
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Fast Proactive Repair in Erasure-Coded Storage:
Analysis, Design, and Implementation

(Supplementary File)
Xiaolu Li, Keyun Cheng, Zhirong Shen, and Patrick P. C. Lee

F

The following materials are supplementary to our main
file. In this digital supplementary file, we analyze two repair
methods for Azure-LRC (Section 1). We present the time
complexity analysis for FastPR (Section2). We present the
large-scale simulation results for RS codes (Section 3). We
finally include more experiment results for RS codes on
Amazon EC2.

1 ANALYSIS FOR THE REACTIVE REPAIR OF
AZURE-LRC

We compare two reactive repair methods for Azure-LRC,
namely independent repair and mixed repair. We divide the
reconstruction process into multiple rounds. For independent
repair, we only repair chunks from either the local parity
group or the global parity group in each repair round. For
mixed repair, we can repair chunks from both groups. We
prove that independent repair is faster than mixed repair
in ideal cases, where in each round, we can reconstruct the
maximum number of chunks. Table 1 shows the symbols
used in this proof.

TABLE 1
Notation for Section 1.

Symbol Description
U Total number of chunks in the STF node.
M Total number of nodes in a storage cluster.
Ul Number of chunks in the local parity group.
tr,l Time to repair a chunk in the local parity group.

kl
Number of chunks required to repair a chunk in
the local parity group.

Ug Number of chunks in the global parity group.
tr,g Time to repair a chunk in the global parity group.

kg
Number of chunks required to repair a chunk in
the global parity group.

• Xiaolu Li is with the School of Computer Science and Tech-
nology, Huazhong University of Science and Technology (E-mail:
lixl666@hust.edu.cn). This work was partially done when Xiaolu Li worked
as a Postdoctoral Fellow at The Chinese University of Hong Kong.

• Keyun Cheng, and Patrick P. C. Lee are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong
Kong (E-mails: {kycheng, pclee}@cse.cuhk.edu.hk).

• Zhirong Shen is with the School of Informatics, Xiamen University, China.
(E-mail: shenzr@xmu.edu.cn).

Independent repair: In each round, we can repair Gl =
M−1
kl

chunks from the local parity group in parallel. The number
of rounds to repair all chunks from the local parity group
is Ul·kl

M−1 . Thus, the time to repair all the chunks in the local
parity group is Ul·kl·tr,l

M−1 . Similarly, the time to repair all the
chunks in the global parity group is Ug·kg·tr,g

M−1 . Thus, the total
repair time for the independent repair TR,idd is

TR,idd =
Ul · kl · tr,l
M − 1

+
Ug · kg · tr,g

M − 1
(1)

Mixed repair: We divide the repair process into three parts
for mixed repair: (i) U ′l out of Ul chunks from the local parity
group are repaired independently in each round; (ii) U ′g
out of Ug chunks from the global parity group are repaired
independently in each round; and (iii) for remaining chunks,
we repair both chunks in each round. The repair times for
(i) and (ii) are U ′

l ·kl·tr,l
M−1 and

U ′
g·kg·tr,g
M−1 , respectively. For (iii),

the total number of rounds is at least
(Ul−U ′

l)·kl+(Ug−U ′
g)·kg

M−1 .
Suppose tr,g ≥ tr,l, which means that the repair time of each
round is bottlenecked by tr,g . Thus, the total repair time
TR,mix is

TR,mix ≥ U ′l · kl · tr,l
M − 1

+
U ′g · kg · tr,g

M − 1

+
(Ul − U ′l) · kl + (Ug − U ′g) · kg

M − 1
· tr,g

(2)

Considering that tr,g ≥ tr,l, we can readily show that
TR,mix ≥ TR,idd.

2 TIME COMPLEXITY ANALYSIS

We first consider the MATCH function in Algorithm 1.
MATCH aims to find the maximum matching on a candidate
reconstruction set, whose size is at most M−1

k . Thus, the re-
sulting bipartite graph in MATCH has at most M−1

k ·k = M−1
chunk vertices (together with M − 1 node vertices). Each
chunk vertex connects to n − 1 node vertices, so there are
at most (M − 1)(n− 1) edges in the bipartite graph. Thus,
MATCH finds a maximum matching in a bipartite graph in
O(M2n) time.

