
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Elastic Parity Logging for SSD RAID Arrays:
Design, Analysis, and Implementation

(Supplementary File)
Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, Yinlong Xu

F

The following materials are supplementary to our main
file.

1 CACHING

To further reduce parity traffic, EPLOG supports an optional
caching feature to batch-process multiple write requests in
memory. It includes two types of buffers in the log module:
a stripe buffer and multiple device buffers, which process new
writes and updates, respectively.

The stripe buffer is used to cache new writes, which are
directed to the main array, so as to increase the chance of
full-stripe writes when generating data stripes. We set the
size of the stripe buffer to be multiples of data stripes.
Specifically, when a new write request arrives, the data
chunks contained in the write request are appended to the
stripe buffer. If the stripe buffer is full, all cached data
chunks are grouped together to generate full data stripes
and written to the main array in batch.

In addition, there are multiple device buffers, each of
which is associated with an SSD in the main array. Each
device buffer is used to cache update requests. The rationale
is that real-world workloads often exhibit high locality
both spatially and temporally [12]–[14], such that recently
updated chunks and their nearby chunks tend to be updated
more frequently. Thus, the device buffers can potentially
absorb multiple updates for the same data chunk, thereby
reducing both data chunks and log chunks written to the
main array and the log devices, respectively. Specifically,
when an update request arrives, each of the data chunks
in the request is cached in the corresponding device buffer,
according to the destined SSDs of these data chunks. If the
same data chunk is found in the device buffer, it is directly
updated in place. When one of the device buffers is full, we
extract one data chunk from the head of each non-empty
device buffer to form a log stripe.

We further illustrate via an example how the buffers
work in EPLOG, as shown in Figure 1. We consider a stream

• H. Chan and P. Lee are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong. (emails:
{hwchan,pclee}@cse.cuhk.edu.hk).

• Y. Li and Y. Xu are with the School of Computer Science and
Technology, University of Science and Technology of China (emails:
{ykli,ylxu}@ustc.edu.cn).

Incoming requests: {A3, B3}, {B0’, C0’, A1’}, {C1’, A2’}

Stripe buffer

A3 B3

Device buffers

C0’

SSD2

C1’

SSD3

A2’

A1’

SSD0

B0’

SSD1

Buffer

Storage
Devices

A0 B0 C0 P0Stripe 0

A1 B1 P1 C1Stripe 1

A2 P2 B2 C2Stripe 2

A1’ B0’ C0’ C1’

SSD RAID-5 Log Device

SSD2 SSD3SSD0 SSD1

A1’+B0’+C0’+C1’

Fig. 1: Illustration of buffers in EPLOG.

of write requests issued to an SSD RAID-5 array. Specifically,
when the new write request {A3, B3} arrives, we add the
data chunks to the stripe buffer. For the subsequent update
requests {B0’, C0’, A1’} and {C1’, A2’}, we add them
to the device buffers. We add the data chunks A1’ and
A2’ to the device buffer of SSD0, since both their original
data chunks A1 and A2 belong to SSD0. Similarly, we add
the data chunks B0’, C0’, C1’ to the device buffers of
SSD1, SSD2, and SSD3, respectively. Suppose that the size
of each device buffer is configured to hold at most two data
chunks. Now the device buffer of SSD0 becomes full. Thus,
we construct a log stripe using the set of data chunks {A1’,
B0’, C0’, C1’}. Finally, we write the new data chunks A1’,
B0’, C0’, and C1’ to the main array by using the no-
overwrite policy, and append the generated log chunks to
the log devices as shown in Figure 1.

2 RELIABILITY ANALYSIS

In this section, we analyze the system reliability of EPLOG
and compare it with that of conventional RAID (i.e., we
deploy RAID directly in the main array without using any
log device). At first glance, the impact of EPLOG on the
system reliability is debatable. EPLOG reduces write traffic
to the main array via elastic parity logging. This slows down
the wearing of flash memory, and also mitigates the failure
rates of SSDs [5], [8]. On the other hand, EPLOG adds log

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

devices, while still tolerating the same number of device
failures. This degrades the system reliability.

