IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Optimal Repair-Scaling Trade-off in Locally
Repairable Codes: Analysis and Evaluation

Si Wu, Zhirong Shen, Patrick P. C. Lee, Yinlong Xu

Abstract—How to improve the repair performance of erasure-coded storage is a critical issue for maintaining high reliability of modern
large-scale storage systems. Locally repairable codes (LRC) are one popular family of repair-efficient erasure codes that mitigate the
repair bandwidth and are deployed in practice. To adapt to the changing demands of access efficiency and fault tolerance, modern
storage systems also conduct frequent scaling operations on erasure-coded data. In this paper, we analyze the optimal trade-off between
the repair and scaling performance of LRC in clustered storage systems. Specifically, we focus on two optimal repair-scaling trade-offs,
and design placement strategies that operate along the two optimal repair-scaling trade-off curves subject to the fault tolerance
constraints. We prototype and evaluate our placement strategies on a LAN testbed, and show that they outperform the conventional

placement schemes in repair and scaling operations.

1 INTRODUCTION

As storage systems continue to scale, failures become com-
monplace [7]. To provide reliability guarantees for data
storage even in the presence of failures, modern storage
systems increasingly adopt erasure coding to maintain fault
tolerance at low redundancy. Compared to traditional repli-
cation, erasure coding provably achieves higher degree of
reliability at the same degree of redundancy [28], and has
been widely deployed in enterprise storage systems [7], [11],
[14], [22]. At a high level, erasure coding takes a set of original
data blocks as input, and generates additional redundant
blocks called parity blocks, such that all original data blocks
can be reconstructed from a subset of available data and
parity blocks.

To maintain data availability, storage systems need to
perform frequent repair operations to recover any lost data
from failures. However, erasure coding amplifies the network
traffic and disk 1/Os in repair operations [20]. Specifically,
the repair of a single lost block incurs network transfers and
disk I/Os of multiple available blocks for reconstruction.
To mitigate the expensive repair cost introduced by erasure
coding, many erasure code constructions have been proposed
in the literature to improve repair efficiency. Locally repairable
codes (LRC) [11], [14], [22], [25], in particular, are a new family
of erasure codes that mitigate the network traffic and disk
I/0Os of repair with slight addition of storage redundancy.
The main idea of LRC is to partition the original data blocks
into several small-size local groups and generate a local

o S. Wu and Y. Xu are with the School of Computer Science and
Technology, University of Science and Technology of China (emails:
{siwu5938,ylxu}@ustc.edu.cn).

e Z. Shen is with the College of Informatics, Xiamen University. (email:
zhirong.shen2601@gmail.com,).

o P Lee is with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong. (email: pclee@cse.cuhk.edu.hk).

o An earlier conference version of the paper appeared in IEEE International
Conference on Computer Communications (INFOCOM 2020) [32]. In this
journal version, we add the trade-off analysis between the downcoding cost
and the repair cost of the compact LRC. We also add new evaluation results
in both simulation and testbed experiments.

parity block for each local group, such that the repair of any

single failed block can be achieved within a short-size group.

Due to its simplicity, ease of implementation, and the repair

efficiency, LRC has been widely deployed in production [11],

[14], [22].

In addition to repair, storage systems also perform
frequent scaling operations to adapt to the requirements of
fault tolerance and access efficiency. By scaling, we refer to
the change of erasure coding parameters to balance the trade-
off between access performance and storage efficiency [34].
Scaling is important for not only the expansion in storage
capacity [36], but also adapting to the storage redundancy
requirements with respect to the change of reliability [13].

In this paper, we analyze the interplay of both repair
and scaling operations of LRC in clustered storage systems,
which hierarchically organize nodes in multiple clusters
such that the cross-cluster network bandwidth appears
much more scarce than the inner-cluster bandwidth [2],
[5], [27]. We show that the cross-cluster repair and scaling
costs cannot be simultaneously minimized, and there exists
some fundamental trade-offs between the repair and scaling
performance. To the best of our knowledge, this is the first
work that unveils the inherent optimal repair-scaling trade-
off in erasure-coded storage. To summarize, our contributions
are as follows.

o We derive the feasible data placement strategies subject to
the single-cluster fault tolerance constraint, under which
we show that the (cross-cluster) repair and scaling costs
cannot be simultaneously minimized for any possible data
placements (Section 3).

o We present the formal analysis on two optimal trade-offs
between the repair and scaling performance of LRC in
clustered storage systems (Section 4). We explore different
data placement strategies that operate along the two
optimal repair-scaling trade-off curves. Specifically, for a
given (cross-cluster) scaling cost, we can find a placement
strategy that minimizes the (cross-cluster) repair cost.

o We implement the two extreme points of our placement
strategies in each trade-off curve: one on minimizing the
scaling cost, and another on minimizing the repair cost.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Cluster

Figure 2. LRC with (k,1,g,¢) =
Figure 1. Example of a clustered (6,2,2,3), where each dotted-
storage system architecture. line represents a cluster.

We conduct experiments on a LAN testbed. Experimental
results show that, for the first trade-off curve, the place-
ment with the minimum scaling cost reduces the scaling
time of the baseline by up to 95.2%, while the placement
with the minimum repair cost reduces the repair time of
the baseline by up to 91.5%; for the second trade-off curve,
the optimal-scaling placement reduces the scaling time of
a second baseline by up to 97.8%, while the optimal-repair
placement reduces the repair time of the second baseline
by up to 73.0%. (Section 5).

2 BACKGROUND
2.1 Clustered Storage System Architecture

We consider a clustered storage system modeled as a two-
level hierarchical architecture [5], as shown in Figure 1.
The system partitions storage nodes (or nodes in short) into
multiple clusters, such that the nodes within a cluster are
connected via the same switch, while multiple clusters are
interconnected via a network core. A cluster can refer to a
rack [11], [22] or a data center [3], [18]. The system organizes
data in a collection of fixed-size blocks, which form the basic
read /write units. Here, we assume that the cross-cluster
bandwidth in clustered storage systems is much more scarce
than the inner-cluster bandwidth [2], [5], [27]. Our goal is to
minimize the cross-cluster network traffic in both repair and
scaling operations.

2.2 Locally Repairable Codes

Basics of LRC. We present the basics of locally repairable codes
(LRC). We configure an LRC construction with four parame-
ters (k, 1, g, ¢), meaning that there are k data blocks (denoted
by Dy, D1, - ,Di_1), I local parity blocks (denoted by
Lo,L1,---,L;—1), and g global parity blocks (denoted by
Go,G1, -+ ,Gg—1), such that all k£ + [+ g data/parity blocks
are stored in k 4 [4+ g nodes located in c clusters. We call the
set of k+1+-g data/parity blocks that are encoded together to
be a stripe, and a large-scale storage system typically contains
multiple stripes that are independently encoded. In the paper,
our analysis focuses on a single stripe.

By storing each LRC stripe of blocks in multiple nodes
and clusters, a storage system achieves both node-level and
cluster-level fault tolerance. Since cluster failures are much
less common than node failures in practice [18], we enforce
the data placement of each LRC stripe such that the storage
system provides only single-cluster fault tolerance (i.e., the data
remains available under a single-cluster failure), while still
providing multi-node fault tolerance. By storing multiple
blocks in a single cluster, we can significantly reduce cross-
cluster network traffic during repair [9], [10], [17], [19], [23].

There are various LRC constructions in the literature [11],
[22], [25]. In this paper, we focus on the LRC construction

2

based on Azure’s Local Reconstruction Codes [11]. Specifi-
cally, LRC divides the k data blocks into ! equal-size groups,
assuming that k is divisible by [. It computes an XOR sum
based on each group of % data blocks to form a local parity
block. It also computes the g global parity blocks from all k&
data blocks. Let b be the number of data blocks that encode
into a local parity block, i.e., b = % We call the collection
of b data blocks and their corresponding local parity block
to be a local group. Figure 2 gives an example of LRC for
(k,1,g,¢) = (6,2,2,3).

Repair of LRC. LRC is designed to mitigate the network
traffic and disk I/Os for a single-block repair (which is much
more common than a multi-block repair in practice [11],
[20]) by limiting the repair within a local group. Given that
transient failures account for the majority of failure events
[7] and the temporarily unavailable data blocks are served
by degraded reads, in this paper, we focus on the repair of a
single unavailable data block in LRC.

We quantify the (single-data-block) repair performance
of LRC in clustered storage systems as follows. To repair any
unavailable data block, LRC retrieves other available blocks
of the same local group. Let C'(D;) denote the amount of
cross-cluster network traffic being transferred for repairing a
data block D;. Then we define the repair cost of LRC (a.k.a.
the average repair cost in [14]) as Sk Loms).

If each local group is put in the same cluster (e.g., in
Figure 2), the repair cost is zero as there is no cross-cluster
network transfer. If LRC adopts the flat data placement by
storing each of the k + [4 g blocks of a stripe in a distinct
cluster [11], [22], [34], then the repair cost is equal to b.

Scaling of LRC. We define scaling as the change of coding
parameters in erasure coding. In this paper, we consider
the change of two sets of LRC parameters in response
to workload changes as described in [34]. Specifically, we
consider two LRC constructions: (i) fast LRC, which stores
more local parity blocks for higher repair performance (e.g.,
for hot data), and (ii) compact LRC, which stores fewer local
parity blocks for higher storage efficiency (e.g., for cold data).
Both fast and compact LRCs store the same numbers of
data blocks and global parity blocks. We perform scaling
operations to switch between the fast and compact LRCs to
balance between access performance and storage efficiency.

We call the conversion upcoding when scaling from the
fast LRC to the compact LRC, and downcoding when scaling
from the compact LRC to the fast LRC. Note that upcoding
and downcoding are also defined in [34]. Also, upcoding
increases storage efficiency by reducing the number of local
parity blocks, while downcoding reduces storage efficiency
by increasing the number of local parity blocks. Accordingly,
we define the upcoding cost and the downcoding cost as
the amounts of cross-cluster network traffic transferred for
upcoding and downcoding, respectively.

Note that both upcoding and downcoding happen fre-
quently under dynamic workloads [15], [34]. Specifically,
storage systems conduct upcoding when data becomes cold
or the overall storage efficiency needs to be improved, while
downcoding happens when data becomes hot again.