We next consider the FIND function in Algorithm 1.
Forming an initial reconstruction set (Lines 10-17) calls

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

MATCH |C| times. Optimizing the reconstruction set (Lines 18-
38) expands R no more than M−1

k times (Line 34), and each
time calls MATCH |C|2|R| ≤ |C2M−1

k | times (Lines 20-31).
Thus, the time complexity of FIND is O(|C|2M4n).

Overall, Algorithm 1 calls FIND at most |C| time, so its
time complexity O(|C|3M4n).

Finally, we analyze the time complexity of Algorithm 2.
Sorting d reconstruction sets (Line 1) takes O(d log d) time.
For each repair round, we scan d reconstruction sets to find
the largest x (Line 9) in O(d) time, and find the subset
R′x in Rx (Line 10) in O(|Rx|) time. Since the number of
repair rounds is at most d, the complexity of Lines 3-15 is
O(d(d+ |Rx|)). Also, as d ≤ |C| and |Rx| ≤ M−1

k , the time
complexity of Algorithm 2 is O(|C|(|C|+ M

k)).

Discussion: Note that Algorithm 1, even with polynomial
complexity, incurs high running time for large |C| and M .
We suggest two options to mitigate the overhead. The first
option is to partition the chunks of the STF node into chunk
groups and find the reconstruction sets for each chunk group
(which now becomes C). Another option is that we can run
Algorithm 1 for each possible STF node in advance and store
the results when they are required [3].

3 SIMULATION RESULTS

We conduct simulation on FastPR to evaluate its performance
in a large-scale storage cluster. We focus on RS codes. We
design a single-machine simulator for FastPR by modifying
our prototype. In the simulator, we remove all the actual
operations of disk I/Os and network transmission from
the prototype, and simulate the operations by computing
their execution times based on the input network and
disk bandwidths. Note that the main algorithms, including
finding reconstruction sets and repair scheduling, are still
preserved.

We compare FastPR with three approaches: (i) migration-
only, in which we directly migrate all the chunks of the STF
node to other healthy nodes; (ii) reconstruction-only, in which
we find the reconstruction sets based on Algorithm 1, but we
repair each of them in a repair round by reconstruction only
without calling Algorithm 2 (note that it corresponds to the
conventional reactive repair); and (iii) optimum, which we
derive from the mathematical analysis based on our modeled
tm and tr .

We assume the following default configurations. We
configure a storage cluster of M = 100 nodes with the
disk bandwidth bd = 100 MB/s and network bandwidth
bn = 1 Gb/s. We encode the chunks by RS(9, 6) adopted
by QFS [5], while we also consider RS(14, 10) (adopted by
Facebook [4]) and RS(16, 12) (coding parameters used by
Azure [2]). We fix the chunk size as 64 MB, and randomly
distribute 1,000 stripes of chunks across the storage cluster.
For hot-standby repair, we fix the number of hot-standby
nodes h = 3. We vary one configuration parameter in our
simulation experiments and evaluate its impact. We measure
the repair time per chunk, averaged over 30 runs.

Experiment 1 (Scattered repair): Figure 1 shows the simula-
tion results of the repair time per chunk in scattered repair,
in which we vary M , RS(n, k), bd, and bn. Migration-only
is the worst among all approaches, since its performance

0.0

0.5

1.0

1.5

2.0

2.5

20 30 40 50 60 70 80 90 100
of Nodes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

RS(9, 6) RS(14, 10) RS(16,12)
Erasure Codes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

(a) Varying M (b) Varying RS(n, k)

0.0

0.5

1.0

1.5

2.0

2.5

100 200 300 400 500
Disk Bandwidth (MB/s)

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

0.5 1 2 5 10
Network Bandwidth (Gb/s)

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

(c) Varying bd (d) Varying bn

Fig. 1. Experiment 1: Simulation results of repair time per chunk in
scattered repair.