We resolve this debate as follows. Specifically, we mea-
sure the system reliability of EPLOG and conventional RAID
in terms of mean-time-to-data-loss (MTTDL) (i.e., the ex-
pected time until data loss happens) through a simplified
setting. Suppose that a storage system (either EPLOG or
conventional RAID) reaches a certain system state after
processing some workload. We fix the current system state,
which implies that the corresponding error and recovery
rates are fixed. Then under the same system state, we
analyze how much longer the storage system continues
to survive without any data loss based on MTTDL. Note
that our simplified reliability analysis does not consider
the time-varying bit error rate of flash memory [9]. Also,
the correctness of MTTDL is debatable [4]. Nevertheless,
our analysis only serves to provide reliability comparisons
between EPLOG and conventional RAID, and by no means
do we use the absolute values for accurate quantifications.

2.1 MTTDL Computation
We first define the notations. Let n be the number of SSDs
in the main array. Given a fixed system state, let λs be the
failure rate of an SSD in EPLOG, and λ′s be the failure rate
of an SSD in conventional RAID. Let µs be recovery rate of
an SSD. Let λh and µh be the failure rate and recovery rate
of an HDD for EPLOG, respectively.

Note that both λs and λ′s generally increase with the
number of P/E cycles performed, which depends on the
amount of write traffic. For simplicity, we assume that the
failure rate of an SSD increases proportionally with the
amount of writes issued1:

λs = αλ′s, (1)

where α denotes the ratio of the amount of writes issued
to the main array in EPLOG to that in conventional RAID.
Note that EPLOG keeps α < 1 by reducing parity writes to
SSDs. In practice, we can estimate α through measurements.

EPLOG’s RAID-5: We first consider EPLOG’s RAID-5 de-
sign, which tolerates a single device failure. Recall that
EPLOG adds one additional HDD as the log device. We now
compute its MTTDL through a Markov model. Specifically,
suppose that the storage system has a total of i device
failures, j of which are SSDs. When i ≥ 2, the storage system
has a data loss, so we can focus on 0 ≤ j ≤ i ≤ 2. Let (i, j)
denote a state. Thus, the storage system can be at one of the
following states: S0 = (0, 0), S1 = (1, 0), S2 = (1, 1), and
S3 = (2, ∗) (note that S3 can be (2, 1) or (2, 2), both of which
imply a data loss).

Figure 2 shows the state transition diagram of the
Markov model for EPLOG’s RAID-5. Take S2 = (1, 1) as
an example, in which one SSD fails. If the failed SSD is
recovered, S2 transits to S0, where the transition rate is µs.
If one more device (either an SSD or the log device) fails, S2

transits to S3, where the total transition rate is (n−1)λs+λh.

1. The recent study [11] shows that the failure rate of an SSD does
not monotonically increase as flash memory wears. However, as an
SSD enters the wear-out period, which accounts for the majority of
the SSD lifetime, the increasing trend actually holds and supports our
assumption.

Fig. 2: State transition diagram of the Markov model for
EPLOG’s RAID-5.

Fig. 3: State transition diagram of the Markov model for
EPLOG’s RAID-6.

We denote the system state at time t as πt =
(π0(t), π1(t), π2(t), π3(t)), where πi(t) denotes the probabil-
ity that EPLOG is at state Si at time t. Let π(0) = (1, 0, 0, 0),
meaning that there is no device failure initially. Based on the
Kolmogorov’s forward equation, we have

π′(t) = π(t)Q, (2)

where Q denotes the transition rate matrix given by:

Q=

−(nλs+λh) λh nλs 0
µh −(µh+nλs) 0 nλs
µs 0 −(µs+(n−1)λs+λh) (n−1)λs+λh
0 0 0 0

 .
(3)

We can now derive the closed-form MTTDL of EPLOG’s
RAID-5 through standard approaches (e.g., by a Laplace
transform) as follows:

MTTDL=

[
(2n−1)λs+µs

]
+
[
2(λh+µh)+

(λh+µh)(λh−λs+µs)
nλs

][
n(n−1)λ2

s

]
+
[
nλs(2λh+µh)+(λh+µh)(λh−λs)+λhµs

] .
(4)

EPLOG’s RAID-6: We now consider EPLOG’s RAID-6 de-
sign, which tolerates two device failures. Recall that EPLOG
introduces two additional HDDs as log devices. We follow
the same approach as in the RAID-5 case.

