
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Encoding-Aware Data Placement for Efficient Degraded
Reads in XOR-Coded Storage Systems:

Algorithms and Evaluation
Zhirong Shen, Patrick P. C. Lee, Jiwu Shu, and Wenzhong Guo

Abstract—Modern storage systems adopt erasure coding to maintain fault tolerance with low storage redundancy. However, how to
improve the performance of degraded reads in erasure-coded storage has been a critical issue. We revisit this problem from two
different perspectives that are neglected by existing studies: data placement and encoding rules. To this end, we propose
encoding-aware data placement (EDP), which mitigates the number of I/Os in degraded reads during a single failure for general
XOR-based erasure codes. EDP carefully selects appropriate parity units to be generated by sequential data based on the encoding
rules and establishes their generation orders. We further refine the data placement for optimizing the degraded reads to any two
sequential data units. Trace-driven evaluation results show that EDP significantly reduces I/Os in degraded reads and hence shortens
the read time.

F

1 INTRODUCTION

Failures are prevalent in storage systems [18], [24]. To
maintain data availability, traditional storage systems often
replicate identical data copies across different disks (or stor-
age nodes) [4], [9]. However, replication incurs substantial
storage overhead, especially in the face of the unprece-
dented growth of today’s scale of data storage. In view
of this, erasure coding has been increasingly adopted by
storage systems in enterprises (e.g., Google [6], Microsoft
[10], Facebook [22]) as a practical redundancy alternative
for maintaining data availability. Erasure coding is shown to
incur much lower storage redundancy than traditional repli-
cation, while achieving the same degree of fault tolerance
[28]. There are many possible ways to construct an erasure
code. Nevertheless, practical erasure codes are often maxi-
mum distance separable (MDS) and systematic. Specifically, an
erasure code can be configured by two parameters k and m.
A (k,m) code treats original data as k equal-size (uncoded)
data units and encodes them to form m additional equal-
size (coded) parity units, such that the k + m dependent
units are collectively called a stripe. The code is MDS if the
original k data units can be recovered from any k out of
the collection of k +m units, while incurring the minimum

• A preliminary version [25] of this paper was presented at the 2016 IEEE
35th Symposium on Reliable Distributed Systems (SRDS’16). In this
journal version, we extend the algorithmic design of EDP and conduct
more experimental evaluation.

• Zhirong Shen and Patrick P. C. Lee are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong
Kong. (Email: zhirong.shen2601@gmail.com, pclee@cse.cuhk.edu.hk)

• Jiwu Shu is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China. (E-mails:
shujw@tsinghua.edu.cn)

• Wenzhong Guo is with College of Mathematics and Computer Sciences,
Fuzhou University, Fujian Provincial Key Laboratory of Network Com-
puting and Intelligent Information Processing, Fuzhou University, and
Key Laboratory of Spatial Data Mining & Information Sharing, Ministry
of Education, Fuzhou 350003, China

• Corresponding author: Wenzhong Guo (guowenzhong@fzu.edu.cn)

storage redundancy. In addition, the code is systematic if
the k uncoded data units are kept in the stripe and can
be directly accessed by normal read operations. A large-
scale storage system typically stores multiple stripes, each
of which is independently encoded, and is tolerable against
any m failures.

For general (k,m) codes, recovering each failed unit
needs to retrieve k available units of the same stripe. This
differs from replication, which can recover a lost unit by
simply retrieving another available unit replica. Thus, while
erasure coding improves storage efficiency, it triggers ad-
ditional I/O and bandwidth during recovery. Field studies
show that frequent failures can trigger substantial network
traffic due to recovery in production erasure-coded storage
systems [21]. As opposed to permanent failures (i.e., the
stored units are permanently lost), transient failures (i.e.,
the stored units are temporarily unavailable) account for
over 90% of failure events in real-life storage systems [6],
possibly due to power outages, loss of network connectivity,
and system reboots and maintenance. In the presence of
transient failures, a storage system issues degraded reads to
unavailable units, whose latencies are higher than normal
reads to available units when no failure happens. Note that
degraded reads differ from recovering the permanently lost
units of entire disks, as the degraded read performance
heavily depends on the read patterns (e.g., sequential or
random access, read size, read position). Thus, given that
degraded reads trigger additional I/O and bandwidth and
are frequently performed in practice, how to improve de-
graded read performance becomes a critical concern when
deploying erasure coding in storage systems.

In this paper, we study the problem of achieving efficient
degraded reads from two specific perspectives that are
neglected by previous studies (see Section 2.3 for related
work): (i) data placement (i.e., how data is placed across
disks) and (ii) encoding rules (i.e., how parity units are
encoded from data units). Here, we focus on single failures
(i.e., either a single unavailable unit in a stripe, or a single

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

disk failure), since they are the most common failure sce-
narios in practice as opposed to concurrent multiple failures
[6], [10], [21]. Also, our work is driven to be applicable for
general XOR-based erasure codes, which refer to a special class
of erasure codes whose encoding and decoding operations
are purely based on XOR operations for computational
efficiency. Our intuition is that by carefully examining the
encoding rules of an erasure code, we can arrange the
data and parity layouts such that the number of I/Os of
degraded reads can be reduced without violating the fault
tolerance of the erasure code. By reducing the number of
I/Os, we not only enhance the performance of degraded
reads, but also reduce the amount of recovery traffic that
can disturb the performance of foreground jobs [21].

To this end, we propose EDP, an encoding-aware data
placement scheme that aims to enhance the performance of
degraded reads in single failures for general XOR-based
erasure codes. EDP attempts to use sequential data units
for parity generation, so that the requested data units of
a degraded read can be associated with common parity
units. Also, it specifies the selection principles for the parity
units being generated by sequential data units, and carefully
establishes the generation order of parity units, so as to
further reduce the number of I/Os of a degraded read.
To the best of our knowledge, EDP is the first work that
exploits data placement designs to improve degraded read
performance for any XOR-coded storage systems.