0.0

0.5

1.0

1.5

2.0

2.5

20 30 40 50 60 70 80 90 100
of Nodes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

3 4 5 6 7 8 9
of Hot-Standby Nodes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

(a) Varying M (b) Varying h

Fig. 2. Experiment 2: Simulation results of repair time per chunk in hot-
standby repair.

is bottlenecked by the STF node. Reconstruction-only has
similar performance to FastPR since it can exploit the
available bandwidth resources of the storage cluster as
FastPR. However, it incurs higher repair time per chunk
than FastPR when M is small (Figure 1(a)) or (n, k) is large
(Figure 1(b)), since the available bandwidth resources of the
storage cluster are more limited for smaller M and the repair
traffic increases for larger k. Overall, FastPR reduces the
repair times of both migration-only and reconstruction-only,
for example, by 62.7% and 40.6% for RS(16, 12) (Figure 1(b)).

In practice, FastPR deviates from the optimum since the
number of chunks of the STF node that can be repaired in
parallel depends on the chunk distribution. Nevertheless,
our simulation results show that the repair time of FastPR is
only 11.4% more than the optimum on average.

Experiment 2 (Hot-standby repair): Figure 2 shows the
simulation results of the repair time per chunk in hot-standby
repair, in which we vary M and h. The repair performance
is mainly bottlenecked by the hot-standby nodes, and the
repair time has limited variance across different values of
M (Figure 2(a)). When h = 3, FastPR reduces the repair
times of migration-only and reconstruction-only by 57.7%
and 41.0%, respectively. FastPR maintains high performance
in hot-standby repair, and its repair time is only 5.4% more
than the optimum on average.

Experiment 3 (Impact of the number of stripes): Figure 3
shows the repair time per chunk versus the number of
stripes repaired in total. Here, we only focus on FastPR
and the optimum to compare their differences. Increasing
the number of stripes provides more flexibility of FastPR to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

0.0

0.1

0.2

0.3

0.4

0.5

200 400 600 800 1000
of Stripes

R
ep

ai
r

T
im

e
(S

ec
) Optimum FastPR

0.0

0.4

0.8

1.2

1.6

200 400 600 800 1000
of Stripes

R
ep

ai
r

T
im

e
(S

ec
) Optimum FastPR

(a) Scattered repair (b) Hot-standby repair

Fig. 3. Experiment 3: Simulation results of repair time per chunk versus
the number of stripes.

0.00

0.25

0.50

0.75

1.00

1 4 16 64
Packet Size (MB)

R
e

p
a

ir
 T

im
e

 (
s
e

c
) FastPR

Reconstruction
Migration

0.00

0.25

0.50

0.75

1.00

1 4 16 64
Packet Size (MB)

R
e

p
a

ir
 T

im
e

 (
s
e

c
) FastPR

Reconstruction
Migration

(a) Scattered repair (b) Hot-standby repair

Fig. 4. Experiment 4: Impact of the packet size.

identify the reconstruction sets that maximize parallelism.
We observe that when the number of stripes is at least 400, the
differences between FastPR and the optimum are very small
(within 15%). This implies that we can limit our selection
of reconstruction sets (i.e., Algorithm 1) to a smaller group
of chunks to mitigate the running time overhead, while
achieving the near-optimal repair performance.