Figure 3 shows the state transition diagram of the
Markov model for EPLOG’s RAID-6. Let (i, j) denote a state
as defined in the RAID-5 case. There are a total of six states,
where 0 ≤ j ≤ i ≤ 3. In particular, the state S6 = (3, ∗)
represents a data loss. One subtlety is that for the state
S4, which has one SSD failure and one HDD failure, we
select a failed device for recovery via random tie-breaking.
In this case, S4 transits to S1 and S2 with rates 1

2µs and 1
2µh,

respectively.
We do not present the closed-form solution for the

MTTDL of EPLOG’s RAID-6 due to its complexity, but we
can compute the MTTDL through numerical methods. We
can further extend our analysis for the tolerance against a
general number of device failures, and obtain the MTTDL
through numerical methods.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

1 3 5 7 9
0

5000

10000

15000

Error Rate Ratio: λ
h
/λ’

s

M
T

T
D

L
(y

e
a
rs

)

Conventional RAID

EPLOG(α=0.3)

EPLOG(α=0.5)

EPLOG(α=0.7)

1 3 5 7 9
0

2

4

6

8
x 10

7

Error Rate Ratio: λ
h
/λ’

s

M
T

T
D

L
(y

e
a
rs

)

Conventional RAID

EPLOG(α=0.3)

EPLOG(α=0.5)

EPLOG(α=0.7)

(a) RAID-5 (b) RAID-6

Fig. 4: Reliability comparison between EPLOG and conven-
tional RAID.

Conventional RAID: The derivations of the MTTDLs for
conventional RAID-5 and RAID-6 are well-known in the
literature (e.g., [2], [3]). For completeness, we write down
the results, in terms of λ′s (see Equation (1)) and µs.

MTTDL for RAID-5 =
µs + (2n− 1)λ′s
n(n− 1)(λ′s)2

, (5)

MTTDL for RAID-6 =
µ2
s+2(n−1)λ′sµs+(3n

2−6n+2)(λ′s)
2

n(n− 1)(n− 2)(λ′s)3
.(6)

2.2 Results

To better illustrate whether EPLOG really improves the
system reliability, we now compare the MTTDL of EPLOG
and that of conventional RAID via numerical analysis. We
first configure the parameters for conventional RAID. Sup-
pose that the main array contains n = 10 SSDs. For the
failure rate λ′s, we note that it is challenging to maintain
a minimum SSD lifetime of 3-5 years in a write-intensive
environment [7], we set the average failure rate as 1/λ′s = 4
years (i.e., λ′s = 0.25). For the recovery rate µs, suppose
that the capacity of each SSD is around 400GB, and the I/O
throughput for sequential writes is around 100MB/s, the
average time to recover one device (i.e., rewrite all data) as
around 1/µs = 10−4 year (i.e., µs = 104).

We now configure the parameters for EPLOG. We vary
the failure rate of an HDD λh from λ′s to 10λ′s, and still
set µh = 104. We set λs by considering three values of α,
including 0.3, 0.5, and 0.7. Note that α = 0.5 can be justified
from our trace-driven evaluations.