Our contributions can be summarized as follows.
• We present EDP, a new data placement design that

aims to improve degraded read performance for any
XOR-coded storage system.

• We present a greedy algorithm for EDP that can effi-
ciently determine how to place sequential data units
according to the encoding rules, how to select the
appropriate parity units to be generated by sequential
data units, and how to establish the parity generation
order. We also present an algorithm for EDP to refine
data placement. Our proposed algorithms are shown to
have polynomial complexities.

• We realize EDP on a real storage system equipped
with representative erasure codes. Experiments based
on real-world workloads show that EDP significantly
reduces extra I/O caused by degraded reads and also
reduces the degraded read latency.

The rest of this paper proceeds as follows. Section 2
will introduce the research background and related work.
Section 3 will describe the motivating argument of this
research. Section 4 will present the detailed design of EDP.
Section 5 will present evaluation results. Finally, Section 6
will conclude this paper.

2 BACKGROUND AND RELATED WORK

2.1 Basics of XOR-based Erasure Codes

XOR-based erasure codes perform purely XOR operations in
encoding and decoding operations, thereby having higher
computational efficiency than erasure codes that operate
over finite fields (e.g., Reed-Solomon Codes [23], SD Codes
[19], and STAIR Codes [14]). Existing XOR-based erasure
codes support different levels of fault tolerance. They can

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

2

3

4

5

Horizontal-
Diagonal Parity

6

6

1

6

R9

15

20

1

7

2

11

R12

16

3

R8

12

17

21

4

8

13

R11

22

9

14

18

23

R7

5

10

R10

19

24

(a) Anti-Diagonal Parity

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

2

3

4

5

Horizontal-
Diagonal Parity

6

6

1R1

R622 23R12 24

R11 R51917 18

15R413 14 R10

9 10 R3 R9

5 R2 6 7 R8

2 3 4 R7

8

16

20

21

11 12

(b) Horizontal-Diagonal Parity

Fig. 1: Element layout of HDP Code under horizontal data
placement over p − 1 disks (p = 7). Note that the numbers
in data elements represent the logical order of how the data
elements are stored, and the elements with the same shape and
color belong to the same parity chain for a given encoding
direction. We use these representations in our illustrations
throughout the paper.

1 2 3 4 5

1

7

R4

8

2

11

R2

4

R1

3

R3

6

13 14

9

12

R5

5

15

10

1

2

3

4

5

Cell
Diagonal

Parity
Anti-diagonal

Parity

(a) Anti-diagonal Parity.

1 2 3 4 5

Cell
Anti-diagonal

Parity

6

2 3

7 98

14 1511 12

10

R10

1 4

13

R6 R7 R8 R9

51

2

3

4

5

Diagonal
Parity

(b) Diagonal Parity.

Fig. 2: Element layout of X-Code under horizontal data place-
ment over p disks (p = 5).

tolerate double failures (e.g., EVENODD Code [1], RDP
Code [5], X-Code [34], P-Code [12], Balanced P-Code [33],
HDP Code [29], H-Code [30], HV Code [26], D-Code [7]),
triple failures (e.g., STAR Code [11], T-Code [16], and TIP
Code [36]), or a general number of failures (e.g., Cauchy
Reed-Solomon Code [2]). In this paper, we mainly focus on
XOR-based erasure codes (see Section 1).

Many XOR-based erasure codes often configure the
number of disks as a function of a prime number p. Note
that the value of p may imply different numbers of disks
for different codes (e.g., p− 1 disks for HDP Code [29] and
p disks for X-Code [34]). To perform encoding or decoding,
XOR-based erasure codes often divide a data or parity unit
into sub-units, which we call elements (i.e., data elements
and parity elements, respectively). In other words, each
stripe contains multiple rows of elements. Since each stripe
is independently encoded (see Section 1), our discussion
focuses on a single stripe.

To illustrate, Figure 1 shows the element layouts of HDP
Code [29] for a single stripe over six disks, where p = 7,
k = 4, and m = 2 (see Section 1 for the definitions of k
and m). HDP Code is an MDS code that tolerates double
disk failures. It has two kinds of parity elements termed
horizontal-diagonal parity elements and anti-diagonal par-
ity elements. It first computes the anti-diagonal parity ele-
ments using the data elements (see Figure 1(a)), and then

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

computes the horizontal-diagonal parity elements using
both data elements and the computed anti-diagonal parity
elements. Figure 2 also shows the element layouts of X-Code
[34] for a single stripe over five disks, where p = 5, k = 3,
and m = 2.

In our illustrations, we use numbers to specify the logical
order of how data elements are stored on disks. Let #i be
the i-th data element stored in a stripe based on the logical
order. We say that the data elements are sequential if they
follow a continuous logical order. For example, in Figure 1,
#1 and #2 are two sequential data elements. The logical
order depends on the data placement strategy, as will be
explained in Section 2.2.

Each parity element is encoded (or XOR-ed) from a
subset of elements of a stripe. Each XOR-based erasure
code has its own encoding rule, which specifies the encod-
ing direction (e.g., horizontal, diagonal, or anti-diagonal)
and which elements are used for generating a parity el-
ement. Let Ri be the i-th parity element in a stripe.
For example, in Figure 1(a), the anti-diagonal parity ele-
ment R9 =#1⊕#6⊕#15⊕#20 (where ⊕ denotes the XOR
operation), implying that R9 is encoded from the four
data elements along the anti-diagonal direction. Following
the same principle, the horizontal-diagonal parity element
R1 =#1⊕#2⊕#3⊕#4⊕R7 as shown in Figure 1(b).

We define a parity chain as the collection of a parity
element and the elements that are XOR-ed together to form
the parity element. The number of elements in a parity chain
is defined as the length of the parity chain. In our illustrations,
we mark the elements in the same shape and color if
they belong to the same parity chain for a given encoding
direction. For example, the collection {#1, #6, #15, #20,R9}
forms an anti-diagonal parity chain in Figure 1(a) whose
length is five, and the collection {#1, #2, #3, #4, R7, R1}
forms the horizontal-diagonal parity chain in Figure 1(b)
whose length is six. Note that the data element #1 belongs
to both of the two parity chains. We can see that an erasure
code may have the different lengths of parity chains. For
example, in HDP code, an anti-diagonal parity chain has the
length of (p − 2), while a horizontal-diagonal parity chain
has length (p− 1).

