
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

A Tunable Version Control System for Virtual
Machines in an Open-Source Cloud

Chung Pan Tang, Patrick P. C. Lee, Tsz Yeung Wong

Abstract—Open-source cloud platforms provide a feasible alternative of deploying cloud computing in low-cost commodity hardware

and operating systems. To enhance the reliability of an open-source cloud, we design and implement CloudVS, a practical add-on

system that enables version control for virtual machines (VMs). CloudVS targets a commodity cloud platform that has limited available

resources. It exploits content similarities across different VM versions using redundancy elimination (RE), such that only non-redundant

data chunks of a VM version are transmitted over the network and kept in persistent storage. Using RE as a building block, we propose

a suite of performance adaptation mechanisms that make CloudVS amenable to different commodity settings. Specifically, we propose

a tunable mechanism to balance the storage and disk seek overheads, as well as various I/O optimization techniques to minimize

the interferences to other co-resident processes. We further exploit a higher degree of content similarity by applying RE to multiple

VM images simultaneously, and support the copy-on-write image format. Using real-world VM snapshots, we experiment CloudVS in

an open-source cloud testbed built on Eucalyptus. We demonstrate how CloudVS can be parameterized to balance the performance

trade-offs between version control and normal VM operations.

Index Terms—VM image versioning, redundancy elimination, open-source cloud management, implementation, experimentation

F

1 INTRODUCTION

With the advent of cloud computing, people can pay
for computing resources from commercial cloud service
providers in a pay-as-you-go manner [2]. Typically, cloud
computing uses the virtualization technology to manage
a shared pool of physical resources. On the other hand,
commercial clouds may not fit the needs of some users.
For example, there are security concerns of outsourc-
ing computation to third-party commercial clouds [25].
Open-source cloud platforms, such as Eucalyptus [15]
and OpenStack [16], implement the Infrastructure-as-a-
Service (IaaS) model and provide an alternative of using
cloud computing with the features of self-manageability,
low deployment cost, and extensibility. Using open-source
cloud software, one can deploy an in-house private
cloud, while preserving the inherent features of existing
public commercial clouds such as virtualization and
resource management. In addition, an open-source cloud
is deployable in low-cost commodity hardware and
operating systems that are readily available to general
users. Its open-source nature also provides flexibility
for developers to extend the cloud implementation with
new capabilities.

To deploy an open-source cloud (as a private cloud)
in practice, a major challenge is to ensure its reliability
toward software/hardware failures, especially with the
fact that the cloud infrastructure is now self-managed.
Here, we propose to enable version control for virtual
machines (VMs), in which we take different snapshots of
individual VM images launched within the cloud and

• C. P. Tang, P. P. C. Lee, and T. Y. Wong are with the Dept of Computer
Science and Engineering, The Chinese University of Hong Kong, Shatin,
N.T., Hong Kong (emails: {tangcp, pclee, tywong}@cse.cuhk.edu.hk).

keep different VM versions. Applying version control
for VMs enables users to save work-in-progress jobs in
persistent storage. From a reliability perspective, one
can roll-back to the latest VM version due to soft-
ware/hardware crashes, and perform forensic analysis in
the past VM versions should malicious attacks happen.

However, there are design challenges of enabling ver-
sion control for VMs in an open-source cloud platform:

• Scalability to many VM versions. We need to store and
maintain a large volume of VM versions within a
cloud, given that the cloud may handle the VMs
of many users, and each VM may create many VM
versions over time.

• Limited network bandwidth. There could be a huge
network transmission overhead of transmitting VM
snapshot versions from different compute nodes in
the cloud to the repository that stores the snapshots.

• Compatibility with commodity settings. The version
control mechanism must be compatible with the
cloud infrastructure, such that the performance of
the normal cloud operations is preserved. Since
an open-source cloud is deployable in commodity
hardware and operating systems, we require that
the version control mechanism be able to take into
consideration the performance constraints of stor-
age, computation, and transmission bandwidth.

The key motivation of this work is to address the
above challenges from an applied perspective. We aim to
develop a system that enables version control for VMs
and can be practically deployed in today’s open-source
cloud platforms. We also support our system design with
extensive testbed experiments based on real-world VM
image traces.

0000–0000/00$00.00 c© 200X IEEE

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

Our contributions are four-fold. First, we propose
CloudVS, a version control system for storing and
managing different versions of VMs designed for an
open-source cloud deployed under commodity settings.
CloudVS incrementally builds different VM snapshot
versions using redundancy elimination (RE), such that
only the new and modified chunks of the current VM
image are transmitted over the network and stored in
the backend. A particular VM version can be constructed
from prior VM versions. While RE is a well-proven
technology, our goal is to demonstrate how RE can be
deployed to minimize the overheads of transmission and
storage in the version control for VMs.

Second, on top of RE, we propose a suite of adaptation
mechanisms that make CloudVS amenable to different
commodity settings. One major challenge of using RE
is that it introduces fragmentation, i.e., the content of a
VM image is scattered in different VM versions. Frag-
mentation increases the disk seek overhead. Thus, we
propose a simple tunable mechanism that can trade be-
tween storage and fragmentation overheads via a single
parameter. Also, we propose various I/O optimization
techniques to mitigate the performance interferences to
other co-resident processes (e.g., VM instances) during
the versioning process. In short, CloudVS uses different
performance adaptation strategies to easily make per-
formance trade-offs between version control and normal
VM operations. Furthermore, we propose a multi-VM
versioning mechanism, such that CloudVS can apply RE
to multiple VM images simultaneously, so as to exploit
a higher degree of content similarity among multiple VM
images and further reduce redundancy. We also extend
CloudVS to support the copy-on-write image format, so
as to reduce the provisioning overhead.

Third, we implement a prototype of CloudVS and
integrate it into Eucalyptus [15] as an add-on system.
The current open-source implementation of Eucalyptus
does not provide version control for VMs, so all changes
made to a VM will be lost if the VM is shut down. As a
proof of concept, we show how CloudVS remedies this
limitation with minor modifications of the Eucalyptus
source code, such that the original semantics of Euca-
lyptus are completely preserved.

Finally, we conduct extensive experiments for
CloudVS on a Eucalyptus-based cloud testbed. We
evaluate CloudVS using two datasets of VM images:
(i) a 3-month span of snapshots of a regularly updated
VM, and (ii) a 7-week span of snapshots of VMs from
different users who are involved in a programming
project in an undergraduate course. We show via
both datasets how CloudVS uses RE to reduce the
storage cost and VM operation times when compared
to simply keeping VM versions with full VM images.
Also, we show that CloudVS can be parameterized to
address different performance trade-offs and limit the
interferences to co-resident processes.

We point out that commercial VM management sys-
tems (e.g., VMWare Workstation, VirtualBox) also pro-

VM image
storage

Compute
Node

Storage
Node

Controller
Node

Compute
Node

Compute
Node

Compute
Node

VM requests

VM instances

User

VM

Fig. 1: A simplified cloud architecture being considered.

vide version control for VMs. However, their imple-
mentation details remain private, so we cannot formally
compare CloudVS with them. Nevertheless, based on
our experiences, we address several issues that remain
unexplored in such commercial systems: (i) we consider
a tunable version control mechanism that is amenable to
commodity hardware settings, (ii) we consider a mech-
anism that works seamlessly in an existing open-source
cloud platform, and (iii) we conduct extensive testbed
experiments to evaluate our design.

The rest of the paper proceeds as follows. In Section 2,
we overview the cloud architecture considered in this
paper. In Section 3, we explain the design of CloudVS
and propose several practical optimization techniques.
In Section 4, we experiment CloudVS in a Eucalyptus
cloud testbed. In Section 5, we review related work, and
finally, Section 6 concludes the paper.

2 BACKGROUND

In this section, we present an overview of a cloud
architecture. We also describe how today’s open-source
cloud platforms address version control of VMs.

Fig. 1 shows a simplified cloud architecture that we
consider in this paper. It consists of three types of
nodes: (i) the controller node, which processes VM-related
requests from users and manages the lifecycles of VM
instances, (ii) the compute node, which runs VM instances,
and (iii) the storage node, which provides an interface
that accesses the VM images in the persistent storage
backend. Note that existing open-source cloud platforms
such as Eucalyptus [15] and OpenStack [16] are designed
based on the same layout as in Fig. 1. To aid our
discussion, in this paper, we mainly focus on a simplified
cloud platform that has only one controller node, one
storage node, and multiple compute nodes.

To launch a VM instance, a user first issues a start re-
quest through the controller node, which selects an avail-
able compute node on which the VM instance runs. The
selected compute node then retrieves the corresponding
VM image from the storage node. It also allocates local
disk space for running the VM instance. Note that the
compute node can cache the image in the local disk for
subsequent use, and this feature is supported in current
open-source cloud platforms.