Figure 4 shows the MTTDL results versus the ratio
λh/λ

′
s for RAID-5 and RAID-6 (note that the MTTDL for

conventional RAID is fixed since no HDD is used). It is
reported that SSDs and HDDs have comparable failure rates
[15] (i.e., λh ≈ λ′s). In this case, EPLOG achieves higher
system reliability. For example, if λh = λ′s and α = 0.5,
EPLOG achieves 2.8× MTTDL compared to conventional
RAID for both RAID-5 and RAID-6. The system reliability
of EPLOG heavily depends on the failure rate of the log
devices. As the failure rate λh increases, the system reliabil-
ity of EPLOG drops dramatically, and the drop rate is even
more significant when more HDDs are used (e.g., in RAID-
6). In particular, when α = 0.5, EPLOG maintains higher
system reliability provided that λh is less than 6λ′s and 2λ′s
for RAID-5 and RAID-6, respectively.

 0

 10

 20

 30

 40

0 1 2 4 8 16 32 64W
ri

te
 s

iz
e
 (

G
B

)

Device buffer size (chunks)

FIN
WEB

USR
MDS

 0

 5

 10

 15

 20

0 1 2 4 8 16 32 64

L
o
g
 S

iz
e

(G
B

)

Device buffer size (chunks)

(a) Total size of write traffic
to SSDs

(b) Total size of log chunks

Fig. 5: Experiment S1: Impact of different device buffer sizes
under (6+2)-RAID-6.

3 ADDITIONAL EXPERIMENTS

We present additional experimental results on EPLOG’s de-
sign. We refer readers to the main file about our evaluation
setup.

Experiment S1 (Caching): We evaluate the impact of
caching of EPLOG. Since we focus on updates, we do not
consider the effect of the stripe buffer (which is designed for
new writes). Instead, we evaluate the impact of the device
buffers. We vary the size of device buffer of each SSD from
zero to 64 chunks. We measure both the total size of write
traffic to SSDs and the total size of log chunks in the log
devices.

Figure 5 shows the results for different traces under
(6+2)-RAID-6. From Figure 5(a), the total size of write traffic
to SSDs decreases as the device buffer size increases. For
example, when the device buffer size reaches 64 chunks
(i.e., 256KB per device), the write size drops by 53.3-58.4%.
From Figure 5(b), the total size of log chunks drops even
more significantly. For example, when the device buffer size
reaches 64 chunks, the total size of log chunks decreases
by 84.7-91.1%. Note that the total cache size of EPLOG is
very small. For example, if we set the device buffer size
per SSD as 64 chunks of size 4KB each, we only need 2MB.
This implies that a small-sized cache can effectively absorb
the data updates, and hence reduce both the write traffic to
SSDs and the storage of log chunks.

Experiment S2 (I/O performance with fio): We measure
EPLOG’s basic I/O performance using the I/O benchmark-
ing tool fio [1]. We use fio to generate workloads of user-
level requests. We measure the performance by the number
of requests issued per unit time (in request per second),
which includes the overhead of writes to the HDD-based
log devices.

Figure 6 shows the I/O performance of MD, PL, and
EPLOG for sequential and random read/update workloads
under (6+2)-RAID-6. We focus on 4KB-12KB requests, which
introduce small partial stripe updates. EPLOG achieves
higher throughput than MD and PL for both sequential and
random updates, for example, by 455.8-573.1% and 374.1-
422.7% for random updates, respectively. Also, MD, PL,
and EPLOG have similar performance for sequential and
random reads, as they all access the data chunks on SSDs
directly.

Experiment S3 (Storage overhead): We examine the storage
overhead of EPLOG under different parity commit cases.
Table 1 shows the storage overhead across different traces

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

 0

 50

 100

 150

 200

 250

4KB 8KB 12KBT
h
ro

u
g
h
p
u

t
(M

B
/s

)

Update size

MD

PL

EPLog

 0

 50

 100

 150

 200

 250

4KB 8KB 12KBT
h
ro

u
g
h
p
u

t
(M

B
/s

)

Update size

MD

PL

EPLog

(a) Sequential update (b) Random update

 0

 50

 100

 150

4KB 8KB 12KBT
h
ro

u
g
h
p
u

t
(M

B
/s

)

Update size

MD

PL

EPLog

 0

 50

 100

 150

4KB 8KB 12KBT
h
ro

u
g
h
p
u

t
(M

B
/s

)

Update size

MD

PL

EPLog

(c) Sequential read (d) Random read

Fig. 6: Experiment S2: I/O performance measured by fio
under 6+2)-RAID-6 in normal mode (without any SSD fail-
ure).