Figure 3 depicts the upcoding and downcoding for the
fast LRC with (12,6,2,20) and the compact LRC with
(12,2,2,16). Both codes are deployed under the flat data

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[S—

(a) Upcoding (b) Downcodin

Figure 3. Upcoding and downcoding for fast LRC (12,6,2,20) and
compact LRC (12,2, 2,16), in which each block is stored in a distinct
cluster.

placement (i.e., each block is stored in a distinct cluster).
The upcoding operation (from (12, 6,2, 20) to (12,2, 2,16))
sends Ly and Ly across clusters to Lg to compute a new local
parity block L;J, and sends L4 and Ls across clusters to L3
to compute a new local parity block L. Thus, the upcoding
cost is 4. On the other hand, the downcoding operation (from
(12,2,2,16) to (12,6,2,20)) sends Dy and D3 to another
cluster to compute L;, and sends D4 and Ds to another
cluster to compute Ls. It then sends L; and Ly to the cluster
that holds Lb to compute Lg. The same is for L3, L4, and Ls.
In total, the downcoding cost is 12.

3 FAULT TOLERANCE AND MOTIVATION
3.1 Fault Tolerance of LRC

We first analyze the feasible data placement strategies subject
to the single-cluster fault tolerance constraint (Section 2.2).

Lemma 1. A (k,l, g) LRC can tolerate any g + 1 block failures
that span i local groups, where 1 < i < [. However, the fault
tolerance will fail if there exist ¢ local groups with more than g +
block failures.

Proof. Consider a set of up to g + ¢ failed blocks that span
i local groups (1 < i < I). Suppose that the failed blocks
comprise d data blocks, « local parity blocks (0 < z < %), and
y global parity blocks (0 < y < g), such thatd+z+y < g+:.
In other words, x local groups have failed local parity blocks,
while 7 — x local groups have failed data blocks only and
their local parity blocks are available for repair. For each of
the ¢ — x local groups with available local parity blocks, we
can swap the available local parity block with one failed data
block, and mark the data block as available and the local
parity block as failed. By doing so, we can transform the set
of failed blocks into d — (i — x) failed data blocks, which can
now be decoded by the g — y surviving global parity blocks
asd — (i —z) < g — y [11]. After decoding the failed data
blocks, we can recover all failed local/global parity blocks.
The fault tolerance is maintained.

Based on the above analysis, we can also prove that
a (k,1,g) LRC cannot tolerate any more than g + ¢ block
failures if they span i local groups (1 < ¢ <). By swapping
the available local parity blocks and the failed data blocks,
we have d — (i —) failed data blocks that need to be decoded
from g — y available global parity blocks. If there are more
than ¢ + 4 block failures, we have d — (i — x) > g — v,
implying that there are more failed data blocks than the
available global parity blocks. Thus, the data blocks cannot
be repaired. O

By Lemma 1, we can deduce that if we provide single-
cluster fault tolerance for a (k,, g) LRC, we have to place no

(a) Minimum upcoding cost (b) Minimum repair cost (fast)

Figure 4. Two data placements for the fast LRC (12,6,2,7) being
upcoded to the compact LRC (12,2,2,7). The key is to determine the
placement of the local parity blocks.

D1 Core Core - e
eon B2 mam mpR
B B

U

DlZ Dl3 D15

[o, o]
; I

(a) Minimum downcoding cost (b) Minimum repair cost (compact)

Figure 5. Two data placements for the compact LRC (16, 2, 2, 9) being
downcoded to the fast LRC (16,8,2,9). The key is to design the
placement of the data blocks.

more than g + ¢ blocks that span ¢ local groups in a cluster;
otherwise, a cluster failure will cause data loss.

3.2 Motivating Examples

We show via motivating examples that there is no data
placement that can simultaneously minimize both the repair
and scaling costs for LRC. Recall that repair is a common
operation in the face of block failures, and both upcoding and
downcoding are also common operations under dynamic
workloads (Section 2). Thus, we compare the repair of the
fast LRC and the upcoding, and the repair of the compact
LRC and the downcoding.

Repair of fast LRC and upcoding. Figure 4 presents two
data placements for a fast LRC with (12, 6,2, 7), which is to
be upcoded to a compact LRC with (12,2,2,7). As [reduces
from 6 to 2, we generate a local parity block of the compact
LRC based on every three local parity blocks of the fast LRC.

In Figure 4(a), we place the local parity blocks in two
clusters. Since there is no cross-cluster transfer in upcoding,
the upcoding cost is zero, which is the minimum. On the
other hand, the cost for repairing each of D, to D5 is 0, 0, 1,
1, 1, 1, respectively, while the same is for Dg to D;;. Thus,
the repair cost is 0.67.

In Figure 4(b), we place each local group (the local parity
block and its corresponding encoding data blocks) in one
cluster. The repair of each data block can now be done in
each cluster locally, so the repair cost is zero, which is the
minimum. However, the upcoding needs to transfer four
blocks across clusters. Thus, the upcoding cost is four.

Figure 4 shows that the repair and upcoding costs cannot
be simultaneously minimized for any data placement.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Upcoding cost:
minimum +| Opt=S-F

Upcoding

Downcoding
Opt-S-C — cost:

minimum

Placements for
compact LRC

Placements for
fast LRC

Repair cost
(fast):
minimum

Repair cost
Opt-R-C — (compact):

minimum

<« Opt-R-F

Downcoding

Figure 6. Roadmap for analyzing the trade-off between repair and scaling.

Repair of compact LRC and downcoding. Figure 5 gives
two placement policies for a compact LRC with (16,2, 2,9),
which is to be downcoded to a fast LRC with (16,8,2,9).
Since [increases from 2 to 8, we need to regenerate 8 local
parity blocks of the fast LRC.

In Figure 5(a), each set of encoding data blocks is placed
in one cluster. The downcoding can be done within each
cluster locally, so the downcoding cost is zero, which is the
minimum. However, as Dy-D~ and LE) span four clusters, the
repair of any data block requires three cross-cluster transfers.
The same holds for Dg-D;5. Therefore, the repair cost is 3.

In Figure 5(b), the placement of some data blocks is
changed such that Dy-D7 and Lz) reside in three clusters.
The repair of any data block now needs only two cross-
cluster transfers, while the same is for Dg-D;5. The repair
cost is 2, which is the minimum (Section 4.5). However, the
downcoding entails first relocating four data blocks across
clusters and then recomputing the 8 local parity blocks in
each cluster locally. Hence, the downcoding cost is 4.

Figure 5 further shows that there is no data placement for
the compact LRC that simultaneously minimizes the repair
and downcoding costs.

4 TRADE-OFF BETWEEN REPAIR AND SCALING

We now show that there exists some fundamental trade-offs
between the repair and scaling (i.e., upcoding/downcoding)
performance in clustered storage systems.

4.1 Roadmap

Figure 6 shows the overall roadmap of our analysis. Specifi-
cally, we first design data placements for the fast LRC that
operate along the optimal trade-off curve from the minimum
upcoding cost to the minimum repair cost of the fast LRC
by deliberately determining the placement of the local parity
blocks (Section 4.3). In particular, the placements that have
the minimum upcoding cost and the minimum repair cost are
called Opt-S-F and Opt-R-F, respectively. We further discuss
how to downcode from the data placement for the compact
LRC to Opt-S-F and Opt-R-F (Section 4.4).

We find that downcoding from the specific placement pol-
icy for the compact LRC (i.e., Opt-S-C) to Opt-R-F (i.e., a data
placement for the fast LRC) has the minimum downcoding
cost, but the placement of the data blocks amplifies the repair
cost of the compact LRC. Thus, by modifying the placement
of the data blocks, we further design placement policies for
the compact LRC that operate along the optimal trade-off
curve from the minimum downcoding cost to the minimum
repair cost of the compact LRC (Section 4.5). The placement
that gains the minimum repair cost is called Opt-R-C. We
also show how to upcode from Opt-R-F to the two extreme
placement strategies, i.e., Opt-5-C and Opt-R-C (Section 4.6).

4.2 Key Challenges

We emphasize that it is non-trivial to design repair-scaling
trade-offs that are guaranteed to be optimal. In particular,
when designing trade-off placements for the fast LRC, the
key challenge is how to place the local parity blocks such
that in each trade-off placement, the repair cost (fast) is
minimized under the upcoding cost. In the design of the
trade-off placements for the compact LRC, the difficulty lies
in designing the placement of the data blocks, which is to
guarantee that the repair cost (compact) is minimized given
the downcoding cost in each trade-off placement.

4.3 Repair-Upcoding Trade-off Analysis

Preliminaries. We now formally analyze the trade-off be-
tween repair of the fast LRC and upcoding. We first present
the definitions and notations, which we will follow through-
out the paper. Since the access performance of LRC is mainly
related to the number of local parity blocks, we consider
the scaling operation that varies the number of local parity
blocks as in [34]. To simplify our analysis, we consider the
case where the number of local parity blocks for the fast
LRC (denoted by) is divisible by the number of local parity
blocks for the compact LRC (denoted by !’), such that every
local parity block of the compact LRC can be updated from
sz local parity blocks of the fast LRC. Let § be the scaling
factor, defined as § = li,

For a local parity block L;, we call the set of data
blocks that generates L; a local data set, denoted by
E = {Dixb, ,Dixp+b—1}, where b is the number of
data blocks that are encoded to L; (defined in Section 2.2).
For example, in Figure 4, the local data sets for L; and
L, are & = {Dy, D1} and & = {Ds, D3}, respectively.
Note that & and L; together form a local group. During
upcoding, we convert every ¢ local groups of the fast LRC
into to one local group of the compact LRC, and we call
these 0 local groups an upcoding unit. There are a total
of I’ upcoding units, and the i-th one is composed of the
blocks Eixs, Lixes, 5 Eir1)xs-15 L(i+1)xs5—1- For example,
in Figure 4, we have § = 3, and there are two upcoding units:
() {€o, Lo, &1, L1, &, Lo}, and (ii) {&3, L3, €4, L4, Es, Ls}.

For each upcoding unit, we define a core cluster as the
cluster that stores the ¢ local parity blocks and aggregates
them into one local parity block of the compact LRC. For
example, in Figure 4(a), a core cluster stores Lo, L, and
Lo and encodes them into Lz), while another core cluster
stores L3, L4, and L5 and encodes them into Lll. Suppose
that b < g, such that a local data set can be entirely stored
in one cluster without breaking single-cluster fault tolerance.
Let 6 be the maximum number of local data sets that can
be collocated with their corresponding local parity blocks in
one cluster. By Lemma 1, the number of data and local parity
blocks (i.e., 8 x b + 8), which span 6 local groups, cannot
exceed g + 6. Thus, we can calculate § as 6 = | {].