Similarly, the user can issue a stop request to the
controller node to stop the VM instance. The controller
node then instructs the compute node to destroy the VM
instance and recycle the resources.

We examine how the current implementations of Eu-
calyptus and OpenStack handle the lifecycle of a VM

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

instance1. In the normal VM lifecycle, when a VM in-
stance is stopped, all modifications made to the VM
instance will be permanently purged. Both Eucalyptus
and OpenStack provide a snapshot feature that supports
regular backups of VM images [7], [17]. However, they
only send the full snapshot of the entire VM image to the
storage backend, and this introduces a large transmission
overhead. We believe that an efficient version control
mechanism will be a desirable add-on feature for existing
open-source cloud platforms.

3 CLOUDVS DESIGN

In this section, we present the design of CloudVS, an
add-on system that enables version control for VMs in
mainstream open-source cloud platforms. We focus on
the scenario where the cloud platform is deployed atop
low-cost commodity hardware and operating systems
that have limited available resources. Thus, the design
of CloudVS aims to mitigate the overheads in storage,
computation, and transmission.

3.1 Definitions and Roadmap

We first provide the key definitions and a roadmap of
the design of CloudVS. The original cloud platform (e.g.,
Eucalyptus and OpenStack) only launches a VM instance
from a VM image that contains only basic configurations
without user-specific states. This VM image, which we
call the base image, is accessible by all users. For each
user, CloudVS can generate different VM versions, each
of which describes the user-specific state changes made
to the base image. Instead of storing the full image of the
user-modified VM, the versioning process of CloudVS is
to incrementally build each VM version from the prior
versions, such that the current VM version only keeps
the delta, defined as the new or changed content of a
VM image. For the unchanged content, the current VM
version keeps references that refer to the prior versions.
The delta will be stored in the persistent storage man-
aged by the storage node (see Fig. 1). Here, we consider
two types of a delta: (i) the incremental delta, which holds
only the new or modified content since the last version,
and (ii) the differential delta, which holds all the new and
modified content with respect to the base image. Keep-
ing either incremental or differential deltas for different
VM versions minimizes the redundant content being
stored. We call this approach redundancy elimination (RE).
We elaborate how we construct deltas for different VM
versions in Section 3.2.

We can easily see that the incremental delta stores the
minimum redundant content, with the trade-off that a
VM version needs to be restored by accessing the content
of multiple prior versions. This introduces fragmentation,
meaning that the content of a VM is scattered in dif-
ferent VM versions instead of being stored sequentially.

1. At the time of the writing, the latest releases of Eucalyptus and
OpenStack are version 3.1, and version 2012.2, respectively.

Tunable delta
storage

Storage
Node

Compute
Node

Incremential deltaVM instances

VM

Differential delta

Fig. 2: CloudVS architectural overview.

It results in more disk seeks, thereby increasing the
restore time of a VM. Fragmentation is known to be a
fundamental problem in RE-based storage systems [24].
On the other hand, the differential delta mitigates the
fragmentation problem since it can be directly merged
with the base image to have the VM image reconstructed.
However, this requires the storage of the redundant
content that appears in the prior VM versions.

CloudVS combines several mechanisms to make VM
version control feasible. They include tunable data storage,
which balances the trade-off of storage and fragmen-
tation via a single tunable parameter (Section 3.3), I/O
optimizations, which mitigates the interferences to other
co-resident processes (Section 3.4), multi-VM versioning,
which exploits content similarity among multiple VM
images (Section 3.5), copy-on-write support, which reduces
the cost of I/O-intensive operations such as VM pro-
visioning and snapshotting (Section 3.6), and in-place
VM restore, which exploits the content similarity of the
working VM and the prior VM version to be restored
(Section 3.7).

The CloudVS implementation is a fork of the original
execution flow of existing cloud platforms. In Section 3.8,
we demonstrate how CloudVS can be integrated into
Eucalyptus as a proof of concept. We also discuss the
limitations of this work in Section 3.9.

To summarize, Fig. 2 gives an overview of CloudVS.
Each VM instance runs on the hypervisor of a compute
node. Each VM version is sent as incremental delta to
a centralized storage node, which then stores the VM
version based on the tunable delta storage mechanism
described above. Any VM version can be reconstructed
with the local base image and the corresponding differ-
ential delta retrieved from the storage node.

In this work, we do not consider the security issues
in version control. In the context of RE, CloudVS may
provide confidentiality guarantees to different VM ver-
sions via convergent encryption [1], [5], in which data
is encrypted/decrypted by a secret key that is derived
from the cryptographic hash of the data content. This
preserves content similarity and hence effectiveness of
RE even after data encryption.

3.2 Versioning with Redundancy Elimination

CloudVS creates the delta for a VM version based on
redundancy elimination (RE), which aims to minimize the
network transfer bandwidth and the storage overhead.
Typically, a VM image contains many system files of
the guest operating system that rarely change. Thus,
we expect that RE can effectively reduce the storage
of such redundant content. By no means do we claim

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

that RE is our contribution. Similar RE-based versioning
approaches have been proposed, such as in cloud backup
systems [22], [30], which target the storage of general
data types. Here, our focus is to show the proof of
applicability of RE, and demonstrate how RE is applied
as a building block in CloudVS. In later subsections, we
will further optimize our RE approach.

For simplicity and efficiency, we choose fixed-size
chunking as our RE algorithm, whose main idea is to
divide a VM image into fixed-size chunks (e.g., of size
4KB) and only keep the new and modified chunks in
the current VM version. Note that the RE approach used
in CloudVS can also be implemented with more robust
RE algorithms (e.g., rsync [28] and Rabin fingerprinting
[21]), but fixed-size chunking has been shown to be
effective in RE for VM images [10].

We now elaborate how CloudVS uses RE to perform
versioning for VMs in detail. We apply cryptographic
hashing (e.g., SHA-1) to the content of each fixed-size
chunk, such that two chunks with the same hash are
considered to have identical content. It is shown that if
cryptographic hashing is used, then the probability of
having hash collisions is negligible in practice [20].

There are two scenarios in which CloudVS can trig-
ger the versioning process: (i) shutdown-based, in which
CloudVS creates a new VM version when the VM is
about to shut down and release its resources, and (ii)
time-based, in which CloudVS performs periodic version-
ing on a running VM. In both scenarios, we need to
first identify the hashes of the VM image of the last
version so as to compute the delta. In shutdown-based
versioning, since the last VM version is created in the
last VM shutdown, CloudVS generates hashes for the
last VM version when the VM is launched again in a
newly assigned compute node. On the other hand, in
time-based versioning, CloudVS generates hashes each
time when the VM version is created. In both cases,
the hashes of the last VM version will be cached in the
compute node where the VM is currently running, and
later compared with the current VM version.

We emphasize that we only consider eliminating the
redundancy between two successive VM versions. It is
possible that this RE approach misses identifying certain
redundant chunks across non-successive VM versions.
For instance, a unique data chunk is found in the i-th
VM version but not in the (i+1)-th one, yet it reappears
again in the (i+2)-th VM version. In this case, the data
chunk will be stored twice. However, we justify that it is
uncommon to have redundant chunks in non-successive
VM versions in practice. Based on our investigation on
a real-usage dataset (DS-PA, see Section 4.1), less than
0.15% of such chunks are identified.

To create the current VM version, we compare by
hashes the different chunks of the VM images of the
previous and current versions. The comparison is done
in the compute node that runs the VM. We generate the
incremental delta, which contains the new and modified
chunks since the previous version. The resulting incre-

1Chunks

Metadata objects

Base image

1 2 3’ 4 5’ 6’

Version 1

1 2 3’ 4 5’’ 6’

Version 2

7

2 3 4 5 6 3’ 5’ 5’’ 76’

Fig. 3: Example of how CloudVS uses RE to correlate
different VM versions. The compute node will send the
incremental delta for each version to the storage node.

mental delta, together with the references that refer to
the already existing chunks in prior versions, will be sent
to the storage node.

Fig. 3 illustrates how different VM versions are cor-
related using RE. Each VM version has a metadata object
that keeps the references for all the chunks that appear in
the current or prior VM versions. To illustrate, suppose
that the original base image contains six chunks (see
Fig. 3). In Version 1, if the 3rd, 5th, and 6th chunks
have been modified, then Version 1 will allocate space for
holding such modified chunks, while keeping references
that point to the 1st, 2nd, and 4th chunks in the base
image. Now, in Version 2, if the 5th chunk is modified
again and the 7th chunk is created, then Version 2 will
allocate space for holding the 5th and 7th chunks and
have the references to refer to other chunks appearing
in the base image or Version 1. In general, the metadata
object and the new/modified chunks of each VM version
altogether have a much smaller size than the full VM
image, thereby minimizing the overhead of maintaining
various VM versions.