Cases Stats. FIN WEB USR MDS

10 K
Min 0.03% <0.01% <0.01% <0.01%
Avg 0.50% 0.46% 0.54% 0.81%
Max 2.46% 1.69% 7.17% 2.89%

1 K
Min 0.02% <0.01% <0.01% <0.01%
Avg 0.09% 0.08% 0.10% 0.15%
Max 0.53% 0.59% 0.82% 1.19%

TABLE 1: Experiment S3: Storage overhead under different
parity commit cases

under two parity commit cases. We measure the instanta-
neous additional storage usage every 1,000 requests before
parity commit, and normalize it to the storage usage before
trace replay (in which chunks are sequentially stored on
SSDs). When we perform parity commit every 1,000 or
10,000 requests, the maximum storage overhead is 0.53-
1.19% and 1.69-7.17%, respectively. The results show that
EPLOG incurs limited storage overhead if we issue parity
commit operations regularly.

Experiment S4 (Checkpoint overhead of metadata): We
evaluate the overhead of the metadata checkpoint opera-
tions. We consider the scenario where metadata is generated
after a large number of random writes. We use IOzone [6]
to first create continuous stripes covering a 8GB area on
SSD RAID using sequential writes, and then issue uniform
random updates of size 4KB each across all stripes. We then
measure the total size of write traffic to SSDs under three
cases: (i) full checkpoint after stripe creation, (ii) incremental
checkpoint after all stripe updates, and (iii) full checkpoint
after all stripe updates. We evaluate the metadata check-
point overhead by comparing the cases with and without
checkpoint operations.

Table 2 shows the results. Note that stripe creation issues
new full-stripe writes, so EPLOG writes them to SSDs. The
total write size is around 11GB, including parity writes.
Later in stripe updates, EPLOG redirects parities to the
log devices, and the total write size drops to around 8GB.

Setting EPLOG

(i) Stripe creation w/o chkpt. (GB) 10.922
full chkpt. (GB) 10.961 (+0.36%)

(ii) Stripe update w/o chkpt. (GB) 8.147
incr. chkpt. (GB) 8.294 (+1.81%)

(iii) Stripe update w/o chkpt. (GB) 8.147
full chkpt. (GB) 8.331 (+2.25%)

TABLE 2: Experiment S4: Total sizes of write traffic to SSDs
with/without metadata checkpoint operations.

FIN WEB USR MDS

(i) before replay (MB) 15.92 27.42 15.69 11.86
(ii) 1K (MB) 16.25 28.09 16.25 12.44
(ii) 10K (MB) 17.71 29.71 20.28 13.70

TABLE 3: Experiment S5: Memory overhead of metadata.

Overall, the metadata checkpoint overhead in write size is
at most 2.25%. The incremental checkpoint operation only
writes dirty metadata after updates, and its overhead is less
than that of the full checkpoint operation. The results show
that EPLOG incurs low overhead in metadata management.

Experiment S5 (Memory overhead of metadata): We eval-
uate the overhead of maintaining up-to-date metadata in
memory under real-world traces. We measure the maximum
sizes of memory required to store the metadata (i) before
trace replay, (ii) during trace replay with parity commit
every 1,000 requests, and (iii) during trace replay with parity
commit every 10,000 requests, as shown in Table 3. The
memory overhead is 0.37-0.63% of the working set size
before trace replay. When we perform parity commit every
1,000 requests and 10,000 requests, the overhead is 0.38-
0.65% and 0.40-0.81% of the working set size, respectively.
Before trace replay, the memory overhead is proportional to
the number of data stripes required to cover the working
sets of traces. Note that although the MDS trace has a larger
working set size than the USR trace, it requires fewer data
stripes to cover its working set (after we compact the traces)
and hence incurs lower memory overhead. During trace
replay, the memory overhead increases with the amount
of update traffic between parity commit operations. Hence,
we observe higher memory overhead when parity commit
is performed less frequently (e.g., every 10,000 requests).
Nevertheless, the memory overhead remains limited.

