about are specific to FPGAs:
- FPGAs consume a large market share of all CAD
- Their structure provides unique CAD constraints and opportunities
- As technology advances, we are seeing more “structured” approaches, even for custom-chip implementations
 * These will require new CAD techniques that may be inspired by those used for FPGAs today

Since we will spend a lot of time talking about CAD for FPGAs, it is important to talk about what an FPGA looks like inside (“architecture”)

What’s Inside an FPGA?

- Logic Blocks
 - used to implement logic
 - lookup tables and flip-flops
- Altera: LABs
- Xilinx: CLBs
What's Inside an FPGA?

I/O Blocks
- interface off-chip
- can usually support many I/O Standards

Logic Blocks implement the functionality of the circuit

Logic Block:
Basic Logic Gate: Lookup-Table

Function of each lookup table can be configured by shifting in bit-stream.
Quick Question: What function would this implement?

F = A + B + C

Function of each lookup table can be configured by shifting in bit-stream.
Logic Blocks are grouped into Clusters.

There is a balance:
- Larger clusters mean more intra-cluster connections
- But, larger clusters means the intra-cluster connections are not as fast
Cluster Architecture:

This will significantly impact the speed and routability of the device.

Intra-cluster routing:

Academic studies typically consider fully populated:

Intra-cluster routing:

Commercial parts: depopulated (this is 50%)
Altera Stratix LAB (Logic Array Block):

- 10 Logic Elements in each LAB
- Two carry chains through each LAB
- Connections to general purpose routing and neighbouring LABs

Altera APEX MegaLAB:

- 16 LABs and 1 ESB
- MegaLAB Interconnect
- Local Interconnect
- Embedded System Block

Routing is important!

- Logic (LUTs): 12%
- LUT outputs: 31%
- LUT inputs: 9%
- CLB inputs: 9%
- CLB input buffers: 12%
- Routing switches: 27%

Source: Guy Lemieux
Mesh (Island-style) FPGA

Clustered Logic Block

Switch Block

Routing Channel

What's Inside an FPGA?

Logic Block
Connection Block
Switch Block
Routing Track (Horizontal)
Routing Channel (Vertical)

Reconfigurable Logic:

Connect Logic Blocks using Fixed Metal Tracks and Programmable Switches
Programmable Switches

Today, buffered connections are common

Switch Blocks:

- Fixed metal tracks arranged in horizontal and vertical channels
- Connected to each other using switch blocks

Switch Blocks:

- Switch Blocks connect horizontal and vertical channels
- Every possible connection?
 - Too big
 - Too slow

Switch Blocks:

- Switch Blocks connect horizontal and vertical channels
- Every possible connection?
 - Too big
 - Too slow

Many Topologies possible
Fs = 3 is common
Implementing the Switch Block:

Circuit-level design of these switch blocks will be considered later

Switch Block Topologies:

Disjoint

Universal

Wilton

Advantage of Wilton Switch Block

Diversity means you can “get to” more routing tracks. It tends to provide slightly better routability. No big impact on delay.
Wiring Segments

- Short segments are good for local connections.
- Long segments are good for global connections.
- Most FPGA's have a variety of segment lengths.

Segment Lengths

Typically, an FPGA contains a mix of segment lengths:
- Some wires that span only one logic block
- Some wires that span more than one logic block
- Some wires that span the whole chip

If a segment is too short, must traverse many segments to reach your destination.

If a segment is too long, waste routing capacity, extra capacitance.

Academic work has suggested *length-4* segments.

Segmented Architecture

At each switch block:
- Some tracks end
- Some tracks pass right through

Wilton block for Segmented Architectures

Wilton block needs more switches for pass through case.

Fig. 3. Wire terminates at switch block

Fig. 4. Wire passes through switch block
The “Imran” Switch Block

At each Switch Block, some tracks terminate:

Connect using “Wilton” pattern

The “Imran” Switch Block

Some tracks do not terminate:

Connect using “Disjoint” pattern

The “Imran” Switch Block

Put the two together:

Gives good results for segmented architectures

Connection Blocks

Most of the FPGA area is due to routing
- Fixed metal tracks arranged in horizontal and vertical channels
- Connected to each other using switch blocks
- Connected to logic blocks using connection blocks
Connection Block

Each pin can connect to a subset of the tracks in an adjacent channel.

Detailed Routing Diagram (XC4000X)

Dots represent Programmable Connections

Yes, this is old, but it illustrates the parts.

Today, vendors don’t publish the routing details.

Altera Stratix

Horizontal: R4 Lines, R8 Lines, R28 Lines
Vertical: C4 Lines, C8 Lines, C16 Lines
Local Interconnects

Altera Stratix II

Horizontal: R4 Lines, R24 Lines
Vertical: C4 Lines, C16 Lines
Local Interconnects

They found little benefit to the length-8 lines in Stratix
Xilinx Virtex II:

Long Lines: Span entire chip
- 24 in each channel (horizontal and vertical)
- Can to connect to any logic block (actually through the neighbouring switch block)

Xilinx Virtex II:

Hex Lines:
- 120 in each channel (horizontal and vertical)
- Can only be driven at one end
- Two connections to destination logic blocks

Xilinx Virtex II:

Double Lines
- 40 in each channel (horizontal and vertical)
- Driven at one end

Xilinx Virtex II:

Local Interconnect between neighbouring logic blocks:
Connection Blocks

Most of the FPGA area is due to routing:
- Fixed metal tracks arranged in horizontal and vertical channels
- Connected to each other using switch blocks
- Connected to logic blocks using connection blocks

Implementing Systems in an FPGA:

FPGA vendors embed fixed blocks to improve speed and density:
- Embedded Memories (blocks of 2K-18K)

Implementing Systems in an FPGA:

FPGA vendors embed fixed blocks to improve speed and density:
- Embedded Memories (blocks of 2K-18K)
- Multiplier Blocks
FPGA vendors embed fixed blocks to improve speed and density:

Implementing Systems in an FPGA:

- Embedded Memories (blocks of 2K-18K)
- Multiplier Blocks
- High-Speed I/Os

FPGA vendors embed fixed blocks to improve speed and density:

- Embedded Memories (blocks of 2K-18K)
- Multiplier Blocks
- High-Speed I/Os
- Dedicated Clock Circuitry

Summary

Two Sources of Flexibility in an FPGA:

1. Most FPGAs use Lookup-Tables as their basic logic resource
 - 4-LUT can implement any function of 4 inputs
2. Connections between logic blocks can be made using fixed metal tracks
 - these fixed tracks are connected to each other and to the logic blocks using programmable switches