To restore a particular VM version, the storage node
looks up the metadata object and fetches the correspond-
ing chunks. Suppose that the base image is already
cached in the compute node (see Section 2). Then the
storage node will construct the differential delta (i.e., the
new and modified chunks with respect to the base im-
age) for the VM version and send it to the compute node,
which will then merge it with the cached base image.
This introduces less transmission overhead than sending
the full VM image. To illustrate, suppose that Version 2
in Fig. 3 is to be restored. Then the storage node will
transmit only the 3rd, 5th, 6th, and 7th chunks. Note that
we reconstruct the differential delta in the storage node
rather than in the compute node, so that the compute
node does not need to make a significant number of
requests for individual chunks from the storage node.
In Section 3.7, we further improve the restore efficiency,
by exploiting the content similarity of the working VM
image and the prior VM version to be restored.

3.3 Tunable Delta Storage

If the storage node directly stores the incremental delta
(i.e., the new and modified chunks since the previous
VM version) for each VM version, then the fragmen-
tation overhead may exist during the restore of a VM

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

version. Referring to Fig. 3 again, suppose that Version 2
is to be restored. In this case, the storage node needs to
retrieve the 3rd, 5th, 6th, and 7th chunks. If these chunks
are returned in a sequential order, then the storage node
needs to access Version 1 and Version 2 alternately. Let us
define a non-sequential read if the next chunk to be read
appears in a different version from the current chunk
being read. Then in the above example, we have a total
of three non-sequential reads (i.e., for the 5th, 6th, and
7th chunks).

In another extreme, the storage node can simply store
the differential delta (i.e., all the new and modified
chunks with respect to the base image). For example,
Version 2 may store the 3rd, 5th, 6th, and 7th chunks.
Then all reads become sequential, but this introduces a
high storage overhead.

We emphasize that the versioning process always
transmits incremental deltas from a compute node to
the storage node, so as to minimize the transmission
overhead. However, we must address how the storage
node should store the deltas for different versions that
can balance the costs of storage and fragmentation.

Here, we consider a heuristic design that uses a single
fragmentation parameter α to trade between the fragmen-
tation and storage overhead by exploring the interme-
diates between the extremes of storing incremental and
differential deltas. The design is composed of four steps.

1) We divide all chunks in the target differential delta
into chunk groups, each of which has the same
number of chunks (except the last chunk group).

2) For each chunk group, we count the number of
non-sequential reads as defined above.

3) We sort the chunk groups by the number of non-
sequential reads in descending order.

4) The top proportion α (0 ≤ α ≤ 1) of the chunk
groups will store the differential deltas, while the
remaining chunk groups will store the incremental
deltas.

The parameter α is tunable according to different ap-
plication needs. It determines the trade-off between the
storage overhead and restore performance. Increasing
α implies that the storage overhead increases, yet the
restore performance improves due to less fragmentation.
In the extremes, if α = 1, then each VM version stores the
differential delta; if α = 0, then each VM version stores
only the incremental delta. We observe that even with
this simple heuristic, we can effectively make the trade-
off (see Section 4). We point out that the trade-off result
is content-specific. In the rare case, if all VM images are
diverge and have no RE opportunity, then the effect of α
is limited. However, in practice, VM images are known
to have high redundancy [10]. Our goal is not to propose
the best α value, but to give the flexibility to system
administrators to choose the right α value according to
the resource requirements.

To illustrate, we consider again how to restore Ver-
sion 2 in Fig. 3. Suppose that we set the chunk group
size to be two and α = 0.5. In Version 2, the differential

3’1Chunks

Metadata objects

Base image

1 2 3’ 4 5’ 6’

Version 1

1 2 3’ 4 5’’ 6’

Version 2

7

2 3 4 5 6 3’ 5’ 5’’ 76’

Fig. 4: Example of how CloudVS stores the incremental
and differential deltas for different chunk groups. Here,
the first chunk group (the 3rd and 5th chunks) is stored
in Version 2 as the differential delta, assuming α = 0.5.

delta consists of the 3rd, 5th, 6th, and 7th chunks. Thus,
there are two chunk groups: (i) the 3rd and 5th chunks,
and (ii) the 6th and 7th chunks. Both chunk groups have
one non-sequential read. If α = 0.5, then we have the
first chunk group (i.e., the 3rd and 5th chunks) store the
differential delta, while the second chunk group (i.e., the
6th and 7th chunks) still stores the incremental delta.
Fig. 4 shows the final result.

3.4 I/O Optimization

When creating a VM version, CloudVS scans the VM
image for hash computation in the compute node. The
scanning process may degrade the performance of nor-
mal operations of the scanned VM as well as other
co-resident processes in the same compute node. We
propose several I/O optimization techniques that reduce
the performance interferences due to versioning.

LVM Snapshot. CloudVS needs to avoid content
changes during versioning so that the hashes are cor-
rectly computed. One simple approach is to apply an
exclusive lock to the entire VM image, but this also
makes the VM unavailable (or “frozen”) in that period.
Here, we have CloudVS work on a mirror snapshot by
leveraging the file system snapshot feature of the logical
volume manager (LVM) [12]. Each compute node hosts
VM images with the LVM. To create a version for a VM,
we then apply the snapshot feature of LVM to create a
snapshot of the VM image volume. Once a snapshot is
created, the VM returns to its normal operations, while
in the background, CloudVS computes the hashes on the
created snapshot rather than on the VM. The snapshot
will be destroyed when the versioning process is fin-
ished. With LVM snapshot, we now only lock the VM
image during the snapshot creation, instead of locking
the VM image throughout the versioning period.

Pre-declaring access patterns. When CloudVS scans
the entire VM image, the image data will be read
from disk and saved in the system cache, thereby
flushing the existing cached data. Since the image
data is read once only, we should avoid disrupting
the accesses to existing cached data for other co-
resident processes. Here, we pre-declare the access pat-
terns of the VM image using the POSIX system call
posix_fadvise. After computing the hash of a spe-
cific data chunk, we invoke posix_fadvise with the

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

parameter POSIX_FADV_DONTNEED to notify the kernel
that the data chunk will no longer be accessed in the near
future. This keeps the kernel from caching the entire VM
image during versioning.

Rate limiting of disk reads. The scanning of a VM
image can invoke a large burst of disk reads that will
disturb other co-resident processes that share the same
physical disk. CloudVS implements a rate throttling
mechanism that limits the rate of disk read accesses. This
mechanism is coupled with the LVM snapshot function
(see above), i.e., after a snapshot is created, we monitor
the read throughput of scanning the snapshot. If the read
throughput is higher than the specified rate, we invoke
the POSIX call nanosleep to put the read operation
on hold. The throttling rate can be parameterized in ad-
vance. Although this increases the versioning time, since
the versioning process is done on the mirror snapshot
in the background, the extended versioning time has
minimal impact.

3.5 Multi-VM Versioning

We thus far apply RE on a per-VM basis, such that
we seek to eliminate redundant content of different VM
versions evolved from a single VM. On the other hand,
it is possible that multiple VMs (typically owned by
different users) have identical content changes over time.
One example scenario is discussed in [4], in which users
of the same organization are assigned VMs that are
initially installed with standardized operating systems.
We also present a similar scenario in a real-life use
case in Section 4.1. If all VMs enable regular system
updates, then we expect that the underlying system files
are modified or patched in the same way. The identical
changes across VM images can be exploited by CloudVS
to achieve better RE efficiency.

We extend CloudVS to support multi-VM versioning,
in which we identify redundancy across multiple VMs
running in the same compute node during the version-
ing process. Here, we introduce a delay commit policy on
each compute node. The main idea is that instead of
committing the incremental deltas of the individual VM
versions in the same compute node directly to the stor-
age node as in per-VM versioning, we now collectively
identify the redundancy of these incremental deltas.
Specifically, after generating the incremental delta for a
VM image in the versioning process, we also generate
the hashes of data chunks of the incremental delta. Both
the incremental delta and the hashes are locally stored in
the compute node. Suppose that multiple VM versions
have been created and stored in the compute node.
Then we compare the pre-generated hashes of those
VM versions, and eliminate any redundant chunks in
the incremental deltas. Finally, the updated incremental
deltas are collectively sent to the storage node.