Experiment S6 (Using SSDs as log devices): We evaluate
EPLOG when it uses SSDs as log devices instead of HDDs,
and study whether SSD-based log devices can improve I/O
performance over HDD-based ones. Figure 7 shows the
I/O throughput results across different traces under (6+2)-
RAID-6 when parity commit is performed every 10,000
requests and at the end of trace replay, and we consider
both normal mode when there is no SSD failure (Figure 7(a))
and degraded mode when there is a double-SSD failure
(Figure 7(b)). For comparison, we also evaluate PL using
SSDs as log devices in normal mode (Figure 7(a)). We see
that using SSD-based log devices improves I/O throughput
as they allow faster parity logging during writes as well
as parity commit. However, we do not see significant per-
formance gains of SSD-based log devices over HDD-based
ones; specifically, EPLOG’s throughput increases by 1.85-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

 0

 5

 10

 15

 20

FIN WEB USR MDSR
eq

u
es

ts
 p

er
 s

ec
.
(1

0
3
)

PL-H

PL-S

EPL-H (10K)

EPL-S (10K)

EPL-H (all)

EPL-S (all)

 0

 5

 10

 15

 20

FIN WEB USR MDSR
eq

u
es

ts
 p

er
 s

ec
.
(1

0
3
)

10K-H

10K-S

all-H

all-S

(a) EPLOG (EPL) and PL un-
der no SSD failure

(b) EPLOG under double-SSD
failure

Fig. 7: Experiment S6: I/O performance of EPLOG with SSD-
based (denoted by suffix “-S”) and HDD-based (denoted by
suffix “-H”) log devices under (6+2)-RAID-6.

 0

 20

 40

 60

 80

 100

 0 25 50 75 100

H
it

 r
at

io
 (

%
)

Cache size (%)

Update-only

Hybrid
 0

 10

 20

 30

 40

 0 25 50 75 100M
em

o
ry

 u
sa

g
e

(M
B

)

Cache size (%)

(a) Hit ratio (b) Actual memory usage

Fig. 8: Experiment S7: Effectiveness of object metadata cache
in the key-value store.

9.45% in normal mode and by 5.1-10.1% in degraded mode,
while PL’s throughput increases by 2.5-13.5% in normal
mode. The reason behind this small performance gain is
that the difference between the random write throughput of
SSDs in the main array and the sequential write throughput
of HDD-based log devices is small (see Preliminary bench-
marks in Section 5.1 of the main file). Note that EPLOG still
outperforms PL by at least 137.8-200.7%, as PL reads the
original data chunks for encoding log chunks, while EPLOG
does not.

Experiment S7 (Object metadata cache in the key-value
store): We further study the trade-off of the object metadata
cache in our key-value store implementation between the hit
ratio and the actual memory usage. Figure 8(a) shows the hit
ratio. Both update-only and hybrid workloads have almost
identical hit ratios, which reach 60% even by caching 25% of
all key-value pairs. Figure 8(b) shows the actual memory
usage of the cache (recall that the cache only stores the
keys and metadata of key-value pairs, and the value size
does not affect the actual memory usage). We see that the
increase in actual memory usage drops as the size of the
object metadata cache increases. The reason is that the ARC
algorithm [10] also keeps track of the recently evicted items.
As the size of the object metadata cache increases to 100%,
no items are evicted. Thus, the ARC algorithm can save the
memory for storing the history of the recently evicted items.