For example, in Figure 4, every 6 = 1 local data set can
be collocated with its local parity block in one cluster. Our
analysis focuses on b < g, while we will later show that the
analysis for b > g is similar.

Main idea. Our trade-off analysis between repair of the
fast LRC and upcoding is organized as follows. (i) We first
design the placement of the local parity blocks to achieve the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

globally minimum upcoding cost. (ii) Given the condition
that the upcoding cost is minimized, we vary the locations
of the data blocks to minimize the repair cost; note that the
repair cost is not necessarily globally minimum (Section 3.2).
(iii) We gradually relocate the local parity blocks, so as
to trade the increased upcoding cost for the decreased
repair cost and finally achieve the globally minimum repair
cost. The number of clusters (i.e., c) is determined by the
placement policy. Since the global parity blocks do not
participate in repair and scaling operations, we place them in
a dedicated cluster and omit their discussion in our analysis.

Guiding example. For better understanding of our analysis,
we use a guiding example that upcodes from the fast LRC
with (12,6, 2,7) to the compact LRC with (12,2,2,7).

o Minimizing upcoding cost: First, from Figure 7(a), we place
Lo, Ly, and L5 in a core cluster, and place L3, L4, and L5
in another core cluster. We perform upcoding in each core
cluster by aggregating the three local parity blocks without
any cross-cluster transfer. The upcoding cost is zero.

o Minimizing repair cost under minimum upcoding cost: Next,
in Figure 7(b), we place & in one core cluster, and place &;
and &, in two different clusters. We place &3, £4, and &5 in
the same way. We can show that the cost for repairing each
data block in & and &3 is zero, while the cost for repairing
each data block in &3, &, &4, and &s is one. The repair cost
of the fast LRC is = 0.67. We will show that this repair
cost is minimized under the minimum upcoding cost.

o Trading increased upcoding cost for decreased repair cost: In this
example, we see that the main reason that causes non-zero
repair cost is the separate placement of the local parity
block and its corresponding local data set. For example,
in Figure 7(b), L, is stored in the core cluster, while &;
is stored in a different cluster; the same holds for Lo, Ly,
and Ls. Thus, we can gradually move one local parity
block from the core cluster to the cluster where its local
data set resides. In Figure 7(c), we move L; to the cluster
that holds &£;. By doing so, we reduce the repair cost by
+ = 0.17, while the upcoding cost increases by one (the
core cluster must now retrieve the relocated L; across
cluster for upcoding). We will also show that the repair
cost in Figure 7(c) (i.e., % = 0.5) is minimized subject to
the upcoding cost of one.

o Minimizing repair cost: Finally, in Figure 7(d), we move L,
Ly, Ly, and Ls to the clusters where their corresponding
local data sets reside. As the repair can now be executed
without any cross-cluster traffic, the repair cost is zero.

Algorithm design. We now present a data placement algo-
rithm (Algorithm 1) that is guaranteed to operate on the
optimal trade-off curve from the minimum upcoding cost
to the minimum repair cost of the fast LRC. The input is a
parameter = that decides the operation point in the trade-off
curve, while the output is a placement for the fast LRC.

(i) Placing local parity blocks to minimize upcoding cost to
zero. We first gather the § local parity blocks into the selected
core cluster in each upcoding unit (lines 3-4), such that we
can complete upcoding within each core cluster. By doing
this, the upcoding cost is zero. For example, in Figure 7(a),
we store every § = 3 local parity blocks in each core cluster.

(ii) Placing data blocks to further minimize repair cost (v =
0). We next determine the locations of the data blocks to

Algorithm 1 Upcoding-repair trade-off placement

Input: Integer z (0 < z < (6 — 0) x I'), which is a multiple of ¢
Output: A placement for the fast LRC
1: for the i-th (0 <7 <!’ — 1) upcoding unit do

2: // Minimizing upcoding cost
3: Select a new core cluster
4: Put Lixs,- -+ , L(i+1)xs—1 in the core cluster
5: // Further minimizing repair cost
6: forj=0to 6 —1do
7: Put &;xs+; into the core cluster
8: end for
9: forj=60tod—1do
10: if 5 mod 0 = 0 then
11: Select a new cluster
12: end if
13: Put &;xs+; into the new cluster
14: end for
15: end for

16: // Trading upcoding cost for repair cost
17: Move x local parity blocks from the core clusters to the
clusters where their corresponding local data sets reside

minimize the repair cost subject to the minimized upcoding
cost. We first focus on an upcoding unit. There are § local
parity blocks that are collocated in the core cluster, and we
have to decide how to place the J local data sets. If we put
more local data sets also in the core cluster, then more data
blocks can be repaired in the core cluster locally and the
repair cost can be minimized. Note that the blocks in the
core cluster span § local groups, so the sum of the number
of local parity blocks (i.e.,) and the number of data blocks
cannot exceed g + § to promise single-cluster fault tolerance.
As a result, we can put § = | {] local data sets in the core
cluster (lines 6-8), and the cost for repairing each data block
in these 6 local data sets is zero. For example, in Figure 7(b),
we put one local data set (i.e., # = 1) into a core cluster.

For the remaining § — 6 local data sets, We make sure that
each local data set is entirely stored in one cluster (not the
core cluster), such that the cost for repairing each data block
in these 0 — 6 local data sets is one, as the corresponding local
parity block is in the core cluster. In this manner, the repair
cost is minimized. We further collocate every 6 local data sets
into one different cluster (lines 9-14). Each such cluster will
have § x b= [£] x b < g data blocks, hence complying with
single-cluster fault tolerance. For example, in Figure 7(b), for
the remaining two local data sets, we put each into a different
cluster. The data blocks of other upcoding units are placed
in the same way. We call this placement Opt-S-F, where the
upcoding cost is zero and the repair cost is 2 59 =1- 5

The values of § and significantly influence the upcoding
and repair costs, which we discuss as follows.

o If § < 6, then we can directly put all § local data sets of an
upcoding unit in the core cluster. Under this placement, the
repair and upcoding operations can be directly performed
within the core cluster, and therefore the repair and
upcoding costs are zero.

o In the case where § > 0, for the remaining J — 6 local data
sets, we collocate every 6 ones into a different cluster. If we
collocate more than 0 local data sets in a different cluster,
then when we move the corresponding local parity blocks
into this cluster, it will violate single-cluster fault tolerance.
If we collocate less than 6, say s (s <) local data sets in a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

& local parity blocks
+ 6 local data sets ‘ L, | L | L, ‘ Core | Ly | L, ‘ Ly | Core

0 local parity blocks

PSR
H

Core

:--b-b---! Core
i i
[l oo o, 5,

& local parity blocks

0
0 local data sets |

ouppu s

o . BEE e (R DulO
0-th upcoding unit 1-th upcoding unit
(a) Minimum upcoding cost (b) Further minimizing repair cost

L TDDN O

oo,

0-th upcoding unit 1-th upcoding unit 0-th upcoding unit 1-th upcoding unit
(c) Trading upcoding for repair (d) Minimum repair cost

Figure 7. lllustration of the different steps of our placement policy for fast LRC (12, 6, 2, 7) scaled to compact LRC (12, 2,2, 7).

different cluster, then after we relocate the s corresponding
local parity blocks into this cluster, the repair cost reduces
by 7 while the upcoding cost increases by one. However,
in our design, after we relocate the § corresponding local
parity blocks into this cluster, the repair cost reduces by
% while the upcoding cost increases by one. That is to say,
the reduction of the repair cost is the most in our design
while the upcoding cost increases by one.

o We assume that § — § is divisible by 6, such that every 6
local data sets can be stored in the selected cluster.

(iii) Relocating local parity blocks to trade upcoding cost for
repair cost (0 < x < (§—6) x1'). In Opt-S-F, for each upcoding
unit, there are § —6 local parity blocks lying in the core cluster,
while their local data sets are located in different clusters. If
we move such local parity blocks to where their local data
sets reside, then the repair cost can be further reduced.

Since we collocate every 6 local data sets into one different
cluster, we can move 6 corresponding local parity blocks to
this cluster. By doing this, we reduce the repair cost by %
as we move 0 local parity blocks to be collocated with their
local data sets, such that the cost for repairing any data block
in these 0 local data sets reduces from one to zero. During
upcoding, we first apply partial encoding of the 6 local parity
blocks to calculate an XOR sum in this cluster, and then send
the XOR sum to the core cluster. Thus, the upcoding cost
increases by one. We move (# local parity blocks) for one
different cluster in a step, and in an upcoding unit by upcoding
unit basis, to transform Opt-S-F into a placement that trades
increased upcoding cost for decreased repair cost. Since there
are 0 — 6 local parity blocks (per upcoding unit) that can
be moved and !’ upcoding units, we can then move z local
parity blocks for 7 different clusters, where x is a multiple of
fand 0 <z < (6 — 0) x I’ (line 17). The repair cost reduces
by 7 and the upcoding cost increases by % compared to
those costs of Opt-S-F. Thus, the cost values of the placement
derived in a transformation step are shown as follows.

upcoding cost = % M
repair cost (fast) = 1 — g - 7.

For example, in Figure 7(c), we move L; to the cluster
that holds &;, and we reduce the repair cost by + = 0.17
while the upcoding cost increases by one.

Note that each transformation step will not break the fault
tolerance guarantee. Specifically, suppose that a core cluster
has moved out ¢ (¢ is a multiple of # and 0 < ¢ < § — 6) local
parity blocks, it then remains § — ¢ local parity blocks and
6 local data sets. The number of blocks is (0 X b+ 6 —t) <
(g9 + 6 —t), and the blocks span ¢ — ¢ local groups. For a

different cluster that accommodates the relocated local parity
blocks, it now has 6 local parity blocks collocated with their
corresponding local data sets. According to Lemma 1, both
clusters can guarantee single-cluster fault tolerance.

The movements (line 17) guarantee that the repair cost of
the placement derived in a transformation step (i.e., 1 — % -7
is minimized given the upcoding cost (i.e., %), which can be
readily deduced by the following Theorem (see the Appendix
for detailed proof).

Theorem 1. For any placement subject to single-cluster fault
tolerance, if the upcoding cost is u, then the lower bound of the
repair cost is 1 — g — “Txe.

(iv) Minimizing repair cost to zero (x = (6 — 0) x I'). In the
end (i.e., inputting = (§ —) x I’ in Algorithm 1), every 0
local parity blocks lie together with their local data sets in
one cluster. We call this placement Opt-R-F, where all repair
operations can be done within each cluster locally, so the
repair cost is zero. For example, in Figure 7(d), every local
parity block lies together with its local data set in one cluster.