Fig. 5 shows the idea of multi-VM versioning. Sup-
pose that there are three VM versions taken from three
different VMs (denoted by VM A, VM B, and VM C) at

Metadata

objects
1 2 3’ 6’

VM A VM B

3’ 4’ 6’

VM C

3’ 4’ 5’’6’

Multi-VM versioning

Chunks

VM A VM B VM C

1 3’ 6’’

6’’

1 2 43’ 6

3’ 5’’ 3’

4’ 5

4’’

5’’ 4’’2

5’

5’

1 2 3’ 6’ 1 3’ 6’’1 2 43’ 64’ 5 5’’ 4’’2 5’

6’’4’’ 5’

Per-VM versioning

Fig. 5: Example of multi-VM versioning. Suppose that
the contents of the 3rd chunks of VM A, VM B, and
VM C are the same. In multi-VM versioning, only one
chunk copy is kept.

the same time. Each VM version contains the modified
chunks since its previous version, as indicated in the
figure. In per-VM versioning, we note that there are a
total of nine modified chunks. Now let us assume that
the 3rd chunk of each VM version is modified to have
the same content. In multi-VM versioning, only one copy
of the 3rd chunk is kept, and the metadata objects of the
VM versions will point to the copy. In this case, only a
total of seven chunks are committed to the storage node.

Note that the tunable delta storage technique men-
tioned in Section 3.3 is also applicable for multi-VM
versioning, and hence enables us to make a trade-off be-
tween the storage and disk seek overheads. In a nutshell,
we first eliminate the redundant chunks across multiple
VM versions as described above. Then for each VM
version, we transform the chunk groups with the most
non-sequential reads into differential deltas as described
in the per-VM case (see Section 3.3). For example, let
us consider the collective VM versions in Fig. 5 being
received by the storage node. Suppose we set the chunk
group size to two and α = 0.5. For VM C, there are two
chunk groups: (i) the 3rd and 4th chunks, and (ii) the
5th and 6th chunks. We note that the first and second
chunk groups have one and zero non-sequential reads,
respectively. Thus, the first chunk group (i.e. 3rd and
4th chunk) will be stored as the differential delta. Fig. 6
shows the final result.

We argue that multi-VM versioning introduces only a
small metadata cost in terms of processing and storage.
Let us consider 1GB of incremental deltas generated
by different VM versions. Suppose that we use SHA-
1 to generate 20-byte hashes for the chunks of size
4KB each. Then there are a total of 262,144 hashes,
which account for 5MB only. Also, our analysis shows
that modern CPUs (based on our testbed described in
Section 4.2) can achieve a throughput of 400MB/s of

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Metadata

objects

Chunks 3’ 4’ 5’’6’

VM A VM B VM C

1 2 3’ 6’ 1 3’ 6’’1 2 43’ 64’ 5 5’’ 4’’2 5’

6’’4’’ 5’3’

Fig. 6: Example of applying the tunable delta storage in
multi-VM versioning. For VM C, the 3rd and 4th chunks
are stored in the form of the differential delta.

SHA-1 hash computations, so the computational cost of
hash computations remains low. In terms of metadata
storage, each chunk is mapped to an 8-byte file offset
and a 20-byte SHA-1 hash, so the total metadata space is
7MB. Compared to the size of increments, the metadata
space overhead is also very low.

3.6 Copy-on-Write Extensions

To increase storage utilization and reduce the VM pro-
vision time, thin provisioning is often used to delay the
storage allocation of VM images. Modern hypervisors
(e.g., VMWare and KVM) apply this technique by sup-
porting the copy-on-write (CoW) disk image format, which
allocates dedicated storage space only when disk write
requests are made. In the following, we show how
CloudVS can be extended to support one of the CoW
formats called QCoW2 [19], so as to take advantage of
thin provisioning.

QCoW2 [19] is a VM sparse disk image format sup-
ported by the open-source hypervisor KVM. Unlike the
raw file format, QCoW2 supports various advanced
features such as CoW, snapshotting, and compression. It
introduces a thin low-overhead layer of metadata (e.g.,
logical block mappings and reference counts) atop the
base VM image, which is called the backing file. CoW
is supported as follows. If a write request is issued
to a block in the backing file, a new physical block is
allocated and maintained in a separate QCoW2 image
file. In addition, if a physical block in the QCoW2 is
shared by multiple logical blocks and is modified, then
a new physical block is allocated as well. The new
block allocation ensures that the original block is not
overwritten.

QCoW2 supports both internal snapshotting and ex-
ternal snapshotting. In internal snapshotting, all snap-
shots (or VM versions) will be appended to the same
QCoW2 image file; in external snapshotting, a series of
snapshots will be kept such that each snapshot will store
the incremental deltas of the previous snapshot. Thus,
external snapshotting suffers the fragmentation problem,
since the VM content is scattered across all previous
snapshots. There is no tunable feature to choose between
incremental and differential deltas as in CloudVS.

Instead of directly adopting QCoW2 as the versioning
mechanism, we modify the execution flows of CloudVS
to support QCoW2 to take advantage on the CoW

feature. Instead of operating on the raw VM image as
described in the previous subsections, we now have
CloudVS operate on the QCoW2 image file, which stores
the changes of the backing file (base VM image).

Specifically, in the original versioning flow, CloudVS
scans for the changes of the entire VM image. In the
new versioning flow, CloudVS builds on internal snap-
shotting of QCoW2. When a VM starts, CloudVS takes
an internal snapshot to record the original state; when
versioning is performed, CloudVS takes another internal
snapshots. It then compares the block mapping tables of
the two internal snapshots and identifies the changes to
construct the incremental delta. Note that it does not
need to scan the whole VM image.

To restore a VM version, the original flow of CloudVS
merges the differential delta with the base image in the
compute node. In the new restore flow, CloudVS skips
the merging process, but instead reconstructs a QCoW2
image file by rebuilding the metadata (including block
mappings and reference counts) and the data blocks
from the differential delta. Then we link this QCoW2
image to the backing file.

3.7 In-place VM Restore

One use case of VM version control is to revert any
unwanted changes made on the currently working VM,
for example, due to accidental corruption of system
configurations and virus infection. In this case, we may
either restore a prior VM version that has been saved,
or rebuild the base VM from sketch.

Instead of disposing the working VM image, we
implement an in-place restore scheme that exploits the
content similarity of the working VM and the prior VM
version to be restored to speed up the restore process.
Suppose that the working VM is labeled as version N

and we want to restore to the prior version N − i

for some i ∈ {1, 2, · · · , N − 1}. We assume that the
working VM and the prior version are both hosted in
the same compute node. First, we make a snapshot of the
working VM disk image and generate the metadata of an
incremental delta in the compute node. This is similar to
performing versioning of the working VM, but here we
only record the offsets of the modified chunks without
storing the actual modified data. Then the compute node
sends the metadata to the storage node, which then
generates a reverse delta from version N to a prior version
N− i. The reverse delta can be viewed as an incremental
delta from version N if we treat the prior version N − i

as the latest version N + 1. The reverse delta is sent
back to the compute node, which merges the reverse
delta with the working VM image to form the new VM
image. We expect that the size of the reverse delta is
smaller than that of the differential delta built from the
base VM described in Section 3.2. How to dynamically
choose between in-place restore and the baseline restore
approach will be posed as future work.

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

3.8 Implementation Details

We implement a prototype of CloudVS in C. We integrate
it into a cloud platform based on the Eucalyptus open-
source edition 2.0. As shown below, the integration only
involves slight modifications in the source code.

Controller node. A user can specify a specific VM
version by providing versionID as an input, where
versionID is a global identifier that uniquely identifies
different VM versions. To launch a VM, the user needs
to first prepare his legitimate access key and secret key,
both of which are required by the original Eucalyptus
implementation. The user may store the keys as environ-
ment variables. Then the user can issue the command
euca-run-instance --user-data versionID to
start the specific VM version, where the command
euca-run-instances comes with the command-line
management tool euca2tools of Eucalyptus.

Compute node. CloudVS is composed of two mod-
ules: the Snapshot and Restore modules. The Snapshot
module generates deltas for different VM versions. It
also handles multi-VM versioning and it supports both
raw and QCoW2 image formats. The Restore module
is responsible for restoring a VM version. We integrate
both modules into the operations of each compute node.
In our current prototype, we mainly consider shutdown-
based versioning (see Section 3.2). We insert the Snap-
shot module when the VM is shut down (inside the
function scCleanupInstanceImage()), and insert the
Restore module right before the VM is started (in-
side the function get_cached_file()). We add both
modules in ∼eucalyptus/storage/storage.c. The
integration involves no more than 30 lines of code
changes. We refer readers to the project website
http://ansrlab.cse.cuhk.edu.hk/software/cloudvs for the
integration details.