Parity chains can be used for data recovery. For example,
suppose that the data element #1 fails in Figure 1. It can
be repaired by an anti-diagonal parity chain by perform-
ing #1=#6⊕#15⊕#20⊕R9 (see Figure 1(a)). Based on the
same principle, it can also be recovered by the associated
horizontal-diagonal parity chain in Figure 1(b).

XOR-based erasure codes have different placement
strategies for parity elements. They may place data and
parity elements in separate disks (e.g., RDP Code [5]) or
spread parity elements across all disks (e.g., HDP Code [29]
(see Figure 1) and X-Code [34] (see Figure 2)). Our work
retains the same placement of parity elements for a given
erasure code and hence preserves its fault tolerance, and we
focus on designing a placement strategy of data elements
for more efficient degraded reads.

2.2 Data Placement

Data placement refers to how we place data elements across
disks when they are first stored. Given a data placement,

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

2

3

4

5

Horizontal-
Diagonal Parity

6

6

1

10

R9

19

24

5

14

9

18

R12

23

13

R8

22

4

8

17

21

3

R11

12

2

7

11

16

R7

1

6

R10

15

20

(a) Anti-Diagonal Parity.

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

2

3

4

5

Horizontal-
Diagonal Parity

6

6

5R1

R612 16R12 20

R11 R5154 11

19R43 7 R10

2 6 R3 R9

1 R2 10 14 R8

9 13 17 R7

21

23

24

8

18 22

(b) Horizontal-Diagonal Parity.

Fig. 3: Element layout of HDP Code under vertical data place-
ment over p− 1 disks (p = 7).

parity elements are placed accordingly based on the era-
sure code. To our knowledge, most existing studies do
not specifically consider the data placement of XOR-coded
storage systems (see Section 2.3 for related work). Here, we
consider two baseline data placement strategies: horizontal
and vertical.
Horizontal Data Placement. Horizontal data placement
places sequential data elements across disks. For example,
Figures 1 and 2 illustrate the layouts of HDP Code [29] and
X-Code [34] under horizontal data placement, respectively.

Horizontal data placement brings two benefits. First, it
can take full advantage of parallelization [13] to reduce the
access latency. For example, when a storage system requests
data elements {#1,#2} in Figure 1, it can read them from
disk 2 and disk 3 respectively in parallel. Second, horizontal
data placement can effectively reduce the number of ele-
ments retrieved in degraded reads when the data elements
at the same row associate with the same parity element
(e.g., horizontal parity or horizontal-diagonal parity). For
example, in Figure 1, suppose that disk 2 fails and the stor-
age system issues a read operation that requests elements
{#1,#2,#3}. Then the storage system can reuse the available
data elements in the request (i.e., #2 and #3) and only needs
to retrieve another three elements {#4, R1, R7}, such that
the unavailable element #1 can be recovered through the
horizontal-diagonal parity chain (see Figure 1(b)).

However, the second advantage will be lost if the erasure
code does not have a horizontal parity chain, for example
X-Code [34]. In these codes, the sequential data elements
placed at the same row may not associate with a common
parity element. Consequently, when the storage system
issues degraded reads to the sequential data elements at
the same row, it may need to retrieve more additional
elements for data reconstruction. For example, Figure 2
illustrates the layout of X-Code where data elements are
horizontally placed. Suppose that disk 1 fails, and at this
time the storage system reads data elements {#1,#2,#3}.
To reconstruct #1, the storage system needs to read three
elements (i.e., {#7,#13,R4} in Figure 2(a), or {#10,#14,R8}
in Figure 2(b)).
Vertical Data Placement. Vertical data placement puts se-
quential data elements along the columns in a stripe. For
example, Figures 3 and 4 illustrate the element layouts of
HDP Code and X-Code under the vertical data placement,
respectively. Vertical data placement is also assumed in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Cell
Diagonal

Parity
Anti-diagonal

Parity

54321

1

5 8

4

3

107

2

9 12

11

6

13

15

14

1

2

3

4

5

R1 R2 R3 R4 R5

(a) The Anti-diagonal Parity.

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

2

4 7

5 118

12 153 6

14

1 10

9

131

2

3

4

5 R6 R7 R8 R9 R10

(b) The Diagonal Parity.

Fig. 4: Element layout of X-Code under vertical data placement
over p disks (p = 5).

previous work (e.g., [38]).
However, vertical data placement has two limitations.

First, it restricts parallel access. For example, reading data
elements {#1,#2,#3} in HDP Code will only be limited to
disk 1 (see Figure 3). Second, vertical data placement often
needs to retrieve a large number of elements in degraded
reads, as the reconstructed elements residing in the same
disk generally do not associate with any common parity
chain. For example, suppose that disk 1 fails in Figure 3 and
the storage system issues a read to the lost data {#1,#2,#3}.
If the system chooses to repair the lost elements by using
anti-diagonal parity, it needs to retrieve another 12 elements
(i.e., {#6, R10, #15, #20, #7, #11, #16, R7, R11, #12, #17,
#21}, shown in Figure 3(a)) and then serve the read request.

2.3 Related Work
We summarize existing studies on enhancing the perfor-
mance of degraded reads, and also identify their limitations.

New erasure code constructions have been proposed to
explicitly incorporate the optimization of degraded reads.
For example, Khan et al. [13] design Rotated RS Codes,
which extend Reed-Solomon Codes [23] to include addi-
tional parity units so as to improve the performance of
degraded reads across stripes. Local Reconstruction Codes
[10] construct additional local parity units to reduce the
lengths of parity chains, so that the number of I/Os in
degraded reads can be reduced. However, both Rotated RS
Codes and Local Reconstruction Codes are non-MDS (see
Section 1), and hence incur additional storage redundancy.
In addition, HV Code [26] and D-Code [7] are two RAID-6
codes (i.e., double-fault-tolerant codes) specifically designed
for reducing the amount of I/Os in degraded reads. HV
Code [26] proposes to shorten the length of parity chains
and place sequential data elements on horizontal parity
chains, while D-Code [7] extends X-Code [34] by adding
horizontal parity chains and evenly distributing parity ele-
ments across disks.