Extension to b > g. We now demonstrate that the analysis
for b > g is similar. If b > g+ 1 and we further assume that b
mod (g + 1) # 0. Since at most g + 1 data blocks of a local
data set can be put into one cluster without breaking the fault
tolerance guarantee, a local data set can be put into Lq—_bHJ +1

clusters, where LQ%J ones hold g + 1 data blocks each, and
the remaining one holds (m = b mod (g + 1)) < g data
blocks. If we focus on the remaining m data blocks, then the
above analysis directly applies. The only change is that the
repair cost has to be added by a difference of Lg—_bHJ as we
have to retrieve an XOR sum of all blocks in each of the other
Lg—LJ clusters to repair any data block in a local data set.

If b is divisible by (g + 1), then a local data set spans
b

P | clusters with g + 1 data blocks each. To achieve the
minimum upcoding cost, we gather every ¢ local parity
blocks in each core cluster, and then we can put at most
another g data blocks in a core cluster (Lemma 1). We cannot
move data blocks to reduce the number of clusters (except
the core cluster) a local data set spans. As a result, the cost for
repairing any data block cannot be further reduced. Thus, in
the placement with the minimum upcoding cost, the repair

cost is also minimized.

Trade-off exemplification. We plot the upcoding cost and
the repair cost of each placement and obtain a trade-off curve
between the upcoding cost and the repair cost. We give some
examples in Figure 8 to show the trade-off curve. Several
findings are stated as follows.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

A(84,2,5)10 (8,2,2.5 19 27) 25 A24.12213)t0(24,2.213

24 CfEreIBs 30| B e SELEAITLIAYEA
%20 F(1642.7) 10 (16227} | 3 63) |5 (2456211110 (24:2.2.11
S @ (20,4,2,9) to (20,2,2,9) | 8 » S ®(24,42,11)t0 (24,2,2,11
01.6 0.6 O1.5|

512 «:\e}\e B0 B0 3&,&

20.8 o o)
o A\A\A o2 D\D\D X 5

0.0 0.0

0.0
01 6.7 8 910

2345
Upcoding Cost

(c) Varying [

1 2 3
Upcoding Cost

(b) Varying g

0 1 2
Upcoding Cost

(a) Varying k

Figure 8. Trade-off curve between the upcoding cost and the repair cost.
Note that the curve covers all optimal data placements.

The most important trend is that as the upcoding cost
increases, the repair cost decreases.

As shown in Figures 8(a) and 8(c), increasing k or decreas-
ing [makes the overall repair cost increased. This is because b
increases, which further results in larger Lg%] For example,
in Figure 8(a), in the case where (k,l,g,¢) = (8,4,2,5),
LTLJ = 0 (i.e., a local data set is entirely stored in one
cluster), while in the case where (k,l,g,¢) = (20,4,2,9),
LTLJ =1 (i-e., a local data set has to span two clusters).

Figure 8(b) tells that, as g increases, there are less trade-
off points, and the overall repair cost decreases. The reason
is that larger g means that more local data sets can be put
into the core cluster, such that the cost for repairing any
data block therein is zero. For example, in the case where
(k,1,g,c) = (12,6,2,7), we can put one local data set into the
core cluster, while in the case where (k,1,g,c) = (12,6,4,5),
we can put two local data sets into the core cluster.

In Figure 8(a), the case where (k,l,g,¢) = (12,4,2,7)
only exhibits one point as b is divisible by (¢ + 1), and
the case where (k,1,g,¢) = (16,4,2,7) also has one point
because § < |2 | where m = b mod (g + 1). The cases with
one point in Figure 8(b) are due to that § < (f = | {]), and
those in Figure 8(c) are due to that b is divisible by (g + 1).

4.4 Downcoding Procedures

We now address the downcoding procedure to restore the
original layout of the fast LRC. We mainly consider the
downcoding processes for Opt-S-F and Opt-R-E. Since the
block layout for each upcoding unit is the same in Opt-S-F
and Opt-R-F, we can readily derive that the downcoding
operation for each upcoding unit is the same. Therefore, we
conduct our analysis within a single upcoding unit.

Downcoding for Opt-S-F. In Opt-S-F, after upcoding, the §
local parity blocks in the core cluster are updated into a local
parity block of the compact LRC. Downcoding is to rebuild
the 0 local parity blocks in the core cluster. Since there are
0 local data sets (i.e., £yp-Ep_1) in the core cluster, we can
first recalculate 6 local parity blocks (i.e., Lo-Lg_1) within
the core cluster. Note that there is a local parity block of the
compact LRC (i.e., L) in the core cluster that can be utilized,
we then have to retrieve at least 6 — 6 — 1 local parity blocks
from other clusters. Thus, for each of £y-E5_o, we locate the
cluster that holds it, calculate the corresponding local parity
block, and send the local parity block to the core cluster.
Finally, we use Lo-Ls_2 and LEJ to calculate Lgs_1.

The downcoding cost is readily deduced as (§—6—1) x [,
if b < g. For general parameters, when calculating each of the
0 — 1 local parity blocks, we should access partial encoded

blocks from another Lqilj clusters. Therefore,

downcoding cost = ((6—[£ |-1)+ Lg—j’_lj x(6—1))x1', (2)

where m = b mod (g + 1).

For example, in Figure 4(a), during downcoding, we can
recalculate L(using & in the core cluster. We then calculate
L, using &; in a different cluster, and send L; to the core
cluster. Finally, we use Lo, L1, and LEJ to calculate L. The
same is for L3, L4, and Ls, so the downcoding cost is two.

Downcoding for Opt-R-F. In Opt-R-F, downcoding is to
restore the layout that every 6 local parity blocks and their
local data sets are collocated in one cluster. Thus, we can
regenerate each local parity block within each cluster locally,
implying that the downcoding cost is zero. For general
parameters, when recalculating each local parity block, we
should access partial encoded blocks from another Lg_?_l
clusters. Thus,

downcoding cost = | ;5] x § x I = L) <l 0

For example, in Figure 4(b), we can regenerate Ly-Ls
within each cluster locally, so the downcoding cost is zero.

4.5 Repair-Downcoding Trade-off Analysis

Main observation. In Section 4.3, we have designed data
placements for the fast LRC (e.g., Opt-S-F and Opt-R-F).
After upcoding, we obtain a specific placement policy for the
compact LRC. From Section 4.4, we find that downcoding
from the specific placement policy for the compact LRC to
Opt-R-F requires no cross-cluster transfer (under the param-
eter setting b < g), so the downcoding cost is minimized
as zero. However, we cannot achieve the minimized repair
cost of the compact LRC simultaneously, mainly because the
placement of the data blocks is not so compact (Figure 5(a)).
If we gradually relocate some data blocks to compactly place
the data blocks, then we can trade the increased downcoding
cost for the decreased repair cost, and finally achieve the
minimized repair cost of the compact LRC (Figure 5(b)).
This fuels us to explore the optimal trade-off between the
minimum downcoding cost and the minimum repair cost of
the compact LRC, which are realized by designing different
placement policies for the compact LRC via deciding the
placement of the data blocks.

New challenges. However, designing optimal trade-off
placements for the compact LRC needs to address new
challenges. First, we should find the minimum repair cost
(compact) subject to single-cluster fault tolerance. Next, we
should formally design placement policies to achieve the
minimum downcoding cost (i.e., zero) and the minimum
repair cost (compact). Finally, when we move data blocks to
obtain a trade-off placement, we should guarantee that the
repair cost (compact) is minimized under the downcoding
cost (i.e., the trade-off placement should operate along the
optimal trade-off curve).

Guiding example. We use an example that downcodes from
the compact LRC with (16,2,2,9) to the fast LRC with
(16,8,2,9) to guide the analysis.

o Minimizing downcoding cost: First, in Figure 9(a), each local
data set is placed in one cluster (and L, and L are placed
in the core clusters). Downcoding can be performed in
each cluster locally, so the downcoding cost is zero. We can
see that the cost for repairing each data block is three, so
the repair cost of the compact LRC is three.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

., “ B [eos)ie "
: (B

Core ; i iCore
100|015,

Core

0 local data sets

—
0 local data sets

7777777

0-th upcoding unit
(a) Minimum downcoding cost

1-th upcoding unit

0-th upcoding unit
(b) Trading downcoding for repair

1-th upcoding unit 0-th upcoding unit

(c) Minimum repair cost

1-th upcoding unit

Figure 9. lllustration of the different steps of our placement policy for compact LRC (16,2, 2,9) scaled to fast LRC (16, 8,2,9). Note that in the
rightmost sub-figure, two clusters (at the bottom) will accommodate the relocated data blocks (i.e., D¢, D7, D14, and Dj5) during downcoding.

Algorithm 2 Downcoding-repair trade-off placement

6:}07-?]) x 0 x b x '), which is

Input: Integer y (0 <y < (g -
a multiple of § x b
Output: A placement for the compact LRC
1: for the ¢-th (0 <7 <!’ — 1) upcoding unit do

2: // Locating local parity block
3: Select a new core cluster
4: Put L, in the core cluster
5: // Minimizing downcoding cost
6: forj=0to 6 —1do
7: Put &;xs+; into the core cluster
8: end for
9: forj=6tod—1do
10: if j mod 6 = 0 then
11: Select a new cluster
12: end if
13: Put &;xs+; into the new cluster
14: end for
15: end for

16: // Trading downcoding cost for repair cost

17: Move y data blocks from the clusters that hold the local data
sets with larger ids to the clusters (except the core clusters)
that hold the local data sets with smaller ids

o Trading increased downcoding cost for decreased repair cost: In
Figure 9(a), we find that Dy-D7 are placed in four clusters.
Under the constraint of single-cluster fault tolerance, we
can gradually move the data blocks of one local data set to
different clusters. In Figure 9(b), we move the data blocks
of & (i.e.,, Dg and D) to different clusters. By doing so,
we decrease the number of clusters the local group of the
compact LRC spans. We can see that the cost for repairing
each of Dy-D7 is two while that for repairing each of
Dg-Dq5 is three. Thus, the repair cost is reduced to 2.5.
However, the downcoding cost increases by two (Dg and
D+ must be relocated back across clusters for downcoding).
We will prove that the repair cost in Figure 9(b) (i.e., 2.5) is
minimized subject to the downcoding cost of two.

o Minimizing repair cost: Finally, in Figure 9(c), we move the
data blocks of &3 (i.e., Dg and D7) and &7 (i.e., D14 and
D15) to distinct clusters. Now, the repair cost is reduced to
two, which can be proved as the minimum.