Storage node. We add a new daemon in the storage
backend that listens to the requests from the Snapshot
and Restore modules in the compute nodes. The daemon
retrieves and saves the specified VM version delta, and
manipulates the tunable delta storage (see Section 3.3).

3.9 Discussion

We point out several open issues of the existing CloudVS
design. In particular, we focus on the scalability aspect
of CloudVS. We pose these issues as future work.

Global RE. Our current multi-VM versioning design
is limited to a single compute node, which may host
multiple VMs. We may extend it to multiple compute
nodes to exploit a better RE opportunity, and index all
chunks and identify duplicates across different compute
nodes using the distributed hash table (DHT) [6], [31].
A challenge is to limit the message exchange overhead
due to DHT, particularly in a commodity setting where
network resources may be scarce.

Distributed storage. We currently assume a central-
ized storage node is used for simplicity. To provide

scalability and fault tolerance, we can deploy the stor-
age node using a standard distributed file system (e.g.,
HDFS [26]) to keep the data chunks and metadata files
of CloudVS. Using a distributed file system, one may
parallelize the retrieval of data chunks so as to improve
restore performance. We plan to study the potential of
parallelism in future work.

Metadata management. We now assume that our
metadata management overhead is limited (see Sec-
tion 3.5). However, this assumption no longer holds
if the number of VMs significantly grows. We may
exploit version segment trees [14] for scalable metadata
management for a large number of VMs. The current
focus of CloudVS is to address the I/O overhead in
restoring data chunks. Integrating CloudVS with scalable
metadata management remains an open issue to address.

4 EXPERIMENTS

We conduct testbed experiments on our CloudVS proto-
type on a Eucalyptus-based cloud platform that is run-
ning atop commodity hardware and operating systems.

4.1 Datasets

In our experiments, we consider two datasets of VM
image snapshots namely DS-SU and DS-PA, which are
collected from different deployment scenarios. We briefly
describe how the datasets are collected, and we refer
readers to the digital supplementary file for the detailed
analysis of the datasets.

DS-SU (Dataset taken from system updates). The
dataset DS-SU is used to address the case where a VM
image is being modified over time. We prepare a VM
that is installed with Fedora 14 and configured with 5GB
harddisk space. We deploy the VM with the Internet
connectivity, and leave it in the “always-on” state for
a 90-day period from February 23, 2011 to May 24,
2011. We schedule a daily cron job yum -y update to
make the VM regularly download and install any latest
updates from the Internet. The installed updates will
modify various system files, causing changes to the disk
content of the VM. Note that the VM also runs various
background jobs that constantly change its disk content.
We then take a full snapshot for the VM image daily.
Overall, we observe that the differential delta size is
at most 1GB, and the incremental delta size is within
100MB throughout the 3-month span.

DS-PA (Dataset taken from programming assign-
ments). The dataset DS-PA describes the user activities
of VMs in real usage. We consider a university course on
computer programming that is offered to undergraduate
students in the Fall 2011 semester. In around November
2011, each student group is offered an identical VM
image (i.e., the base image) that is installed with Ubuntu
10.04 and allocated with a 10GB disk space. Students
are then asked to do their programming assignments
on their assigned VMs. We collect the snapshots of 21
VM images weekly over a span of seven weeks (from

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

November 23, 2011 to January 4, 2012). The incremental
delta sizes range from 18.4MB to 8.9GB. Our analysis
ignores four VMs that generate unexpectedly large files
(e.g., video files) and focuses on the remaining 17 VMs.

4.2 Testbed Setup and Default Settings

We set up a Eucalyptus-based cloud testbed with the
following servers: (i) one controller node, which is
equipped with a 2.8GHz Intel Core 2 Duo E7400 CPU,
4GB of RAM, and 250GB of harddisk, (ii) one storage
node, which is equipped with a 2.66HGz Intel Xeon
W3520 quad-core CPU, 16GB of RAM, and 1TB of hard-
disk, and (iii) four compute nodes, each of which is
equipped with a 2.66GHz Intel Core i5 760 CPU, 8GB of
RAM, and 1TB of harddisk. All six nodes are installed
with CentOS 5 and Eucalyptus 2.0.2, and are connected
via a Gigabit Ethernet switch.

By default, we deploy CloudVS with the following
configurations. The base image is cached locally in each
compute node (see Section 2). Our RE approach uses
fixed-size chunking with chunk size 4KB. To minimize
the impact of fragmentation, we set the fragmenta-
tion parameter α to 1, meaning that only the differ-
ential deltas are stored in the storage node (see Sec-
tion 3.3). We enable the LVM snapshot feature and use
posix_fadvice to pre-declare the access patterns (see
Section 3.4), but disable read limiting so as to obtain the
best possible versioning performance.

4.3 Performance of VM Operations

We first analyze the performance of different basic VM
operations when CloudVS is used. We focus on per-VM
versioning based on the dataset DS-SU.

Experiment 1 (VM startup time). We first con-
sider the startup time required for CloudVS to start
a VM version in a single compute node. The startup
time is measured from the time when the controller
node issues the VM startup request with the command
euca-run-instances (see Section 3.8), until the time
when the compute node turns the resulting VM instance
into the power-on state (i.e., right before the guest VM
is booted). Here, we only focus on the VM versions
that are created on Sundays. We also measure the time
for starting the times for starting the base image (of
size 5GB) that is retrieved from the cache and from the
storage node.

Fig. 7 shows the results. It provides a performance
breakdown when CloudVS is used to start a VM version,
including (i) downloading the delta, (ii) merging the
delta with the cached base image, and (iii) launching the
VM instance from the merged image. We observe that
the startup time ranges from 79s to 122s, and is mainly
attributed to downloading and merging the delta. Note
that during the process of merging the delta, CloudVS
also loads the cached base image, which is the necessary
step even without CloudVS. If we examine the time of
starting the cached base image, then we observe that

it takes about 77s. That is, the additional startup time
introduced by CloudVS ranges from 2s to 45s. On the
other hand, if we simply download a full VM image
without RE, then the total startup time is about 162s.
Thus, the VM startup time still benefits from RE by
retrieving less data than the full VM image.

Experiment 2 (VM versioning time). We now evaluate
the versioning time of CloudVS, which we define as the
time required to create a VM version. This includes the
time for creating an LVM snapshot, computing hashes,
generating the incremental delta, and uploading the
incremental delta to the storage node. Here, we focus on
the creation of the Sunday versions as in Experiment 1.

Fig. 8 shows the results. We observe that the version-
ing time ranges from 80s to 100s. In addition, we note
that the LVM snapshot time (i.e., the time when the
VM is locked or “frozen”) can be done within 5s. After
creating an LVM snapshot, the versioning process will
be done in the background. Thus, the versioning process
has limited negative impact from the user perspective.

We note that the network transfer time of CloudVS
only contributes no more than 3s, since we only send
incremental deltas in versioning. If we send a full 5GB
image without RE, the network transfer time increases
to 70s (measured in our testbed). While sending a full
image eliminates the overhead of delta generation, its
network transfer overhead can become dominant de-
pending on the network condition. For example, in
a 100Mb/s network, the transfer time can increase to
over 400s, which is significantly greater than the current
versioning time of CloudVS.

Experiment 3 (Starting multiple VM instances). We
further evaluate CloudVS when we start multiple VMs
simultaneously, using all four compute nodes in our
testbed. In the controller node, we issue the command
euca-run-instances -n N, where N = 1, 2, 4, 8,
16, and 32, so that Eucalyptus starts a total of N VM
instances and allocates them among the four nodes in
our testbed. Based on our study, Eucalyptus picks nodes
to start VM instances in a round-robin manner, so that
the compute nodes receive about the same number of
VM instances. For instance, if N = 32, then each of our
four compute nodes will be allocated 8 VM instances.
Here, we choose to start N instances of the VM version
on May 24, which has the largest differential delta size
among all versions in the dataset. We then measure the
total startup time (as defined in Experiment 1) to start
all VM instances. We also show the baseline case to
start multiple VM instances with the 5GB base image
retrieved from the storage node, as in Experiment 1.

Fig. 9 shows the results of the total startup time for
starting N VM instances. We observe that CloudVS re-
duces the startup time when compared to downloading
the same number of full base images, for example, by
50% when N = 32. The observations are consistent with
those in Experiment 1.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

 0

 50

 100

 150

 200

27/02 13/03 27/03 10/04 24/04 8/05 22/05

S
ta

rt
u

p
 T

im
e

 (
s
e

c
)

n-th Sunday version of Fedora 14 image

download delta

merge delta

VM setup

download a full 5G image

load from cached image

Fig. 7: Experiment 1: VM startup
time.