Some studies propose to optimize the recovery perfor-
mance for general XOR-based erasure codes. For example,
Khan et al. [13] and Zhu et al. [37] study the problem of
achieving optimal single failure recovery for general XOR-
based erasure codes by searching for the solution with
minimum number of I/Os. Both of their approaches address
the recovery of the permanently failed data in a whole-disk
failure, while our work focuses on the degraded reads for
general XOR-based erasure codes and pays special attention

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Workloads

 Read size larger than 16KB
 Read size no more than 16KB

Fig. 5: Read size of workloads in MSR Cambridge Traces [17].

to the characteristics of read operations. Zhu et al. [38]
assume vertical data placement and optimize the degraded
read performance in heterogeneous storage systems. In con-
trast, our work focuses on designing encoding-aware data
placement to improve degraded read performance.

Like our work, Shen et al. [27] also study the data
placement problem for general XOR-coded storage systems.
However, their proposed data placement scheme aims to
improve partial-stripe write performance, while our data
placement scheme aims to improve degraded read perfor-
mance and hence has an inherently different design.

Some studies address degraded reads from different
perspectives. Zhang et al. [35] consider the routing of de-
graded reads in different topologies of data centers. Li
et al. [15] study the degraded read performance when
MapReduce runs on erasure-coded storage, and propose a
different task scheduling algorithm that allows degraded
reads to exploit unused network resources. Xia et al. [31]
propose to switch between erasure coding parameters so
as to balance the trade-off between storage redundancy
and degraded read performance. Fu et al. [8] propose a
framework that improves parallelism of degraded reads for
Reed-Solomon Codes [23] and Local Reconstruction Codes
[10]. On the other hand, our work focuses on reducing the
number of I/Os in degraded reads, and can be integrated
with the above approaches for further performance gains in
degraded reads.

3 PROBLEM

In this paper, our primary objective is to design a new data
placement strategy that reduces the number of elements to be
retrieved for degraded reads for any XOR-based erasure code.
Our data placement strategy should follow the encoding
rule of the given XOR-based erasure code, so as to preserve
its fault tolerance. Also, it makes no effect on normal reads,
which can still access the same elements directly for system-
atic erasure codes. Moreover, our data placement neither
changes the decoding rule nor increases the parity units,
so it does not degrade the decoding efficiency, the parity
update efficiency, and storage efficiency.

Here, we focus on the degraded reads for a single failure,
which is the most common failure event in practical storage
systems (see Section 1). Note that most existing studies on
enhancing the performance of degraded reads also focus on
single failures (e.g., [10], [13], [22]). In addition, we assume
that read requests in many scenarios are sequential and
have small read sizes. For example, Figure 5 analyzes the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

1 2 3 4 5

Cell
Anti-diagonal

Parity

2 31

R8

1

2

3

4

5

Diagonal
Parity

(a) Horizontal Data Placement

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

11

2

3

4

5

R4

2

3

(b) Anti-Diagonal Data Placement

Fig. 6: Explanations of Motivation 1, based on X-Code over
p = 5 disks. Anti-diagonal data placement (figure (b)) retrieves
fewer elements than horizontal data placement (figure (a)) for
the degraded read {#1,#2,#3}. The shape with dashed line
denotes the extra element to be read for data recovery.

read size distributions of several real-world I/O workloads
from MSR Cambridge Traces [17] (see Section 5 for more
details of the traces). The figure indicates that small reads
are common. For example, the small reads whose read sizes
are no more than 16KB account for a majority of all read
operations.

We address the objective through four motivations. In
the following, we use HDP Code over p−1 disks (p = 7) and
X-Code over p disks (p = 5) as our motivating examples.
Motivation 1: Generating Parity Elements from Sequential
Data Elements. We first consider how to reduce the number
of elements retrieved in a degraded read within a parity chain.
Our observation is that we can generate parity elements by
using sequential data elements. If sequential data elements
in a parity chain are requested in a degraded read, then
the available elements in the request can be reused to
reconstruct the unavailable one in the request. As a result,
the number of additional elements to be retrieved for data
reconstruction can be reduced.

For example, Figure 6 shows the element layouts of X-
Code under both horizontal and anti-diagonal data place-
ments. Suppose that disk 1 fails and a degraded read
requests sequential data elements {#1,#2,#3}. In the hori-
zontal data placement (see Figure 6(a)), the same degraded
read should access another three elements (denoted by
the dashed shape in Figure 6(a)) for reconstructing the
unavailable element #1, based on the diagonal parity chain
of R8. On the other hand, we can place sequential data
elements to generate the anti-diagonal parity element R4,
as shown in Figure 6(b). In this case, the degraded read only
needs to retrieve one additional element (i.e., R4) for the
reconstruction of #1.
Motivation 2: Parity Selection Principles. An erasure code
has multiple parity chains. Thus, the degraded read effi-
ciency depends on which parity element is selected to be
generated by sequential data elements. We propose two
principles of parity selection to exploit data sequentiality.