Experiment S8 (Write traffic per SSD): We now evaluate
the per-SSD write traffic in order to examine the skewness of
write traffic across SSDs in EPLOG. We report the average,
maximum, minimum, and standard deviation of per-SSD
write sizes of MD, EPLOG without parity commit, and
EPLOG with parity commit every 10,000 requests. We do
not consider PL, whose write size without parity commit is

Traces Avg Max Min SD

FIN
MD 8.14 8.42 7.83 0.18

EPLOG (nil) 3.61 4.11 3.10 0.29
EPLOG (10K) 4.23 4.60 3.96 0.20

WEB
MD 4.02 5.27 3.21 0.72

EPLOG (nil) 2.18 2.88 1.68 0.35
EPLOG (10K) 2.50 3.14 2.11 0.33

USR
MD 3.39 4.23 2.81 0.51

EPLOG (nil) 1.70 2.23 1.19 0.33
EPLOG (10K) 1.95 2.46 1.24 0.29

MDS
MD 2.19 2.67 1.43 0.41

EPLOG (nil) 0.98 1.29 0.75 0.16
EPLOG (10K) 1.16 1.52 0.90 0.17

TABLE 4: Experiment S8: Average (Avg), maximum (Max),
minimum (Min), and standard deviation (SD) of per-SSD
write sizes (in units of GB) across different traces under
(6+2)-RAID-6.

RAID settings Avg Max Min SD

(4+1)-RAID-5
MD 9.60 9.80 9.36 0.16

EPLOG (nil) 5.77 6.15 5.08 0.40
EPLOG (10K) 6.30 6.56 5.84 0.25

(6+1)-RAID-5
MD 6.71 7.07 6.38 0.23

EPLOG (nil) 4.12 4.71 3.58 0.39
EPLOG (10K) 4.40 4.92 4.06 0.27

(4+2)-RAID-6
MD 11.19 11.31 10.95 0.14

EPLOG (nil) 4.81 5.73 4.20 0.52
EPLOG (10K) 5.80 6.53 5.44 0.37

(6+2)-RAID-6
MD 8.14 8.42 7.83 0.18

EPLOG (nil) 3.61 4.11 3.10 0.29
EPLOG (10K) 4.23 4.60 3.96 0.20

TABLE 5: Experiment S8: Average (Avg), maximum (Max),
minimum (Min), and standard deviation (SD) of per-SSD
write sizes (in units of GB) across different RAID settings
under the FIN trace.

identical to that of EPLOG without parity commit.
Table 4 shows the results across different traces under

(6+2)-RAID-6, and Table 5 shows the results across four
RAID settings under the FIN trace. EPLOG achieves much
lower per-SSD write sizes; its maximum per-SSD write
size is less than the minimum per-SSD write size in MD.
Depending on the workloads, EPLOG achieves lower stan-
dard deviations in per-SSD write sizes than MD under the
WEB, USR, and MDS traces, while having a higher standard
deviation than MD under the FIN trace. Thus, the skewness
of write traffic across SSDs is workload-dependent, and
we do not see strong evidence that EPLOG aggravates the
skewness of write traffic across SSDs over MD.
Experiment S9 (Buffered I/O): We thus far focus on I/O in
O_DIRECT mode. We now examine the I/O performance
of MD, PL, and EPLOG under buffered I/O, i.e., with
O_DIRECT mode disabled. Since MD allocates a write cache
of size 1MB for each SSD by default, we allocate the same
amount of cache to PL and device buffer to EPLOG for fair
comparisons. We flush the modified buffer cache every 1,000
requests via fsync().

Figures 9(a) and 9(b) show the total write sizes to
SSDs across different traces under (6+2)-RAID-6 as well as
across four different RAID settings under the FIN trace,
respectively. EPLOG reduces 33.8-37.1% of the write traffic
over MD across traces under (6+2)-RAID-6, while the write

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

 0

 5

 10

 15

 20

 25

FIN WEB USR MDS

W
ri

te
 s

iz
e

(G
B

) MD

PL

EPLog

 0

 5

 10

 15

 20

 25

RAID-5
(4+1)

RAID-5
(6+1)

RAID-6
(4+2)

RAID-6
(6+2)

W
ri

te
 s

iz
e
 (

G
B

)

(a) Different traces under
(6+2)-RAID-6

(b) Different RAID settings
under FIN

Fig. 9: Experiment S9: Total size of write traffic to SSDs.