 0

 20

 40

 60

 80

 100

 120

 140

27/02 13/03 27/03 10/04 24/04 8/05 22/05

V
e

rs
io

n
in

g
 T

im
e

 (
s
e

c
)

n-th Sunday version of Fedora 14 image

freezing
generating delta
network transfer

Fig. 8: Experiment 2: VM versioning
time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

T
o

ta
l
s
ta

rt
u

p
 t

im
e

 (
s
e

c
)

No. of VM instances invoked

download full 5GB images
CloudVS

Fig. 9: Experiment 3: Total VM
startup time for starting N VM in-
stances.

4.4 Trade-Off Study

We analyze how CloudVS addresses the performance
trade-offs via different parameters. In the following, we
focus on the performance of per-VM versioning with
only a single compute node, using the dataset DS-SU.

Experiment 4 (Performance of RE). Recall that
CloudVS uses fixed-size chunking as its RE approach.
We now evaluate how the chunk size affects the storage
and time performance. For the storage performance, we
consider the size of the resulting differential delta; for
the time performance, we measure the CPU time needed
to create the differential delta in the compute node
(without sending the delta to the storage node). As in
Experiment 3, we focus on the VM version on May 24.

Fig. 10(a) plots the trade-off curve between the storage
cost and the versioning time. We observe that with a
larger chunk size, the size of the differential delta will
be larger since it is less likely to have identical chunks,
but less time is spent on delta creation due to fewer hash
computations. We observe that our default chunk size
4KB strikes a good balance between the storage and time
performance in general.

Note that CloudVS can also apply other RE tech-
niques. To illustrate, we use the utility rdiff, which
implements the rsync algorithm [28] to generate delta
files. Fig. 10(b) plots the trade-off curve. Note that it
generates a smaller delta size than fixed-size chunking
with the same chunk size (e.g., 10% less for chunk size
4KB), but it needs significantly more CPU time for delta
creation (e.g., 4× more for chunk size 4KB). We do not
dig into the detailed analysis of different RE techniques,
as it is beyond the scope of this paper. Our goal is merely
to show that CloudVS can apply different RE techniques
to trade between the storage and time performance.

Experiment 5 (Impact of α on storage and frag-
mentation). We evaluate how different values of the
fragmentation parameter α trade between the storage
and fragmentation overheads. Here, we set the chunk
group size to be 500 chunks of size 4KB each. For a
given α, we measure the cumulative storage of the deltas
across all VM versions. Also, we restore each VM version
locally within the storage node, which involves the disk
seeks of reading the delta associated with each version.

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 90 100 110 120 130 140 150

S
iz

e
 o

f
d
if
fe

re
n
ti
a
l
d
e
lt
a
 (

M
B

y
te

s
)

CPU time for creating differential delta (sec)

32k
16k

8k

4k

2k
1k 512 256

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 400 500 600 700 800 900

S
iz

e
 o

f
d
if
fe

re
n
ti
a
l
d
e
lt
a
 (

M
B

y
te

s
)

CPU time for creating differential delta (sec)

4k

2k
1k

(a) Fixed-size chunking (b) Rdiff

Fig. 10: Experiment 4: Performance of RE.

We measure the execution time for each restore process.
Figs. 11(a) and 11(b) plot the restore times for the

Sunday versions and cumulative storage consumption
for all 90 days of versions, respectively. Note that the
two extreme points α = 0 and α = 1 correspond to
storing incremental and differential deltas, respectively.
As expected, we observe that the larger α leads to less
restore time but more storage space, and vice versa. We
note that our current implementation is I/O-intensive in
differential delta reconstruction, in which multiple disk
seeks to the data chunks are required. Thus, increasing
α can mitigate fragmentation and hence the disk seek
overhead. Nevertheless, storing differential deltas still
significantly saves the storage space compared to simply
keeping full images without using RE, as the latter
approach consumes a total of 450GB of space (recall
that each VM is configured with 5GB of space). We also
choose two intermediate values α = 0.1 and α = 0.5. For
example, with α = 0.5, the restore time is 3s more than
the extreme point α = 1 (with purely differential deltas),
while consuming 35% less storage.

Experiment 6 (Impact of read limiting). Finally, we
evaluate how the read limiting feature (see Section 3.4)
minimizes the interferences to other processes or VM
instances in the same compute node during versioning.
We start four VM instances on a single compute node,
and then terminate N of the instances, where N = 1, 2,
and 3. Once we start terminating the VM instances, we
start compiling the source code of Apache HTTP Server
2.2.19 on one of the remaining active VM instances. The
compile process includes both CPU and I/O intensive
jobs, so we expect that the compile time is affected by

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

 0

 5

 10

 15

 20

 25

 30

 35

27/02 13/03 27/03 10/04 24/04 08/05 22/05

R
e
s
to

re
 t
im

e
 i
n
 s

to
ra

g
e
 n

o
d
e
 (

s
e
c
)

n-th Sunday version of Fedora 14 image

α=1
α=0.5
α=0.1

α=0

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90C
u
m

u
la

ti
v
e
 s

to
ra

g
e
 (

G
B

y
te

s
)

n-th VM version created

α=1
α=0.5
α=0.1

α=0

(a) Restore time in the
storage node

(b) Cumulative storage

Fig. 11: Experiment 5: Impact of α on storage and
fragmentation.

 0

 20

 40

 60

 80

 100

 1 2 3

C
o
m

p
ile

 t
im

e
 (

s
e
c
)

No. of VM instances being shut down

No read limiting
rate=10MB/s
rate=20MB/s
rate=30MB/s
rate=60MB/s

Baseline

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3

T
o
ta

l
v
e
rs

io
n
in

g
 t
im

e
 (

s
e
c
)

No. of VM instances being shut down

No read limiting
rate=10MB/s
rate=20MB/s
rate=30MB/s
rate=60MB/s

(a) HTTP server compile
time

(b) Versioning time

Fig. 12: Experiment 6: Impact of read limiting.

the versioning process.
Fig. 12(a) shows the time required to compile Apache

with different read limiting rates. We also plot the base-
line compile time when no versioning is performed.
Without read limiting, the compile time takes up to 2×
more than the baseline case during versioning. Read
limiting mitigates the interference. For example, when
the read limiting rate is set to 20MB/s and only one VM
is shut down, the compile time is reduced to almost the
same as in the baseline case.

The trade-off of read limiting is the increase in the ver-
sioning time. Fig. 12(b) shows the total time of creating
all versions for the shutdown VMs when read limiting
is used. For example, when the read limiting rate is
20MB/s, the total versioning time is about 520s. Note
that the versioning process is done in the background,
so the longer versioning time has minimal impact. In
addition, read limiting smoothes the burst of creating
multiple VM versions simultaneously. Even with more
VM instances being shut down at the same time, there
is still enough processing power to handle multiple
simultaneous versioning processes. As a result, the total
versioning time remains constant.

4.5 Analysis of Multi-VM Versioning

We now evaluate the performance of CloudVS using
the real-world dataset DS-PA. We first study the perfor-
mance of VM operations of CloudVS based on DS-PA.
We then analyze how multi-VM versioning can further
eliminate redundancy compared to per-VM versioning.

Experiment 7 (VM startup time with DS-PA). We
evaluate the startup time required for CloudVS to start a

 80

 100

 120

 140

 160

 180

 200

 220

 0 1 2 3 4 5 6 7

S
ta

rt
u

p
 T

im
e

 (
s
e

c
)

n-th weekly snapshot

Fig. 13: Experiment 7: Box plots of VM startup time in
each weekly snapshot of the dataset DS-PA.

VM version in a single compute node using dataset DS-
PA. Here, we only focus on the overall startup time of
each VM version over the 7-week span. We measure the
startup time for each VM in each weekly snapshot. We
also measure the time for starting the base image (of size
10GB) that is retrieved from the storage node. We again
present the results in box plots to show the distributions
of VM startup time in each weekly snapshot.

Fig. 13 shows the box plots of distribution of VM
startup time of VM in each weekly snapshot. Overall we
observe that the startup time ranges from 101s to 202s.
On the other hand, if we simply download a full VM
image without RE, then we find that the total startup
time can reach 400s (not shown in the figure). We ob-
serve the significant startup time reduction because the
original Eucalyptus design does not eliminate redundant
blocks in download.