First, we consider the erasure codes constructed over the
parity chains with different lengths (e.g., HDP Code). For
such kind of codes, we prefer using sequential data elements
to generate the parity elements with shorter parity chains,
such that fewer extra elements are needed for data recovery

1 2 3 4 5

Cell
Anti-diagonal

Parity

R11

2

3

4

5

Horizontal-
Diagonal Parity

6

6

1 2 3 4 R7

(a) Repairing #1 using horizontal-
diagonal parity chain

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

2

3

4

5

Horizontal-
Diagonal Parity

6

6

1

2

R9

3

4

1

(b) Repairing #1 using anti-
diagonal parity chain

Fig. 7: The first selection principle of Motivation 2, based on
HDP Code over p−1 disks (p = 7). A horizontal-diagonal parity
chain has six elements (figure (a)), while an anti-diagonal parity
chain has five elements (figure (b)). Using sequential data ele-
ments to generate anti-diagonal parity elements (figure (b)) re-
trieves fewer elements for the degraded read {#1,#2,#3} than
to generate horizontal-diagonal parity elements (figure (a)). The
shape with dashed line denotes the extra element to be read for
data recovery.

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

11

2

3

4

5

R4

2

3

4

R3

5

6

(a) Generating R3 after R4

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

3

1

2

3

4

5

Diagonal
Parity

2

4

5

R10

(b) Generating R10 after R4

Fig. 8: The second selection principle of Motivation 2, based
on X-Code over p disks (p = 5). Suppose that R4 is the first
parity element to be generated based on Motivation 1. The first
three sequential data elements {#1, #2, #3} are accordingly
placed for R4’s generation. This figure shows two examples
of selecting the second parity element to be generated after R4.
GeneratingR3 afterR4 can place three sequential data elements
{#4, #5, #6} (figure (a)). As a comparison, generating R10 after
R4 can only arrange two sequential data elements {#4, #5}
(figure (b)).

in degraded reads. For example, Figure 7 illustrates two
cases of data layouts for HDP Code [29]. Figures 7(a) and
7(b) generate horizontal-diagonal parity elements and anti-
diagonal parity elements using sequential data elements,
respectively. Suppose that disk 2 fails and a degraded read
requests data elements {#1,#2,#3}. The approach in Fig-
ure 7(a) needs to retrieve three elements (i.e., {R1, #4, R7

}) to repair #1, while that in Figure 7(b) should only read
another two elements (i.e., {R9, #4}).

Second, for the erasure codes constructed over the parity
chains with the same length (e.g., X-Code), we will select
the parity element whose generation can place the most
sequential data elements to make the number of sequential
data elements in the same parity chain as many as possible.
This placement can fully utilize the requested data elements
that are available in a parity chain for data recovery. For
example, suppose that R4 is the first parity element to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

1 2 3 4 5

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

R4

3

1

2

3

4

5

4

5

R3

6

(a) Repairing #1 and #4 using
anti-diagonal parity chains

1 2 3 4 5

Cell
Anti-diagonal

Parity

4 2

1

3

1

2

3

4

5

Diagonal
Parity

R9R8

(b) Repairing using diagonal par-
ity chains needs to read more ad-
ditional elements

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

11

2

3

4

5

R4

2

34

R2

5

6

(c) Repairing #1 using an anti-
diagonal parity chain

1 2 3 4 5

Cell
Anti-diagonal

Parity

1

3

1

2

3

4

5

Diagonal
Parity

2

4

R10

(d) Repairing #4 using a diagonal
parity chain

Fig. 9: Explanations of Motivation 3, based on X-Code over
p = 5 disks. R4 and R3 are selected as the first two parity
elements to be generated by sequential data elements. When
#1 and #4 are missing, it needs four additional elements for
data recovery from anti-diagonal parity chains (figure (a)), or
reads even more extra elements when using diagonal parity
chains (figure (b)). However, if we generate the first two parity
elements in the order of R4 and R2, then it needs to read only
three extra elements, just by repairing #1 by an anti-diagonal
parity chain (figure (c)) and recovering #4 from a diagonal
parity chain (figure (d)).

be generated based on Motivation 1 (see Figure 6). Fig-
ure 8 presents two examples of parity selection after the
generation of R4. We see that generating R3 after R4 (see
Figure 8(a)) can place one more sequential data element in a
parity chain compared to the parity selection in Figure 8(b).
Motivation 3: Parity Generation Orders. In addition to
optimize degraded reads in a parity chain, we also exploit
the generation orders of parity elements in order to leverage
the data elements that have been placed in previous itera-
tions. This design is to reduce the number of elements to be
retrieved in a degraded read across parity chains. To explain
this idea, we start with carefully examining the relationship
between the data elements that have been placed and those
to be placed when generating the next parity element.

To formalize the relationship between the placed data
elements and those to be placed, we refine the concept of
“overlapped data elements”. In particular, suppose Rh is
the parity element to be generated currently. Let #i be a
data element to be placed in the generation of Rh and let #j
be a data element that has been placed in previous parity
generations. We call #j is an overlapped data element if #j
and #i belong to a parity chain of Rq , where Rq 6= Rh.

Our finding is that overlapped data elements offer more
choices to reduce the number of extra elements for recovery

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

11

2

3

4

5

R4

2

34

R2

5

6

(a) Before refinement: Repairing
#4 using an anti-diagonal parity
chain

1 2 3 4 5

Cell
Anti-diagonal

Parity

3

4

R10

1

2

3

4

5

Diagonal
Parity

1

2

(b) After refinement: Repairing #4
using a diagonal parity chain

Fig. 10: Explanations of Motivation 4, based on X-Code over
p = 5 disks. By switching the positions of #2 and #3, #3 can
be reused for repairing #4 for the degraded read {#3, #4}.
Finally, repairing #4 by the diagonal parity chain only reads
two additional elements (marked in dashed line in figure (b)).

in the degraded read across parity chains. Suppose that we
follow Motivation 1 and Motivation 2 to place sequential
data elements along the same parity chain if possible. The
placement in Figure 9(a) generates the anti-diagonal parity
elements in the order of {R4, R3}, in which the data ele-
ments placed in the generation of R4 are not associated with
any parity element with those to be placed in the generation
of R3 (i.e., there is no overlapped data element). Suppose
that disk 1 fails and a degraded read requests data elements
{#1,#2,· · ·,#4} at this time. To accomplish the recovery
of #1 and #4, it retrieves four additional elements (i.e., R3,
R4, #5, and #6) through the anti-diagonal parity chains
(see Figure 9(a)); or retrieves six extra elements through the
diagonal parity chains (see Figure 9(b)).