Algorithm design. Algorithm 2 designs placement polices
for the compact LRC that operate on the optimal trade-off
curve from the minimum downcoding cost to the minimum
repair cost of the compact LRC.

(1) Minimizing downcoding cost to zero (inputting y = 0).
First, the local parity blocks of the compact LRC lie in the
core clusters (lines 3-4). For example, in Figure 9(a), L, and

L/1 reside in the two core clusters.

Next, the placement of the data blocks is determined.
From Section 4.3, every 0 local data sets are collocated into
one cluster. Specifically, in an upcoding unit, ¢ local data sets
reside in the core cluster (lines 6-8), while every 6 local data
sets in the remaining 6 — @ ones lie in a different cluster (lines
9-14). For example, in Figure 9(a), in an upcoding unit, every
0 = 1 local data set is put into one cluster (one local data set
is in the core cluster). We call this placement Opt-S-C, where
the downcoding cost is zero while the repair cost is g —1las
the local group of the compact LRC is stored in 3 S clusters.

(ii) Relocating data blocks to trade downcoding cost for repair
cost (0 <y < (4— f%]) x 0 x bx1'). We first show that
the placement of the data blocks in Opt-S-C is not compact,
and we can relocate some data blocks to reduce the repair
cost. In Opt-S-C, each cluster stores 6 local data sets (i.e.,
0 x b= |%] x b < g datablocks). By Lemma 1, each cluster
(except the core cluster) can store up to g+ 1 data blocks with
the fault tolerance guarantee. That is to say, the data blocks
are not compactly stored into limited clusters. If we gradually
move the data blocks of 6 local data sets to different clusters,
then the number of clusters the local group spans will be
reduced and so the repair cost will be decreased accordingly.

We now figure out how many data blocks we can move
to reduce the repair cost. By Lemma 1, we can put at most
g+ 1 data/parity blocks of a local group of the compact LRC
into one cluster. Since a local group has J x b data blocks
and one local parity block of the compact LRC, the minimum
number of clusters the local group spans is (‘SXZ’H] In Opt-
S-C, the number of clusters a local group spans is 9. Thus,
we can move the data blocks in § — [‘5;%] clusters to
other clusters in an upcoding unit. In total, we can move
(7 — [5Xb+1 1) x @ x b x I data blocks for all upcoding units.

To snnphfy the analysis about the moving mechanism,
we assume that g is divisible by b. We find that we cannot
move data blocks to a core cluster as it already has 0 xb+1 =
|#] xb+1 = g+1 data/parity blocks. For a different cluster,
since it has § x b = g data blocks and it can accommodate
up to g + 1 data blocks, we can move one data block into it.

We now see the detailed moving procedures. We say the
id of a local data set &; is i. Based on Opt-S-C, we gradually
move 6 local data sets with larger ids to the clusters that store
the local data sets with smaller ids (line 17). By doing this,
we reduce the repair cost by li, as the number of clusters one
local group spans reduces by one. During downcoding, we
must relocate the moved data blocks back and then locally
regenerate the local parity blocks. Hence, the downcoding
cost increases by 6 x b. We move 6 local data sets of a cluster

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

in a step, and in an upcoding unit by upcoding unit mannet, to
transform Opt-S-C into a varied placement. Suppose that the

number of moved data blocksis y (0 < y < (§ — (ég_ﬁl D

0 xbx l'), which is a multiple of x b. The downcoding cost
of a transformed placement increases by y and the repair
cost reduces by 9><;JW based on the costs of Opt-S-C.

downcoding cost = y .
repair cost (compact) = & — 1 — T @)

For example, in Figure 9(b), we move &3 (i.e.,, Dg and
Dr) to other clusters. The repair cost reduces by 0.5 and the
downcoding cost increases by two.

The following Theorem guarantees that the repair cost in
Equation (4) is minimized subject to the downcoding cost.
The detailed proof is elaborated in the Appendix.

Theorem 2. For any placement subject to single-cluster fault
tolerance, if the downcoding cost is d, then the lower bound of the

repair cost is g 1=

(iii) Minimizing repair cost (inputting y = (§ — (%]) X

0 x b x I'). Finally, we relocate all possible data blocks to
minimize the number of clusters all local groups span to
[9X0+1] The repair cost is then minimized to [Xb“ -1
We call this placement Opt-R-C. For example, in Flgure 9(c),
we relocate &3 (i.e., Dg and D7) and &7 (i.e., D14 and D15) to
other clusters, and the repair cost is minimized to two.

Parameter analysis. The above analysis assumes that b <
g. If b > g, then downcoding from Opt-5-C to Opt-R-F
inevitably incurs cross-cluster transfers (Section 4.4), so we
cannot guarantee that the downcoding cost is minimized.
Thus, the trade-off analysis is only valid for b < g. Note that
b < g covers a wide range of parameters.

Trade-off examples. Figure 10 shows several examples of the
trade-off curve from the minimum downcoding cost to the
minimum repair cost of the compact LRC.

From Figure 10, we can see that as the downcoding cost
increases, the repair cost of the compact LRC decreases.

As shown in Figure 10(a), as g increases, there are less
trade-off points, and the overall repair cost decreases. The
reason is that larger g means that more local data sets
can be collocated into one cluster, such that the number
of clusters the local group spans decreases. For example, for
(k,I',g,c) = (16,2,2,9), we can place one local data set into
a cluster, while for (k, g, c) = (16,2,4,5), we can place
two local data sets into a cluster.

Note that increasing k or decreasing ! will make b > g,
which invalidates the downcoding-repair trade-off. Hence,
we increase k as well as [, and guarantee that b < g, which
results in varied ¢. Figure 10(b) shows that increasing § makes
the overall repair cost increased, and exhibits more trade-off
points. This is because that as J increases, the number of
clusters the local group spans increases. For example, for
(k,l/,g, c) = (16,2,2,9), the number of clusters the local
group spans is four, while for (k, g, c) = (28,2,2,15), the
number of clusters the local group spans is seven.

In Flgure 10(a), the cases with one point are due to
that = [5”’“}, and so in Opt-S-C, we minimize the
downcodmg cost and the repair cost simultaneously.

10

5550
NN
@oAN
Love
2500
00w
oA
Love

§

H» O
oxob
8000

Repair Cost
N w
f.

Repair Cost

o o
o

4 0 2 4 6 8
Downcoding Cost

(b) Varying &

Downcoging Cost
(a) Varying g
Figure 10. Trade-off curve between the downcoding and repair costs.

4.6 Upcoding Procedures

We now consider how to upcode from Opt-R-F (ie., a
placement for the fast LRC) to Opt-S-C and Opt-R-C. Our
analysis also focuses on a single upcoding unit.

Upcoding to Opt-S-C. As described in Section 4.3, we send
an XOR sum of the 6 local parity blocks in each dlfferent
cluster to the core cluster for upcoding. Since there are g -1
different clusters, the upcoding cost is readily calculated as

5 ,
(G- xl. ®)

For example, in Figure 5(a), we send L1, Ly, and L3 to Ly,
and send L5, Lg, and L7 to L4 for upcoding, so the upcoding
cost is six.

upcoding cost =

Upcoding to Opt-R-C. It needs one more step, i.e., moving
the data blocks in the local data sets with larger ids to other
clusters. Thus, the upcoding cost is calculated as

0 dxb+1

I +(5— Oxbxl.
4—((9 [) 1 x0xbx

(6)

For example, in Figure 5(b), we send six local parity

blocks as well as four data blocks across clusters for upcoding,

so the upcoding cost is ten.

]
upcoding cost = (5 —1)x

5 EVALUATION

We evaluate via numerical analysis and testbed experiments
the optimal placements under the fast LRC (Section 4.3): (i)
Opt-S-F, the placement with the minimum upcoding cost,
and (ii) Opt-R-F, the placement with the minimum repair
cost of the fast LRC; and the optimal placements under
the compact LRC (Section 4.5): (iii) Opt-S-C, the placement
with the minimum downcoding cost, and (iv) Opt-R-C, the
placement with the minimum repair cost of the compact LRC.
We compare Opt-S-F and Opt-R-F with the flat placement (Flat)
for the fast LRC, and Opt-S-C and Opt-R-C with Flat for the
compact LRC. Note that Flat stores each block of a stripe in
a distinct cluster [11], [22].

5.1

Our numerical analysis considers four metrics: the repair
cost of the fast LRC, the repair cost of the compact LRC, the
upcoding cost, and the downcoding cost.

Flat. For Flat the repair costs of the fast LRC and the compact
LRC are l =band k = U/, respectively (Section 2.2).
During upcodmg, we send every ¢ — 1 local parity blocks
to the cluster that holds one remaining local parity block to
encode into a local parity block of the compact LRC (per
upcoding unit). Thus, the upcoding cost is calculated as

Dxl'=1-1.

Numerical Analysis

upcoding cost = (6 —

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[Flat @ Opt-S-F @ Opt-R-F 12
10 328

6

4 44 44 4

I I 3
22"2 2 2 A
11
mMUOOOOU

PO p1 p2 p3 p4 p5 p6 p7
Scaling Operation

(a) Upcoding cost

[Flat Bl Opt-S-F M Opt-R-F 32

30

Upcoding Cost
o N b ® ® O R

0 0
PO p1 p2 p3 p4 p5 p6 p7
Scaling Operation

(b) Downcoding cost

o

[Flat @l Opt-S-F M Opt-R-F W Flat Ml Opt-S-F [l Opt-R-F
4

~

Repair Cost (Fast)

o =4 N W
I
oo
~
[
=X
~
[
@
°
~
I
o®
~
[
@
°
-0
(=)
I
oo
= o

0
p0 p1 p2 p3 p4 p5 p6 p7

Scaling Operation Scaling Operation

(c) Repair cost (fast) (d) Repair cost (compact)

Figure 11. Numerical results for Opt-S-F & Opt-R-F.

During downcoding, each of the first 6 — 1 local parity
blocks is recalculated by sending its encoding data blocks
across clusters to another cluster. The remaining one local
parity block can be derived in two ways: (i) the same as
the first § — 1 local parity blocks, and (ii) sending the § — 1
available local parity blocks to the cluster that holds the local
parity block of the compact LRC. Hence,

downcoding cost =
=min{k, k+1—1"x (b+1)}.
Opt-S-F and Opt-R-E. The repair cost of the fast LRC of
Opt-S-F and Opt-R-F is calculated using Equation (1), and
the repair cost of the compact LRC of Opt-S-F and Opt-R-F is
easily derived based on the layout after upcoding (Figure 4).
The upcoding cost of Opt-S-F and Opt-R-F is calculated
using Equation (1). The downcoding cost of Opt-S-F is cal-
culated using Equation (2), and that of Opt-R-F is calculated
using Equation (3).
Opt-S-C and Opt-R-C. The repair cost of the fast LRC is zero
as the layout of the fast LRC is Opt-R-F, while the repair cost
of the compact LRC is calculated based on Equation (4).
The upcoding cost of Opt-S-C is calculated using Equa-
tion (5) while that of Opt-R-C is calculated using Equation (6).
The downcoding cost is calculated based on Equation (4).