Experiment 8 (Multi-VM versioning with tunable
delta storage). We evaluate how the multi-VM version-
ing works with different values of the fragmentation
parameter α in the tunable delta storage. The goal of
this experiment is to show that the tunable delta storage
mechanism remains applicable in multi-VM versioning.
In this experiment, we enable multi-VM versioning and
keep other parameters the same as in Experiment 5
(which only considers per-VM versioning). For a given
α, we restore VM versions of the snapshot of the 7th
weekly snapshot of DS-PA locally within the storage
node. The restore process incurs disk seeks due to read-
ing the deltas associated with the ascendant versions.
We measure the execution time for the restore process
of each of the 17 VMs. Before each run, we flush the
cache in memory by executing the commands sync and
echo 3 >/proc/sys/vm/drop_caches. The results
are averaged over four runs.

Fig. 14 plots the restore time for all VM versions
from DS-PA under several values of α. Recall that the
two extreme points α = 0 and α = 1 correspond to
storing incremental and differential deltas, respectively.
Despite the variance of the experimental results, we
can see roughly the larger α leads to less restore time,
similar to the observations in per-VM versioning (see
Experiment 5).

Experiment 9 (Storage and bandwidth transfer sav-
ings with multi-VM versioning). We evaluate how

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
e

s
to

re
 t

im
e

 i
n

 s
to

ra
g

e
 n

o
d

e
 (

s
e

c
)

n-th VM of 7-th weekly snapshot

α=1
α=0.5
α=0.1

α=0

Fig. 14: Experiment 8: Restore time in the storage node
with multi-VM versioning.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7

C
u
m

u
la

ti
v
e
 s

to
ra

g
e
 (

G
B

)

n-th weekly snapshot created

α=1 multi-VM
α=0.5 multi-VM

α=0 multi-VM
α=1 per-VM

α=0.5 per-VM
α=0 per-VM

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7

T
ra

n
s
fe

r
s
a
v
in

g
 (

%
)

n-th weekly snapshot created

(a) Cumulative storage (b) Transfer saving

Fig. 15: Experiment 9: Storage and bandwidth transfer
savings with multi-VM versioning.

multi-VM versioning saves storage and the bandwidth
of network transfer. Here, we consider a compute node
in which we apply multi-VM versioning to the 17 VM
versions over the seven weekly snapshots.

We measure the cumulative storage of the deltas across
all VM versions over the 7-week span. Fig. 15(a) plots
the results for both per-VM versioning and multi-VM
versioning for different values of α. We can see that
multi-VM versioning further saves the storage of per-
VM versioning, by 21-59% for α = 0 (incremental delta)
and 1.5-7.9% for α = 1 (differential delta).

We also measure the bandwidth transfer (recall that
the data is always sent as incremental delta from the
compute node to the storage node over the network).
Fig. 15(b) plots the results. It is worth nothing that multi-
VM versioning specifically saves 59% of bandwidth in
the first week of snapshot and 28% of bandwidth in
the fifth week of snapshot. After investigation of the
results, we find that users have installed or upgraded
the common software package needed for their course
assignments in these two weeks. Thus, multi-VM ver-
sioning takes advantage of the similar disk modifications
made to all VMs, and saves the transfer bandwidth.

4.6 Analysis of Copy-On-Write (CoW) Format

We analyze the performance of different basic VM op-
erations when CloudVS is applied to the QCoW2 image
format. We focus on per-VM versioning based on the
dataset DS-SU. Our goal is to show that CloudVS can
take advantage of the CoW feature and reduce the
startup/restore overhead when compared to the original
CloudVS that operates on the raw image format. We also

compare the restore performance of CloudVS and the
plain QCoW2. The latter is chosen as the default QCoW2
installation with external snapshotting, as described in
Section 3.6.

Experiment 10 (VM startup performance with
QCoW2). We re-examine the startup time required for
CloudVS to start a VM version in a single compute
node using the dataset DS-SU. The experiment setting
is the same as Experiment 1, except that CloudVS is
now used with QCoW2. We choose two special cases for
the tunable delta storage: α = 1 (differential delta) and
α = 0 (incremental delta). For comparison, we also plot
the results of Experiment 1 that represent the original
CloudVS that operates on the raw image format.

Fig. 16(a) shows the startup time results. When
QCoW2 is used, the VM startup time of CloudVS ranges
from 8s to 47s for α = 0 (incremental delta) and from 7s
to 25s for α = 1 (differential delta). It shows a similar
increasing trend of startup time as in Experiment 1, but
the startup time is significantly reduced compared to the
original CloudVS. For example, for α = 1, the support of
QCoW2 saves 81-91% of startup time by mitigating the
overhead of whole VM image reconstruction.

We further compare the startup performance of
CloudVS with QCoW2 support and the plain QCoW2.
Our goal is to show how CloudVS mitigates fragmenta-
tion in the storage node by storing differential delta (i.e.,
α = 1). To test the plain QCoW2, we set up a remote NFS
service in the storage node to store a series of external
snapshots of a QCoW2 image. We first download the
latest QCoW2 external snapshot, and take the remaining
snapshot files at the remote NFS as backing files to
start the VM. The data chunks store at the remote NFS
will be retrieved on demand during startup. We start
the VM versions through both CloudVS and the plain
QCoW2. To make a fair comparison on the actual startup
performance, we measure the start-until-idle time, which
is defined as the startup time (shown in the previous
experiments) plus the time required to boot the guest
OS until the system is ready to use.

Fig. 16(b) shows the results. The start-until-idle time
for the plain QCoW2 ranges from 30s to 81s, and that of
CloudVS ranges from 34s to 55s for α = 1 and from 35s
to 77s for α = 0. The plain QCoW2 outperforms CloudVS
in restoring the earlier versions, since only few chunks
are downloaded on demand when the guest OS is booted
with the plain QCoW2. However, we note that when
restoring later versions (after 27th March), the start-until-
idle time of CloudVS for α = 1 is less than that of plain
QCoW2, as the versioning chain of QCoW2 image is
getting longer and the fragmentation plays a major role
in causing significant overhead. For the VMs of May, the
start-until-idle time of the plain QCoW2 closely matches
CloudVS with α = 0. On the other hand, CloudVS can
mitigate the fragmentation problem by reconstructing
differential delta in the storage node for α = 1.

Experiment 11 (VM versioning performance with
QCoW2). We re-evaluate the versioning time of CloudVS

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

 0

 20

 40

 60

 80

 100

 120

 140

 160

27/02 13/03 27/03 10/04 24/04 8/05 22/05

S
ta

rt
u
p
 T

im
e
 (

s
e
c
)

n-th Sunday version of Fedora 14 image

α=0 w/QCoW2

α=1 w/QCoW2

α=1 original

 0

 20

 40

 60

 80

 100

27/02 13/03 27/03 10/04 24/04 8/05 22/05

S
ta

rt
-u

n
ti
l-
id

le
 T

im
e
 (

s
e
c
)

n-th Sunday version of Fedora 14 image

α=0 w/QCoW2

α=1 w/QCoW2

plain QCoW2

(a) versus baseline (b) versus plain QCoW2

Fig. 16: Experiment 10: VM startup performance of
CloudVS with QCoW2 enhancement compared with (a)
the baseline CloudVS and (b) the plain QCoW2.

 0

 5

 10

 15

 20

 25

 30

 35

 40

27/02 13/03 27/03 10/04 24/04 8/05 22/05

V
e
rs

io
n
in

g
 T

im
e
 (

s
e
c
)

n-th Sunday version of Fedora 14 image

freezing
generating delta
network transfer

 0

 20

 40

 60

 80

 100

 120

 140

27/02 13/03 27/03 10/04 24/04 8/05 22/05

V
e
rs

io
n
in

g
 T

im
e
 (

s
e
c
)

n-th Sunday version of Fedora 14 image

CloudVS w/QCow2
CloudVS w/o QCow2

plain QCow2

(a): breakdown (b): versus plain QCoW2

Fig. 17: Experiment 11: VM versioning for CloudVS
when QCoW2 is used.

with QCoW2, as in Experiment 2. Again, we provide a
breakdown for the times for creating a QCoW2 snap-
shot, generating the incremental delta from the QCoW2
snapshot, and uploading the incremental delta to the
storage node. We also compare the snapshot result with
(i) the baseline version of CloudVS, which works on
RAW image and (ii) the plain QCoW2 that stores the
external snapshots on a remote NFS backend as in the
previous experiment.

Fig. 17(a) shows the breakdown results. With QCoW2,
the versioning time of CloudVS ranges from 21s to 29s.
As in Experiment 2, the time of generating delta is much
less than the baseline by around 75%. The reason is
that the CoW feature of QCoW2 separates the write
requests from the previous version, and therefore the
delta generation only requires a rapid comparison of
items in the block mapping table in the QCoW2 image.
It eliminates the need to scan the whole VM image.
Fig. 17(b) show the versioning time results compared
with the plain QCoW2. CloudVS is slower (by 5-20s)
in the versioning process because there is a format
conversion that requires extra logic and computation. We
regard the overhead as a trade-off as CloudVS provides
extra features such as tunable delta storage.