 0

 20

 40

 60

 80

FIN WEB USR MDSR
eq

u
es

ts
 p

er
 s

ec
.
(1

0
3
)

MD

PL

EPLog

 0

 20

 40

 60

 80

RAID-5
(4+1)

RAID-5
(6+1)

RAID-6
(4+2)

RAID-6
(6+2)

R
eq

u
es

ts
 p

er
 s

ec
.
(1

0
3
)

(a) Different traces under
(6+2)-RAID-6

(b) Different RAID settings
under FIN

Fig. 10: Experiment S9: I/O performance comparisons under
real-world traces

traffic of EPLOG is also 24.4-28.4% and 37.1-44.0% lower
than MD for RAID-5 and RAID-6, respectively. As expected,
the reduction in total write size is lower than that with
O_DIRECT mode enabled, due to the absorption of writes
by cache.

Figures 10(a) and 10(b) show the I/O performance across
different traces under (6+2)-RAID-6 as well as across four
different RAID settings under the FIN trace, respectively.
We see that MD achieves the highest I/O performance.
The throughput of EPLOG is 44.7-74.2% lower than MD,
but 20.5-54.1% higher than PL across traces under (6+2)-
RAID-6. Similarly, the throughput of EPLOG is 17.3-20.4%
and 25.1-44.7% lower than MD, but 69.5-77.6% and 54.1-
70.6% higher than PL for RAID-5 and RAID-6, respectively.
To understand the performance gap, we measure the raw
device performance with fsync() issued every 1,000 re-
quests under buffered I/O. We observe that the random
write performance of SSDs (164MB/s) is notably higher
than the sequential write performance of HDD-based log
devices (107MB/s). This contributes to the performance
difference between EPLOG and MD. Nevertheless, EPLOG
still improves the throughput of PL by eliminating reads to
SSDs during updates. As we argue in the main paper (see
Section 2.1), EPLOG targets workloads with small random
writes, especially when modern storage systems issue syn-
chronous writes.

REFERENCES

[1] J. Axboe. Flexible I/O Tester. https://github.com/axboe/fio,
2005.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-Performance, Reliable Secondary Storage.
ACM Computing Surveys, 26(2):145–185, 1994.

[3] J. Elerath and M. Pecht. Enhanced Reliability Modeling of RAID
Storage Systems. In Proc. of IEEE/IFIP DSN, 2007.

[4] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean Time to Meaning-
less: MTTDL, Markov Models, and Storage System Reliability. In
Proc. of USENIX HotStorage, 2010.

[5] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing Flash Memory:
Anomalies, Observations, and Applications. In Proc. of IEEE/ACM
MICRO, 2009.

[6] IOzone. IOzone Filesystem Benchmark. http://www.iozone.org.
[7] S. Lee, T. Kim, K. Kim, and J. Kim. Lifetime Management of Flash-

based SSDs Using Recovery-aware Dynamic Throttling. In Proc. of
USENIX FAST, 2012.

[8] S. Lee, B. Lee, K. Koh, and H. Bahn. A Lifespan-aware Reliability
Scheme for RAID-based Flash Storage. In Proc. of ACM SAC, 2011.

[9] Y. Li, P. P. C. Lee, and J. C. S. Lui. Stochastic Analysis on RAID
Reliability for Solid-State Drives. In Proc. of IEEE SRDS, 2013.

[10] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead
Replacement Cache. In Proc. of USENIX FAST, 2003.

[11] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A Large-Scale Study of
Flash Memory Failures in the Field. In Proc. of ACM SIGMETRICS,
2015.

[12] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS: Random
Write Considered Harmful in Solid State Drives. In Proc. of
USENIX FAST, 2010.

[13] C. Ruemmler and J. Wilkes. UNIX Disk Access Patterns. In
USENIX Winter 1993 Technical Conference, 1993.

[14] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber. Extending SSD Lifetimes with Disk-based Write Caches. In
Proc. of USENIX FAST, 2010.

[15] K. Thomas. Solid State Drives No Better Than Others, Survey Says.
www.pcworld.com/article/213442.