Scaling operations for Opt-S-F and Opt-R-F. We cons1der
eight sets of scaling operations from (k, 1, g, ¢) to (k,1', g, ¢),
denoted by pg to pr:

po: (47 27 27 3) H (47 1727 3) pl (8 4 2 5) (87 27 7)

po: (12,6,2,7) < (12,2,2,7) ps: (12,6,4,5) ¢ (12,2.4,5)
pi: (24,12,4,7) 45 (24,2,4,7) ps: (24,62, 11) 5 (24,2,2, 11
pe: (32,16,4,9) <> (32,4,4,9) pr: (32,8,2,13) +» (32,2,2,13

Scaling operations for Opt-S-C and Opt-R-C We consider
eight sets of scahng operations from (k, I,g,c ¢) to (k,l,g,¢),
denoted by p, to p;:

min{d x bx ', (6 —1) xb+d—1)x1'}

)
)

Po: (8,1,2,5) <> (8,4,2,5) p1: (10,1,2,6) « (10,5,2,6)
po: (12,1,2,7) < (12,6,2,7) pa: (16,2,2,9) < (16,8,2,9)
pa: (16,2,4,5) < (16,8, 4, 5) ps: (24,1,4,7) < (24,6,4,7)
pe: (24,2,2,13) ¢ (24,12,2,13)
Pt (28,2,2,15) < (28,14, 2, 15)

Results for Opt-S-F and Opt-R-F. Figure 11 plots the costs.
We summarize the following observations.

10

[Flat @ Opt-S-C @ Opt-R-C
24 24

N
=]

28

>

Upcoding Cost
N

o &> ®

o [[Flog [HolF [Flo o [Hold [FHold [Hol
PO p1 p2 p3 p4 p5 p6 p7
Scaling Operation

(b) Downcoding cost

p0 p1 p2 p3 p4 p5 p6 p7
Scaling Operation

(a) Upcoding cost

[Flat M Opt-S-CHOpt-R-C 4

2 2 2 2 2 2 2
o IOO IOOIOO IOO IOOIOO 00 IOO

PO p1 p2 p3 p4 pS p6 p7
Scaling Operation

W Flat @ Opt-S-C M Opt-R-C 24

~

N W

Repair Cost (Fast)

PO p1 p2 p3 p4
Scaling Operation

p5 p6 p7

(c) Repair cost (fast) (d) Repair cost (compact)

Figure 12. Numerical results for Opt-S-C & Opt-R-C.

o From Figures 11(a) and 11(c), Opt-S-F always has the
minimum upcoding cost (zero), while Opt-R-F is designed
with the minimum repair cost.

e Opt-S-F and Opt-R-F outperform Flat in terms of the
scaling and repair costs stably.

« For the cases where b = g (e.g., po-p2), we can only put
0 = 1 local parity block and its local data set in one cluster,
so we cannot utilize partial encoding of the local parity
blocks in each cluster for upcoding. Thus, the upcoding
cost of Opt-R-F equals that of Flat. For other cases, we put
more than one local parity block in one cluster, so partial
encoding of the local parity blocks brings benefit to the
upcoding cost. For example, for scaling operation p4, the
upcoding cost of Flat is 10 while that of Opt-R-F is four.

o In Figure 11(b), Opt-S-F has less downcoding cost than Opt-
R-F for scaling operation ps, and the reason is that Opt-S-F
can exploit the local parity block of the compact LRC to
calculate one remaining local parity block, therefore saving
one network transfer in each upcoding unit (Section 4.4).
However, for ps, ps, and pg, Opt-R-F can regenerate each
local parity block within each cluster locally, and thus has
less downcoding cost (zero) than Opt-S-F.

o From Figure 11(d), the repair cost of the compact LRC of
Opt-S-F equals that of Opt-R-F (because the layout of the
compact LRC of Opt-S-F is the same as that of Opt-R-F
(Figure 4)), and both are much smaller than that of Flat.

o When g increases, the scaling and repair costs of both Opt-
S-F and Opt-R-F decrease, while these costs of Flat keep
constant. Hence, the improvements of Opt-S-F and Opt-R-F
over Flat become greater with larger g. For example, Opt-
S-F reduces the repair cost of the fast LRC of Flat by 67%
for scaling operation p; (i.e., ¢ = 2), while the reduction
becomes 83% for scaling operation ps3 (i.e., g = 4).

Results for Opt-S-C and Opt-R-C. Figure 12 shows the costs.

We summarize the observations as follows.

o From Figures 12(b) and 12(d), Opt-S-C has the minimum
downcoding cost (zero), while Opt-R-C has the minimum
repair cost of the compact LRC.

« When ¢ s= f5Xb+1 (e.g., p;), in Opt-S-C, we minimize the
downcoding cost and the repair cost simultaneously.

« In Figure 12(a), Opt-S-C has the same upcoding cost as
Flat for the cases where b = g (e.g., p;)) as we cannot
exploit partial encoding during upcoding, while Opt-R-
C has larger upcoding cost as it requires additional data

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

block movements. For the cases where b < g (e.g., p;), we
can enable partial encoding, and so the upcoding cost of
Opt-S-C/Opt-R-C is smaller than that of Flat.

o In Figure 12(c), Opt-S-C has the same repair cost of the
fast LRC as Opt-R-C because the layout of the fast LRC is
Opt-R-F, where the repair cost of the fast LRC is zero.

¢ Opt-5-C and Opt-R-C have greater improvements over Flat
with larger g. For example, for scaling operation Py (e, g
= 2), Opt-R-C reduces the repair cost of the compact LRC
of Flat by 75%, while for scaling operation p, (i.e., g = 4),
the reduction becomes 87.5%.

5.2 Testbed Experiments

We implement Opt-S-F, Opt-R-F, Opt-S-C, Opt-R-C, and
Flat (under both the fast LRC and the compact LRC) in
a distributed storage system prototype, and conduct testbed
experiments to understand their scaling and repair perfor-
mance. In our prototype, repair and scaling are both imple-
mented as two phase processes, where we first aggregate
relevant data within a cluster, and then send the aggregated
data across cluster to the destination cluster. Our prototype
is written in C++ and implemented with a Coordinator (CN)
and multiple Datanodes (DN). The CN sends commands,
while the DNs receive commands and execute the actual data
read, write, and transfer independently and in parallel, and
finally reply acks to the CN.

Setup. Our testbed comprises 22 physical nodes, each
of which runs Ubuntu 16.04.5 LTS with a quad-core
3.40 GHz Intel Core i5-3570, 16 GB RAM, and a Seagate
ST1000DMO003 7200 RPM 1TB SATA hard disk. Each node
achieves 170 MBps of disk read bandwidth and 130 MBps
of write bandwidth, and 1Gbps of network bandwidth
(measured by iperf). We deploy the CN in one node, and
the DNs on 20 nodes. We configure the DNs into different
clusters according to the scaling operations and the place-
ment strategy. We also configure a dedicated node to act
as a network core, such that any cross-cluster traffic must
traverse the network core. We use the Wonder Shaper tool
[1] to control the outgoing bandwidth of the network core.

Methodology. We assume the following default configura-
tions. We adopt the scaling operations ps (i.e., (12,6,2,7) to
(12,2,2,7)) for Opt-S-F and Opt-R-F, and p;, (i.e., (8,1,2,5)
o (8,4,2,5)) for Opt-S-C and Opt-R-C. We configure the
block size as 64 MB, the packet size as 1 MB (packet is the
unit for network transfer), and the cross-cluster bandwidth
as 100 Mbps (such that the ratio of inner-cluster bandwidth
to cross-cluster bandwidth is 10:1). We may vary some of
the settings in our experiments. We measure the repair time
per block and the scaling time per stripe. The results of each
experiment are averaged over five runs.

Experiment 1.1 (Performance under different scaling op-
erations for Opt-S-F and Opt-R-F). We first evaluate the
performance under different scaling operations. We consider
three sets of scaling operations, i.e., pg, p1, and ps. We fix
the block size as 64 MB and the cross-cluster bandwidth as
100 Mbps, and then compare the scaling time and the repair
time. Figure 13 shows the results.

According to our analysis, the upcoding cost of Opt-S-F
is zero, while that of Flat and Opt-R-F increases as [— U

11

301 M Flat Ml Opt-S-F @ Opt-R-F [Flat @ Opt-S-F W Opt-R-F

PO p1 p2 po p1 p2
Scaling Operation Scaling Operation

(a) Upcoding time (b) Downcoding time

W Flat Wl Opt-S-F [Opt-R-F 401 W Flat l Opt-S-F [l Opt-R-F

N
=]

=)

Repair Time (Fast) (s)
Repair Time (Compact) (s)

o

p2

PO p1 p2
Scaling Operation

p1
Scaling Operation

(c) Repair time (fast)

(d) Repair time (compact)
Figure 13. Experiment 1.1: Scaling and repair time for Opt-S-F & Opt-R-F.

increases. From Figure 13(a), the experimental results comply
with the theoretics. As | — I’ grows, the upcoding time of
Opt-S-F keeps fairly stable while that of Flat and Opt-R-F
increases. Thus, Opt-S-F will achieve more gain for larger
[—U'. Overall, Opt-S-F reduces the upcoding time of Flat and
Opt-R-F by 80.6% and 80.2%, 87.6% and 87.2%, and 91.0%
and 91.0%, for pg, p1, and ps, respectively. The upcoding
time of Opt-R-F is similar to that of Flat, which confirms to
the numerical results.

The repair cost of Opt-R-F is zero while that of Flat keeps
constant as b keeps unchanged. The repair cost of Opt-S-F
(ie.,1— %) grows as § = ZL, increases. From Figure 13(c), the
repair time of Opt-R-F and Flat keeps stable while that of
Opt-S-F grows slightly. However, Opt-R-F always has the
smallest repair time. Overall, Opt-R-F reduces the repair time
of Flat and Opt-S-F by 85.5% and 56.8%, 84.2% and 55.8%,
and 84.0% and 61.5%, for pg, p1, and ps, respectively.