In the digital supplemenary file, we analyze the restore
performance of CloudVS when in-place VM restore is
applied (see Section 3.7).

5 RELATED WORK

VM snapshotting and versioning. Several studies focus
on creating memory or disk snapshots for VMs. Park
et al. [18] propose to avoid storing redundant memory

pages of a VM to reduce the time and space of saving
the VM memory states. Zhang et al. [33] propose to
estimate the working set of VM memory so that VM
snapshots can be efficiently restored. While [18], [33]
focus on saving memory states, some studies [8], [29]
also consider saving the VM disk states. Goiri et al. [8]
differentiate the read-only and read-write parts of a VM
disk, and each checkpoint only stores the modifications
of the read-write points. CloudVS does not make such
differentiation, but instead it directly identifies content-
based similarities by scanning the whole VM disk image.
Mirage [23] proposes a new VM image format that
includes semantic information, and addresses version
control of VM images as in our work. It requires the
knowledge of the underlying file system semantics in
the VM image to construct VM versions, while CloudVS
directly scans for the changes in the VM image file using
RE and is generic to any file systems inside the VM.
Foundation [24] is an archiving system for VM disk
snapshots. To save storage space, it leverages dedupli-
cation to eliminate the storage of redundant data blocks.
Nicolae et al. [14] propose a distributed versioning stor-
age service to store VM snapshots. On the other hand,
CloudVS focuses on the performance issues when RE is
applied in versioning under commodity settings. Note
that CloudVS supports tunable storage of VM versions,
which is not addressed in prior work.

VM migration. VM migration [3], [13] is to move
a running VM across different physical hosts over the
network. Both studies [3], [13] focus on migration of
memory snapshots. To minimize the bandwidth of mi-
gration, they use the pre-copy approach, in which the
first step copies the entire memory snapshot, and the
subsequent steps only copy the modified memory pages.
Hines et al. [9] use a post-copy approach to speed up the
migration. CloudNet [32] can migrate both memory and
disk states over the Internet, using content-based RE to
minimize the migration bandwidth.

RE techniques. RE is used in many applications in
minimizing redundant data, such as data forwarding
(e.g., [32]) and data storage (e.g., [11], [22], [24], [30]). In
this work, we focus on managing VM images using RE,
and specifically consider different tunable mechanisms
based on our RE approach to make CloudVS amenable
to different commodity platforms.

6 CONCLUSIONS

We propose CloudVS, an add-on system that provides
version control for VMs in an open-source cloud that
is deployed with commodity hardware and operating
systems. CloudVS leverages redundancy elimination to
build different VM versions, such that each VM ver-
sion only keeps the new and modified data chunks
since the prior versions. We also propose a simple tun-
able heuristic and several optimization techniques to
allow CloudVS to address different performance trade-
offs for different deployment scenarios. We further pro-
pose a multi-VM versioning mechanism and extend

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

CloudVS to support the QCoW2 image format. We
evaluate the performance of CloudVS via real-world
VM image traces and conduct extensive testbed exper-
iments to validate the effectiveness of CloudVS. Our
work provides an applied study on how to build a
practical system that facilitates the operational man-
agement of an open-source private cloud. The source
code of CloudVS is published for academic use at
http://ansrlab.cse.cuhk.edu.hk/software/cloudvs.

ACKNOWLEDGMENTS

An earlier 8-page conference version of this paper ap-
peared in IEEE/IFIP NOMS’12 [27]. This work was
supported in part by grant GRF CUHK 413813 from the
Research Grant Council of Hong Kong.

REFERENCES

[1] P. Anderson and L. Zhang. Fast and Secure Laptop Backups with
Encrypted Deduplication. In Proc. of USENIX LISA, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
A View of Cloud Computing. Comm. of the ACM, 53(4):50–58, Apr
2010.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proc. of USENIX NSDI, 2005.

[4] A. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized
Deduplication in SAN Cluster File Systems. In Proc. of USENIX
ATC, 2009.

[5] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. In Proc. of IEEE ICDCS, 2002.

[6] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
HYDRAstor: A scalable secondary storage. In Proc. USENIX FAST,
Feb 2009.

[7] Eucalyptus. Eucalyptus Command Line Interface Reference
Guide. http://www.eucalyptus.com/docs/3.1/cli/
euca-bundle-instance.html.

[8] I. Goiri, F. Juliá, J. Guitart, and J. Torres. Checkpoint-based Fault-
tolerant Infrastructure for Virtualized Service Providers. In Proc.
of IEEE NOMS, 2010.

[9] J. G. Hansen and E. Jul. Lithium: Virtual Machine Storage for the
Cloud. In Proc. of ACM SOCC, 2010.

[10] K. Jin and E. L. Miller. The effectiveness of deduplication on
virtual machine disk images. In Proc. ACM SYSTOR, 2009.

[11] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redundancy
elimination within large collections of files. In Proc. of USENIX
ATC, 2004.

[12] A. Lewis. LVM Howto. http://tldp.org/HOWTO/
LVM-HOWTO/index.html, 2006.

[13] M. Nelson, B.-H. Lim, and G. Hutchins. Fast Transparent Migra-
tion for Virtual Machines. In Proc. of USENIX ATC, 2005.

[14] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu. Going back
and forth: efficient multideployment and multisnapshotting on
clouds. In Proc. of ACM HPDC, 2011.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus Open-source
Cloud Computing System. In Proc. of IEEE CCGrid, 2009.

[16] OpenStack. http://www.openstack.org.
[17] OpenStack. XenServer Snapshot Blueprint. http://wiki.

openstack.org/XenServerSnapshotBlueprint.
[18] E. Park, B. Egger, and J. Lee. Fast and space efficient virtual

machine checkpointing. In Proc. of ACM VEE, 2011.
[19] QEMU. Qcow2 specification. https://github.com/qemu/

QEMU/blob/master/docs/specs/qcow2.txt.
[20] S. Quinlan and S. Dorward. Venti: a new approach to archival

storage. In Proc. USENIX FAST, 2002.

[21] M. O. Rabin. Fingerprinting by random polynomials. Technical
Report Tech. Report TR-CSE-03-01, Center for Research in Com-
puting Technology, Harvard University, 1981.

[22] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and J. C. S. Lui.
A secure cloud backup system with assured deletion and version
control. In International Workshop on Security in Cloud Computing,
2011.

[23] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala. Opening Black Boxes: Using Semantic Information to
Combat Virtual Machine Image Sprawl. In Proc. of ACM VEE,
2008.

[24] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-
addressed storage in foundation. In Proc. USENIX ATC, 2008.

[25] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-
Party Compute Clouds. In Proc. of ACM CCS, 2009.

[26] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, May 2010.

[27] C. P. Tang, T. Y. Wong, and P. P. C. Lee. CloudVS: Enabling
Version Control for Virtual Machines in an Open-Source Cloud
under Commodity Settings. In Proc. of IEEE/IFIP NOMS, 2012.

[28] A. Tridgell and P. Mackerras. The rsync algorithm. Technical
Report TR-CS-96-05, The Australian National University, 1996.

[29] G. Vallée, T. Naughton, H. Ong, and S. L. Scott. Check-
point/restart of virtual machines based on xen. In High Availability
and Performance Computing Workshop (HAPCW), 2006.

[30] M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem
backup to the cloud. ACM Trans. on Storage (ToS), 5(4), Dec 2009.

[31] J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2: A scalable high-
throughput exact deduplication approach for network backup
services. In Proc. of IEEE MSST, 2010.

[32] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
CloudNet: Dynamic Pooling of Cloud Resources by Live WAN
Migration of Virtual Machines. In Proc. of ACM VEE, 2011.

[33] I. Zhang, Y. Baskakov, A. Garthwaite, and K. C. Barr. Fast Restore
of Checkpointed Memory using Working Set Estimation. In Proc.
of ACM VEE, 2011.

Chung Pan Tang received the BSc. degree in
Physics from the Chinese University of Hong
Kong in 2011. Currently he is a M.Phil. student
of the Department of Computer Science and
Engineering at the same school. His research in-
terests include cloud computing and data dedu-
plication.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an assistant professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. His
research interests include distributed systems,

computer networks, cloud computing, and data storage.

Tsz Yeung Wong received his Ph.D., M.Phil.,
and B.Sc. degrees all from the Department of
Computer Science and Engineering at the Chi-
nese University of Hong Kong in 2007, 2002,
and 2000, respectively. He is now a lecturer
of the Department of Computer Science and
Engineering at the Chinese University of Hong
Kong. His research interests include computer
and network security and operating systems.