As a comparison, the placement in Figure 9(c) generates
the anti-diagonal parity elements in the order of {R4, R2}.
We see that the generation of R2 will produce two over-
lapped data elements (i.e., #1 and #2). In particular, with
respect to the data elements to be placed (i.e., {#4, #5,
#6}) in the generation of R2 (i.e., Rh), #4 joins the parity
chain of R10 (i.e., Rq) with the data element #2 which has
been placed (see Figure 9(d)). Based on the same rule, we
can obtain that #6 (to be placed) and #1 (has been placed)
join the parity chain of R8. Suppose that disk 1 fails and a
degraded read requests data elements {#1,#2,· · ·,#4} at
this time. In the placement of Figure 9(c), we first use anti-
diagonal parity chain to repair #1 by using the elements
{#2,#3, R4} (see Figure 9(c)). As the data element #2 is
an overlapped data element that has been retrieved and it
is associated with the same diagonal parity chain with the
lost element #4, we can reuse the overlapped data element
#2 and switch to the diagonal parity chain to repair #4 (see
Figure 9(d)). Finally, only three extra elements are needed in
this placement to serve the degraded read.
Motivation 4: Refinement of Data Placement. In view of
the small reads account for the majority of read operations
in real workloads, we finally consider a special case: the
degraded reads to two sequential data elements. As Moti-
vation 1 has covered the case when two sequential data ele-
ments are in a parity chain, here we mainly focus on another
case when they are across parity chains. Our observation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

is to refine the positions of data elements, so as to reduce
the number of elements retrieved for this kind of degraded
read. Suppose that we first generate a parity element Ri,
followed by Rj . We can make the last data element in the
parity chain of Ri and the first one in the parity chain of
Rj associate with another common parity element. When
the two sequential data elements are requested and some of
them fails at this time, another available data element in the
request can be reused for data recovery.

For example, followed the Motivation 3, Figure 10(a)
shows the first two parity elements (i.e., R4 and R2) to
be generated by sequential data elements {#1, #2, · · ·,
#6}. In this figure, the two sequential data elements across
parity chains (i.e., #3 and #4) are not included in any
common parity chain. We then refine the data placement
by switching #2 and #3, such that #3 and #4 are in the
diagonal parity chain of R10 (shown in Figure 10(b)).

Suppose that disk 1 fails and a degraded read re-
quests {#3,#4}. The original data placement in Figure 10(a)
should repair #4 by retrieving three additional elements
(i.e., #5, #6, and R2). On the other hand, by switching
the positions of #2 and #3, our refined data placement
in Figure 10(b) can reuse #3 in the request and finally
only needs to retrieve two additional elements by using the
diagonal parity chain of R10.

4 ENCODING-AWARE DATA PLACEMENT

We propose encoding-aware data placement (EDP) to address
the problem and motivations in Section 3. EDP builds on
two algorithms. The first algorithm selects the shortest par-
ity chains (Motivation 2), places sequential data elements
in the same parity chain (Motivation 1), and exploits a
greedy approach to determine an order of generating par-
ity elements (Motivation 3). The second algorithm refines
the positions of data elements so that the two sequential
data elements across parity chains associate with another
common parity element (Motivation 4).

4.1 Greedy Parity Generation

As shown in Section 3, the first three key steps of reducing
the number of additional elements to be retrieved in de-
graded read is to 1) select the parity element with the short-
est parity chain in priority; 2) choose a parity element whose
generation can place as many sequential data elements
as possible; 3) maximize the number of overlapped data
elements. However, how to realize the above three steps
and find the right generation order is a non-trivial issue.
A straightforward approach is to enumerate all possible
generation orders of all parity elements, yet its complexity
is extremely high. For example, for X-Code with 2p parity
elements in a stripe, the enumeration would require (2p)!
permutations in total.

In this paper, we propose a greedy approach, as shown
in Algorithm 1, which incorporates the three design criteria
referred above so as to efficiently search for a generation
order for parity elements. The main idea is that in each
iteration, we first incorporate Motivation 2 by choosing the
parity elements with the shortest parity chain (see step 2
in Algorithm 1) and further picking out the ones whose

Algorithm 1: Greedy parity generation.

Input: A given XOR-based erasure code.
Output: Parity generation order O.

1 Set all cells of a stripe to be blank; set R to include all
parity elements of a stripe; set O = ∅

2 Select L ⊂ R, where Ri ∈ L has the shortest parity chain
3 Obtain S ⊂ L, such that for Rh ∈ S, δh = max{δi|Ri ∈ L}
4 Select Rj ∈ S, where λj = max{λi|Ri ∈ S}
5 Place sequential data elements on the blank cells of the

parity chain of Rj

6 Remove Rj from R and append Rj to O
7 Repeat steps 2∼6 until all cells in the stripe are occupied

by data elements
8 Generate the remaining parity elements in R through

placed data elements
9 Return O

generation can place the most sequential data elements
(step 3). Given the returned parity elements, we finally
follow Motivation 3 by selecting the parity element whose
parity chain can produce the most overlapped data elements
with respect to the data elements placed in previous itera-
tions (step 4), and then place sequential data elements to
generate the parity element (step 5) based on Motivation 1.
Details of Algorithm 1. LetR be the set of candidate parity
elements that can be selected in each iteration; let O record
the generation order of parity elements generated from
sequential data elements; let δi be the number of sequential
data elements that can be placed in the generation of the
parity element Ri ∈ R; let λi be the number of overlapped
data elements derived in the generation of Ri ∈ R, with
respect to the data elements placed in previous iterations.
In addition, we define a cell as the storage region (e.g., disk
sector or block) that holds an element, and let Ci,j be the
cell whose position is at the i-th row and the j-th column
in a stripe. Initially, for a given XOR-based erasure code,
we first set all cells in a stripe to be blank, meaning that no
element is stored in each cell. We also set R to include all
parity elements of a stripe, O to be empty (step 1).