From Figure 13(b), both Opt-S-F and Opt-R-F show
better downcoding time performance compared to Flat. For
example, for py, Opt-S-F and Opt-R-F reduce the downcoding
time of Flat by 80.7% and 97.3%, respectively.

Finally, from Figure 13(d), the repair time of the compact
LRC of Opt-S-F is almost identical to that of Opt-R-F, and
both show improvements over Flat. For example, for scaling
operation py, Opt-S-F and Opt-R-F reduce the repair time of
Flat by 62.8% and 62.8%, respectively.

Experiment 1.2 (Performance under different scahng oper-
atlons for Opt-S-C and Opt-R-C). We consider p,, p;, and
p2 while other configurations are set as default. Figure 14
shows the scaling and repair time.

According to the numerical analysis, the downcoding cost
of Flat increases as k increases, while that of Opt-5-C and Opt-
R-C keeps stable. In Figure 14(b), the experimental results
follow the theoretics. Overall, Opt-S-C has the smallest
downcoding time, and it reduces the downcoding time of
Flat and Opt-R-C by 95.9% and 85.1%, 96.4% and 83.6%, and
96.7% and 80.9%, for pé), p/l, and plz, respectively.

As b’ increases, the repair cost of the compact LRC of
Flat increases. Also, the repair costs of Opt-5-C and Opt-R-C
increase as J increases. From Figure 14(d), the repair time of
the compact LRC increases gradually. Opt-R-C always has
the smallest repair time and reduces the repair time of Flat
and Opt-S-C by 71.2% and 28.3%, 67.7% and 23.3%, 65.7%
and 19.5%, for pé), pll, and p'2, respectively.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

920
280
70
£
£ 60
850
'840
230
220
010

p2 p'0

50{" [Flat @ Opt-S-C [l Opt-R-C [Flat M Opt-s-C [Opt-R-C

Upcoding Time (s)
N W A
s & S

o

o

p'0 p2

p'1
Scaling Operation
(b) Downcoding time

P
Scaling Operation

(a) Upcoding time

[Flat B Opt-S-C [l Opt-R-C Z80[@ Flat M Opt-S-C M Opt-R-C
(]

N o

Repair Time (Fast) (s)

o w o ©

p0

p1 p2 Y p1 p2
Scaling Operation Scaling Operation

(c) Repair time (fast) (d) Repair time (compact)

C
GGO X Flat 30 X Flat
25 B Opt-S-F B B Opt-S-F
© Opt-R-F 225 Opt-R-F
£ 40 o
[= E20
230 15
820 210
g &
51 g_:H/’E ’
0 0

16 32 64 128 16 32 64 128
Block Size (MB) Block Size (MB)

(a) Upcoding time (b) Repair time (fast)
Figure 15. Experiment 2.1: Impact of block size for Opt-S-F & Opt-R-F.

:120 % Flat 120 % Flat
® 100 g Opt-g-c %100 g Opl-g-c
E o Opt-R-C E 80 Opt-R-C
2 60 E 60
5 =
8 40 8 40
5 &
§ 20 20
0 ——a——a—*f 0

16 32 64 128 16 32 64 128
Block Size (MB) Block Size (MB)

(a) Downcoding time (b) Repair time (compact)

Figure 16. Experiment 2.2: Impact of block size for Opt-S-C & Opt-R-C.

From Figure 14(a), Opt-S-C has similar upcoding time to
Flat while Opt-R-C has larger upcoding time, which confirms
to the numerical results.

From Figure 14(c), the repair time of the fast LRC of
Opt-S-C is similar to that of Opt-R-C and both are much
smaller than that of Flat. For example, for scaling operation
P, Opt-5-C and Opt-R-C reduce the repair time of the fast
LRC of Flat by 84.5% and 84.5%, respectively.

Experiment 2.1 (Impact of block size for Opt-S-F and Opt-
R-F). We now evaluate the impact of the block size, varied
from 16 MB to 128 MB. We test the default scaling operation
(i.e., p2) and fix the cross-cluster bandwidth as 100 Mbps. We
only show the results for the upcoding time and the repair
time of the fast LRC in the following experiments for Opt-S-F
and Opt-R-F. Figure 15 shows the results. We can see that
the upcoding time and the repair time increases with a larger
block size, and Opt-S-F and Opt-R-F constantly outperform
Flat. For example, Opt-S-F reduces the upcoding time of Flat
from 89.6%-91.3%, and Opt-R-F reduces the repair time of
Flat from 83.2%-84.3%, across all block sizes.

Experiment 2.2 (Impact of block size for Opt-S-C and Opt-
R-C). We adopt the default scaling operation (i.e., pp) and
also test the impact of the block size for Opt-5-C and Opt-
R-C. We show the results for the downcoding time and the
repair time of the compact LRC in the following experiments

Figure 14. Experiment 1.2: Scaling and repair time for Opt-S-C & Opt-R-

12

—~50 ¥ Flat
L ZX\ B8 Opt-S-F 225
240 \ Opt-R-F 220
30 £
o b £15
3 20 \ﬁ\n 210
210 [
=]

0 0

50 100 200 400 50 100 200 400

Bandwidth (Mbps)
(a) Upcoding time

Bandwidth (Mbps)
(b) Repair time (fast)

Figure 17. Experiment 3.1: Impact of bandwidth for Opt-S-F & Opt-R-F.

)
g

100
80
60
40
20

G—a8—a8—*# 0
50 400 50

A O ®
o o o©

Repair Time (s)

N
=]

Downcoding Time (s|

o

100 200 400
Bandwidth (Mbps)
(b) Repair time (compact)

Figure 18. Experiment 3.2: Impact of bandwidth for Opt-S-C & Opt-R-C.

700 200
Bandwidth (Mbps)
(a) Downcoding time

for Opt-S-C and Opt-R-C. Figure 16 shows the results. We
can see that Opt-S5-C and Opt-R-C stably outperform Flat.
Overall, Opt-S-C reduces the downcoding time of Flat by
95.6%-95.9%, while Opt-R-C reduces the repair time of Flat
by 70.7%-71.2%, across all block sizes.

Experiment 3.1 (Impact of bandwidth for Opt-S-F and Opt-
R-F). We now study the impact of cross-cluster bandwidth.
Here, we adopt p2 and fix the block size as 64 MB, and
then vary the cross-cluster bandwidth from 50 Mbps to
400Mbps (the ratio of inner-cluster bandwidth to cross-
cluster bandwidth is 20:1-2.5:1). Figure 17 shows the results.
As expected, the upcoding and repair time decreases with
larger bandwidth. Besides, in Figure 17(a), Opt-S-F reduces
the upcoding time of Flat by 95.2%, 91.0%, 84.1%, and 74.7%
when the bandwidth is 50 Mbps, 100 Mbps, 200 Mbps, and
400 Mbps, respectively. In Figure 17(b), Opt-R-F reduces the
repair time of Flat by 91.5%, 84.0%, 72.6%, and 56.6% when
the bandwidth changes. These indicate that the improve-
ments of Opt-S-F and Opt-R-F over Flat are greater with
more scarce cross-cluster bandwidth.

Experiment 3.2 (Impact of bandwidth for Opt-S-C and
Opt-R-C). We adopt p, and test the impact of bandwidth for
Opt-S-C and Opt-R-C. Figure 18 shows the results. Overall,
Opt-S-C reduces the downcoding time of Flat by 97.8%,
95.9%, 92.2%, and 87.0%, while Opt-R-C reduces the repair
time of Flat by 73.0%, 71.2%, 68.1%, and 63.3%, for the four
bandwidth configurations.

6 RELATED WORK

There has been extensive work on the repair performance of
LRC in the literature. Theoretical studies on LRC (e.g., [8],
[24]-[26]) focus on the relationship between the optimal
minimum Hamming distance and the theoretical repair
cost, and design explicit LRC constructions. LRC is also
implemented and evaluated in Azure [11] and Facebook
[22]. Kolosov et al. [14] study the trade-offs of different LRC
constructions between storage overheads and repair costs. In
contrast, our work mainly focuses on the trade-off between
the repair and scaling costs in clustered storage systems.
Several studies address the scaling problem on the change
of erasure coding configurations. Some studies (e.g., [4], [12],

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[31], [33], [35], [36]) explore efficient data redistribution when
a storage cluster adds new storage nodes, while others (e.g.,
[6], [16], [29], [30]) address the transition from replication
to erasure coding. HeART [13] suggests the change of
redundancy settings to balance between storage overhead
and reliability. To adapt to workload changes, HACFS [34]
proposes efficient transitions between two erasure codes to
balance between storage overhead and access performance.
Our work is motivated by the scenario in HACFS, and
presents a formal repair-scaling trade-off analysis.

A number of studies consider the deployment of erasure
coding in clustered storage that spans multiple geographic
regions [3], [21]. In particular, some studies focus on minimiz-
ing the cross-cluster bandwidth during repair [9], [10], [17],
[19], [23]. Our work is the first one that addresses scaling
performance in clustered storage.

7 CONCLUSION

We investigate the optimal trade-off between the repair and
scaling performance of LRC in clustered storage systems.
Specifically, we analyze both the trade-off between the repair
of the fast LRC and upcoding, and the trade-off between
the repair of the compact LRC and downcoding. We design
placement strategies that operate along the optimal repair-
scaling trade-off curves subject to the single-cluster fault
tolerance constraint. Both numerical studies and testbed
experiments validate the efficiency of our placement strate-
gies. The source code of our implementation is available at
http://adslab.cse.cuhk.edu.hk/software/lrctradeoff.

Acknowledgements: This work is supported by NSFC
(61832011, 62072381), CCF-Tencent Open Fund WeBank Spe-
cial Fund, Zhejiang Lab (2021KFOABO1), the Fundamental Re-
search Funds for the Central Universities (WK2150110022).

APPENDIX

Proof of Theorem 1. Suppose that the upcoding cost of a
placement is u, and the upcoding cost induced by the i-th
(0 < i <l'—1) upcoding unit is u; (Z,li:ol u; = u). For an
upcoding unit, there must be a core cluster that will collect
and encode the § local parity blocks. There must also be
some different clusters that hold local parity blocks. We call
each such cluster a remote cluster. Our proof is as follows.

(i) We first prove that the number of remote clusters
for the i-th upcoding unit is exactly u;. During upcoding,
the core cluster will retrieve an XOR sum of the local parity
blocks in each remote cluster. If the number of remote clusters
is not u;, then the upcoding cost will be different from u;.