4 EXPERIMENTS FOR RS CODES

We now include more experiment results for RS codes in the
same Amazon EC2 clusters we configure in Section 6. Here,
we study the impact of packet size and network bandwidth.
We also conduct microbenchmarks to study the performance
of Algorithm 1.
Experiment 4 (Impact of the packet size): We first study the
impact of multi-threading by evaluating the repair time per
chunk versus the packet size, varied from 1 MB to 64 MB;
note that for the packet size 64 MB, we do not enable multi-
threading as it is equal to the default chunk size. Figure 4
shows that the repair time reduces for smaller packet sizes,
as multi-threading can parallelize different steps of a repair
operation. For example, when the packet size reduces from
64 MB to 4 MB, the repair time of FastPR reduces by 31.4%
(the reduction is negligible when the packet size further
reduces to 1 MB). For all packet sizes, FastPR reduces the
repair times of migration-only and reconstruction-only by
37.7-52.3% and 1.9-24.7%, respectively.
Experiment 5 (Impact of network bandwidth): We study
how the network bandwidth (i.e., bn) affects the repair time.
We use the Wonder Shaper tool [1] to control the network
adapter bandwidth. Here, we vary bn as 0.5 Gb/s, 1 Gb/s,
and 5 Gb/s (the default one without bandwidth limiting).
Figure 5 shows that the repair time of reconstruction-only
significantly increases when the network bandwidth is
limited, as it incurs a high amount of repair traffic. Overall,
FastPR reduces the repair times of migration-only and
reconstruction-only by 27.7% and 62.5% when bn = 0.5 Gb/s,
and 27.1% and 61.5% when bn = 1 Gb/s, respectively.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1 5
Network Bandwidth (Gb/s)

R
e

p
a

ir
 T

im
e

 (
s
e

c
) FastPR

Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1 5
Network Bandwidth (Gb/s)

R
e

p
a

ir
 T

im
e

 (
s
e

c
) FastPR

Reconstruction
Migration

(a) Scattered repair (b) Hot-standby repair

Fig. 5. Experiment 5: Impact of network bandwidth.

0%

5%

10%

15%

20%

200 400 600 800 1000
of Repaired Chunks

R
ed

uc
tio

n

0

100

200

300

400

200 400 600 800 1000
of Repaired Chunks

T
im

e
(S

ec
)

(a) Reduction of dopt over dini (b) Running time of Algorithm 1

Fig. 6. Experiment 6: Microbenchmarks.

Experiment 6 (Microbenchmarks): A key component of
FastPR is to find the reconstruction sets (Algorithm 1). We
study Algorithm 1 in two aspects, based on the evaluation
setting for RS codes on Amazon EC2 as described in
Section 6.1 of the main file.

First, we analyze the effectiveness of optimizing the
selection of the initial reconstruction set in Algorithm 1 (i.e.,
Lines 18-38). We compare the numbers of reconstruction
sets returned by Algorithm 1 with and without Lines 18-
38, denoted by dopt and dini, respectively. Intuitively, if
dopt < dini, the optimization step reduces the number of
reconstruction sets returned and hence includes more chunks
in each reconstruction set on average to exploit a higher
degree of parallelism. Figure 6(a) shows the reduction of
dopt compared to dini versus the number of repaired chunks
(i.e., |C|), averaged over 30 runs. Overall, dopt is 13% less
than dini, while the reduction becomes fairly stable when the
number of repaired chunks is at least 200.

Second, we measure the running time of Algorithm 1
in one Amazon EC2 instance of type m5.large in the US
East (North Virginia) region. Figure 6(b) shows the running
time of Algorithm 1 versus the number of repaired chunks,
averaged over 30 runs. The running time increases from 0.84 s
for 100 repaired chunks to 254.63 s for 1,000 repaired chunks.
Nevertheless, we can run Algorithm 1 on the repaired chunks
of the STF node by groups and pre-compute Algorithm 1 for
each STF node offline to mitigate its overhead.

REFERENCES

[1] The Wonder Shaper 1.4. https://github.com/magnific0/wondershaper.
[2] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,

S. Yekhanin, et al. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, 2012.

[3] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang.
Rethinking Erasure Codes for Cloud File Systems: Minimizing I/O
for Recovery and Degraded Reads. In Proc. of USENIX FAST, 2012.

[4] S. Muralidhar, W. Lloyd, S. Roy, et al. F4: Facebook’s Warm Blob
Storage System. In Proc. of USENIX OSDI, 2014.

[5] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly. The
Quantcast File System. Proc. of the VLDB Endowment, 6(11):1092–1101,
2013.

	Analysis for the reactive repair of Azure-LRC
	Time Complexity Analysis
	Simulation Results
	Experiments for RS Codes
	References