In each iteration, the algorithm first extracts a set L
from R, such that the parity element Ri ∈ L has the
shortest parity chain among those in R (step 2). Based on
L, the algorithm then selects the ones whose generation can
place the most sequential data elements and constructs S
(step 3). Finally, the algorithm chooses the one Rj from S
whose generation can further produce the most overlapped
data elements (step 4). After the parity selection, it places
sequential data elements on the blank cells of the parity
chain of Rj (step 5). The algorithm removes Rj from R and
appends it to O (step 6). The algorithm repeats steps 2-6
until all cells have been occupied by data elements (step 7).
It then completes the encoding by generating the remaining
parity elements inR from the placed data elements (step 8).
The algorithm finally returns O (step 9).
Example. We take X-Code (p = 5) as an example to show
how Algorithm 1 works. As X-Code has 2p parity elements,
we initialize R = {R1, R2, · · · , R10} and O = ∅. In the first
iteration, O is empty. As all parity elements have the same
length of parity chain (i.e., four, with three data elements
and the generated parity element), L = R establishes

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

3

4

5

R1

1

2

3

(a) Generating R1.

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

3

4

5

41

2

3

R7 R9 R10

5

(b) Generating R7 after R1 can
only place two sequential data el-
ements.

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

3

4

5

R1

1

2

3

5

6

4

R3

(c) Generating R3 after R1 can
place three sequential data ele-
ments.

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

3

4

5

5

6

41

2

3

R6 R7 R9 R10

(d) Generating R3 will produce
two overlapped data elements
(i.e., #2 and #3).

Fig. 11: An example of greedy parity selection.

throughout this algorithm. The generation of every parity el-
ement inL can place three sequential data elements and pro-
duce none overlapped data element, so we select R1 with-
out loss of generality and place sequential data elements
{#1,#2,#3} on the cells {C1,3, C2,4, C3,5}, respectively (see
Figure 11(a)). We then update R = {R2, R3, · · · , R10} and
O = {R1}.

In the second iteration, as L = R, we then scan all the
remaining parity elements in L. For example, generating
R7 after R1 can only further place two sequential data
elements (i.e., #4 and #5 in Figure 11(b)), while generating
R3 after R1 can lay three sequential data elements (i.e., #4,
#5, and #6 in Figure 11(c)). Following this principle, we
can obtain S = {R2, R3, · · · , R5, R6, R8} where δi = 3 for
Ri ∈ S . We further find that generating R3 results in the
most overlapped data elements (i.e., #2 and #3) with λ3 = 2
(see Figure 11(d)). Specifically, with respect to the sequential
data elements to be placed in R3’s generation (i.e., {#4,
#5, #6}), the overlapped data element #2 that has been
placed will join the parity chain of R7 with #4, and another
overlapped data element #3 will be included in the parity
chain of R9 with #5 (see Figure 11(d)). Therefore, we place
the sequential data elements on the cells {C1,5, C2,1, C3,2}
to generate R3. Finally, we obtain the data placement when
Algorithm 1 finishes, as shown in Figure 12.

4.2 Position Refinement for Data Elements
Given the parity generation orderO from Algorithm 1, EDP
further proposes to refine the positions of data elements, as
shown in Algorithm 2.
Details of Algorithm 2. Initially, the algorithm marks all
data elements to as “movable”, meaning that the positions
of the data elements can be changed (step 1). It sets Rcur as

1 2 3 4 5

Cell
Diagonal

Parity
Anti-diagonal

Parity

7

8

R4

14

13

12

R2

10

R1

1

R3

5

9 15

2

6

R5

4

3

11

1

2

3

4

5

(a) Anti-diagonal parity chains.

1 2 3 4 5

Cell
Anti-diagonal

Parity

5

13 1

8 214

15 312 6

11

R10

7 10

9

R6 R7 R8 R9

41

2

3

4

5

Diagonal
Parity

(b) Diagonal parity chains.

Fig. 12: Data placement of X-Code (p = 5) after running
Algorithm 1.

Algorithm 2: Position refinement for data elements.

Input: Parity generation orders O.
Output: A new data layout after refinement.

1 Mark all data elements as “movable”
2 Let Rcur be the first parity element in O and Rnxt be the

next parity element after Rcur

3 for each data element #i in the parity chain of Rcur do
4 for each data element #j in the parity chain of Rnxt do
5 if #i and #j is movable and join a common parity

element’s generation then
6 Switch #i with the last data element in the

parity chain of Rcur

7 Switch #j with the first data element in the
parity chain of Rnxt

8 Mark both #i and #j as non-movable

9 Set Rcur to be Rnxt, and Rnxt to be the next parity
element after Rcur in O

10 Repeat steps 3-9 until Rcur is the last parity element in O.

the first parity element in O and Rnxt as the next one after
Rcur (step 2). The algorithm then scans the data element #i
in the parity chain of Rcur and #j in the parity chain of
Rnxt. If both of these two data elements are movable and
join the generation of a common parity element (step 5),
it then switch #i with the last data element in the parity
chain of Rcur and swap #j with the first data element in
the parity chain of Rnxt (step 6∼7). After this refinement,
the last data element in the parity chain of Rcur and the first
one in the parity chain ofRnxt will associate with a common
parity element. Subsequently, these two data elements are
marked as “fixed” and are not allowed to be moved in next
refinements (step 8). The algorithm then tries the next pair of
parity elements in O (step 9). The algorithm repeats steps 3-
9 until reaching the last parity element in O (step 10).
Example. Based on the data placement in Figure 11(c), Fig-
ure 13 shows how we can further refine the data placement.
Initially, R1 and R3 are the first two parity elements to be
generated in O. Thus, we set Rcur = R1 and Rnxt = R3.
We scan the data elements {#1,#2,#3} in the parity chain
of R1 and {#4,#5,#6} in that of R3, and find that #2 (i.e.,
#i in Algorithm 2) and #4 (i.e., #j) join the generation of
the diagonal parity element R7 (see Figure 11(d)). We then
perform the data movement by switching #2 with the last
data element (i.e., #3) in the parity chain of R1. With respect
to #4, as it has been already the first data element in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

3

4

5

R1

1

3

2

4

5

6

R3

(a) After refinement: Switch the
positions of #2 and #3 in Fig-
ure 11(c).