(ii) We next prove that a core cluster also holds local parity
blocks. Otherwise, we choose one remote cluster as the new
core cluster. During upcoding, the local parity blocks in the
new core cluster can be retrieved locally, so the upcoding
cost for the i-th upcoding unit will be u; — 1 rather than u;.

(iii) We then prove that we can collocate (at most) 6 local
data sets into a cluster that holds local parity blocks if the
corresponding local parity blocks of these local data sets are
also in this cluster. Suppose that a cluster holds r local parity
blocks, and we can collocate (at most) w local data sets whose
local parity blocks are included in the 7 ones. The number
of blocks (i.e., w x b+ 1), which span r local groups, cannot

13

exceed g + r (Lemma 1). Thus, w = || = 0, and the cost
for repairing any data block in these 0 local data sets is zero.

(iv) We now show that the core cluster and remote clusters
of one upcoding unit should be different from those of
another upcoding unit so as to minimize the repair cost.
If cluster A of one upcoding unit is the same as cluster B of
another upcoding unit, then according to (iii), we can put (at
most) 0 local data sets into A (or B). If A is different from
B, then we can put § local data sets into A and another 6
local data sets into B. Hence, if the core cluster and remote
clusters for each upcoding unit are different, then we can
collocate more local data sets with their local parity blocks,
and so the repair cost of more data blocks is zero.

(v) We now prove that the maximum number of data
blocks whose repair cost is zero is (I’ +) x 6 x b. From (iii),
we can put (at most) 6 local data sets into a cluster that holds
local parity blocks, so as to make the cost for repairing any
data block in these 6 local data sets as zero. From (i), (ii), and
(iv), we have (at most) I" core clusters and u remote clusters
that hold local parity blocks. Thus, the maximum number of
data blocks whose repair cost is zero is (I’ +u) x 6 x b.

(vi) Finally, we prove that we cannot have a placement
whose repair cost is less than 1 — % - “}(9 subject to the
upcoding cost of u. Otherwise, since the repair cost is less
than one, there must be some data blocks whose repair cost is
zero. We assume that the number of data blocks whose repair
cost is zero is «, so the number of data blocks whose repair
cost is at least one is k — «. Therefore, "_TO‘ <1l-— % — “IXO,
implying o > (I’ + u) x 6 x b. However, this is conflicting
with our proof in (v). Thus, we complete our proof.

Proof of Theorem 2. Suppose that the downcoding cost of a
placement is d, and we organize our proof as follows.

(i) We first show that the number of moved local data sets
(based on Opt-5-C) is at most %. Otherwise, since we must
relocate the moved local data sets back for downcoding, the
downcoding cost will be larger than % xb=d.

(ii) As we move some local data sets to different clusters,
the number of clusters some local groups of the compact LRC
span will be reduced and so the repair cost of the data blocks
in the local groups will be decreased accordingly. We assume
that the number of local groups where the data blocks have
reduced repair cost is , so the number of local groups where
the data blocks have unchanged repair cost is [—

(iii) Based on (ii), we further assume that in the first to
the (z — 2)-th local group, the repair cost of the data blocks
reduces by y (i.e., the number of clusters the local group
spans reduces by), and in the (z — 1)-th local group, the
repair cost of the data blocks reduces by z (i.e., the number
of clusters the local group spans reduces by z).

(iv) According to (ii) and (iii), the repair cost of the
placement is calculated as ((§ — 1 —y) x (z — 1) + (§ —
1—2)+(§ -1 x (' —x)/.

(v) Based on (iii), we can calculate that the number of
moved local data sets is ((z — 1) X y + z) x 6. Based on (i),
we can show that ((z — 1) x y + 2) x 6 < 4.

(vi) Assuming that thiere is a placement with repair cost

smaller than g — 1 — 57 subject to the downcoding cost
xbxl

of d, then the repair cost value in (iv) is smaller than g —-1-
del,, implying that ((z — 1) x y + z) x 6 > %, which is
conflicting with our proof in (v). Thus, our proof completes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

REFERENCES

(1]
(2]

(3]

(4]
(5]

(6]
(71

(8]

(%]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

The Wonder Shaper 1.4.
wondershaper.

F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.
ShuffleWatcher: Shuffle-aware scheduling in multi-tenant Mapre-
duce clusters. In Proc. of USENIX ATC, 2014.

Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips.
Giza: Erasure coding objects across global data centers. In Proc. of
USENIX ATC, 2017.

L. Cheng, Y. Hu, and P. P. Lee. Coupling decentralized key-value
stores with erasure coding. In Proc. of ACM SoCC, 2019.

M. Chowdhury, S. Kandula, and 1. Stoica. Leveraging endpoint
flexibility in data-intensive clusters. In Proc. of ACM SIGCOMM,
2013.

B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce: RAID
for data-intensive scalable computing. In Proc. of ACM PDSW, 2009.
D. Ford, F. Labelle, E. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed
storage systems. In Proc. of USENIX OSDI, 2010.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality
of codeword symbols. IEEE Trans. on Information Theory, 58(11):6925-
6934, 2012.

H. Hou, P. P. Lee, K. W. Shum, and Y. Hu. Rack-aware regenerating
codes for data centers. IEEE Trans. on Information Theory, 65(8):4730—
4745, Aug 2019.

Y. Hu, X. Li, M. Zhang, P. P. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal repair layering for erasure-coded data centers: From theory
to practice. ACM Trans. on Storage, 13(4):33, 2017.

C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in Windows Azure Storage. In
Proc. of USENIX ATC, 2012.

J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie. Scale-RS: An efficient
scaling scheme for RS-coded storage clusters. IEEE Trans. on Parallel
and Distributed Systems, 26(6):1704-1717, 2014.

S. Kadekodji, K. Rashmi, and G. R. Ganger. Cluster storage systems
gotta have HeART: Improving storage efficiency by exploiting
disk-reliability heterogeneity. In Proc. of USENIX FAST, 2019.

O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg. On fault
tolerance, locality, and optimality in Locally Repairable Codes. In
Proc. of USENIX ATC, 2018.

J. Li, B. Li, and B. Li. Demand-Aware erasure coding for distributed
storage systems. IEEE Trans. on Cloud Computing (TCC), 2018.

R. Li, Y. Hu, and P. P. Lee. Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems. IEEE
Trans. on Parallel and Distributed Systems, 28(9):2500-2513, 2017.

X. Li, R. Li, P. P. Lee, and Y. Hu. OpenEC: Toward unified and
configurable erasure coding management in distributed storage
systems. In Proc. of USENIX FAST, 2019.

S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, et al. f4: Facebook’s warm BLOB
storage system. In Proc. of USENIX OSDI, 2014.

N. Prakash, V. Abdrashitov, and M. Médard. The storage versus
repair-bandwidth trade-off for clustered storage systems. IEEE
Trans.on Information Theory, 64(8):5783-5805, Aug 2018.

K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on
the Facebook warehouse cluster. In Proc. of USENIX HotStorage,
2013.

J. K. Resch and J. S. Plank. AONT-RS: Blending security and
performance in dispersed storage systems. In Proc. of USENIX
FAST, 2011.

M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel
erasure codes for big data. In Proc. of VLDB Endowment, pages
325-336, 2013.

Z.Shen, J. Shu, and P. P. Lee. Reconsidering single failure recovery
in clustered file systems. In Proc. of IEEE/IFIP DSN, 2016.

N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath.
Optimal Locally Repairable Codes via Rank-Metric Codes. In Proc.
of IEEE International Symposium on Information Theory, 2013.

I. Tamo and A. Barg. A family of optimal Locally Recoverable
Codes. IEEE Trans. on Information Theory, 60(8):4661-4676, 2014.

I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis. Optimal Locally
Repairable Codes and connections to Matroid theory. IEEE Trans.
on Information Theory, 62(12):6661-6671, 2016.

https://github.com/magnific0/

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

14

A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese. Global analytics in the face of bandwidth and
regulatory constraints. In Proc. of USENIX NSDI, 2015.

H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Proc. of IPTPS, 2002.

S. Wei, Y. Li, Y. Xu, and S. Wu. DSC: Dynamic stripe construction
for synchronous encoding in clustered file system. In Proc. of IEEE
INFOCOM, 2017.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
hierarchical storage system. ACM Trans. on Computer Systems,
14(1):108-136, 1996.

C. Wu and X. He. GSR: A global stripe-based redistribution
approach to accelerate RAID-5 scaling. In Proc. of IEEE ICPP,
2012.

S. Wu, Z. Shen, and P. P. Lee. On the optimal repair-scaling trade-off
in Locally Repairable Codes. In Proc. of IEEE INFOCOM, 2020.

S. Wu, Y. Xu, Y. Li, and Z. Yang. I/O-Efficient scaling schemes for
distributed storage systems with CRS codes. IEEE Trans. on Parallel
and Distributed Systems, 27(9):2639-2652, 2016.

M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two
erasure codes in HDFS. In Proc. of USENIX FAST, 2015.

X. Zhang, Y. Hu, P. P. Lee, and P. Zhou. Toward optimal storage
scaling via network coding: From theory to practice. In Proc. of
IEEE INFOCOM, 2018.

W. Zheng and G. Zhang. FastScale: Accelerate RAID scaling by
minimizing data migration. In Proc. of USENIX FAST, 2011.

Si Wu received the B.Eng. and Ph.D. degrees in
Computer Science from University of Science
and Technology of China in 2011 and 2016,
respectively. He is now an associate researcher
in School of Computer Science and Technology,
University of Science and Technology of China.
His research interests include storage reliability
and distributed storage.

Zhirong Shen received the B.Eng. degree from
University of Electronic Science and Technology
of China in 2010, and the Ph.D. degree in Com-
puter Science from Tsinghua University in 2016.
He is now an associate professor at Xiamen
University. His research interests include storage
reliability and storage security. He is a member
of the IEEE.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an Associate Professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. His
research interests are in various applied/systems

topics including storage systems, distributed systems and networks,
operating systems, dependability, and security.

Yinlong Xu received the Bachelor’s degree in
mathematics from Peking University in 1983, and
the master and PhD degrees in computer science
from University of Science and Technology of
China (USTC) in 1989 and 2004, respectively.
He is currently a professor with the School of
Computer Science and Technology at USTC. Cur-
rently, he is leading a group of research students
in doing some networking and high performance
computing research. His research interests in-
clude network coding, wireless network, combi-

natorial optimization, design and analysis of parallel algorithm, parallel
programming tools, etc. He received the Excellent PhD Advisor Award of
Chinese Academy of Sciences in 2006.