54321

Cell
Diagonal

Parity
Anti-diagonal

Parity

1

2

3

4

5

5

6

41

3

2

R6 R7 R9 R10

(b) After refinement: #3 and #4
associate with a common diagonal
parity element R7.

Fig. 13: An example to refine the data placement when gen-
erating R1 and R3. R1 and R3 are both anti-diagonal parity
elements and generated by sequential data elements {#1, #2,
#3} and {#4, #5, #6}, respectively. In this example, Rcur = R1

and Rnxt = R3.

1 2 3 4 5

Cell
Diagonal

Parity
Anti-diagonal

Parity

7

9

R4

13

14

10

R2

12

R1

1

R3

5

8 15

3

6

R5

4

2

11

1

2

3

4

5

(a) Anti-diagonal parity chains.

1 2 3 4 5

Cell
Anti-diagonal

Parity

5

14 1

9 313

15 210 6

11

R10

7 12

8

R6 R7 R8 R9

41

2

3

4

5

Diagonal
Parity

(b) Diagonal parity chains.

Fig. 14: Data placement of X-Code (p = 5) after refinement.

parity chain of R3, we do not perform the movement. After
the refinement, the two sequential data elements #3 and
#4 will associate with a common parity element (i.e., R7)
and will be non-movable in the subsequent iterations (see
Figure 13). By scanning every two parity elements whose
generation orders are adjacent in O, we can obtain a refined
data placement, as shown in Figure 14.

4.3 Complexity Analysis

Given an XOR-based erasure code, suppose that there are
a total of K data elements and M parity elements in a
stripe. We first analyze the complexity of determining the
parity generation orders in Algorithm 1. In Algorithm 1, to
select an appropriate parity element, it need to scan every
candidate parity element in R that includes no more than
M elements. For every candidate parity element, it needs
to calculate the overlapped data elements from the data
elements that have been placed, which needs no more than
K2 trials. This selection will proceed no more than M times.
Therefore, its complexity is O(K2M2).

For Algorithm 2, as the number of data elements in a
parity chain is less than K and the algorithm will take every
two consecutive data elements ofO in order, the complexity
of Algorithm 2 is O(K2M). In summary, EDP maintains a
polynomial complexity.

TABLE 1: Configurations of erasure codes with respect to p.
Coding Scheme number of disks per stripe k m

RDP Code [5] n = p+ 1 p− 1 2
X-Code [34] n = p p− 2 2

BP-Code [33] n = p− 1 p− 3 2
HDP Code [29] n = p− 1 p− 3 2
V 2-Code [32] n = 4y − 3, where y ≥ 2 n− 2 2
T -Code [16] n = 3y + 1 n− 3 3

5 PERFORMANCE EVALUATION

We conduct experiments to evaluate the performance of
EDP and aim to address the following three questions:
1) How many additional I/Os caused by degraded reads

can EDP reduce for erasure codes with different con-
structions and fault tolerance degrees?

2) How much reduction on the degraded read time can EDP
gain?

3) What is the scalability of EDP when the number of disk
in a stripe varies?

Evaluation Methodology: In the evaluation, we choose six
representative XOR-based erasure codes, namely RDP Code
[5], X-Code [34], Balanced P-Code (BP-Code for short) [33],
HDP Code [29], V 2-Code [32], and T-Code [16]. These six
codes have different constructions and properties:
• RDP Code [5] is an MDS RAID-6 code (i.e., double-fault-

tolerant) based on horizontal parity chains and diagonal
parity chains. In this evaluation, we will examine whether
EDP can improve the degraded read performance for the
codes with horizontal parity chains.

• X-Code [34] is an MDS RAID-6 code constructed based
on diagonal parity chains and anti-diagonal parity chains
(see Figure 2). In this evaluation, we will study the effect
when applying EDP to the codes with anti-diagonal and
diagonal parity chains.

• Balanced P-Code (BP-Code) [33] is an MDS RAID-6 code
designed for supercomputing data centers. Unlike RDP
Code and X-Code, BP-Code is built by vertical parity
chains only.

• HDP Code [29] is an MDS RAID-6 code constructed over
horizontal-diagonal parity chains and anti-diagonal parity
chains (see Figure 1). These two kinds of parity chains
have different numbers of elements. In this evaluation, we
will examine how much improvement on degraded read
performance EDP can gain for the codes with different
lengths of parity chains.

• V 2-Code [32] is a non-MDS RAID-6 code. It is constructed
over a novel parity chain that has a letter “V” shape in
geometry. In this evaluation, we would like to learn if
EDP can still improve degraded read efficiency for non-
MDS RAID-6 codes.

• T-Code [16] is an MDS array code that tolerates any triple
failures. In this evaluation, we will show whether EDP
can work for the codes with high fault tolerance.

Table 1 shows the parameters of our selected erasure
codes, including the number of disks in a stripe (denoted by
n) and the fault tolerance degree (denoted by m). Note that
for RDP Code, X-Code, BP-Code, and HDP Code, the value
of p should be a prime number, which is used to configure
the number of disks in a stripe. According to the design of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

V 2-Code, n should be no smaller than (4y − 3) [32], where
y ≥ 2. For T-Code, n should be a prime number and satisfy
n = 3y + 1 [16].

To evaluate the degraded read efficiency, we first erase
the data on one of the storage devices in a stripe to simu-
late a single failure, and perform the read operations. We
repeat the evaluation by erasing the data for each device
and obtaining the overall average across all devices. In the
comparison, we always choose the degraded read solution
that reads less data for data recovery. For example, if an un-
available element is included in two parity chains, we will
select the one that repairs the element with fewer elements.
In addition, we set the element size as 16KB throughout the
evaluation.

In this evaluation, we consider two versions of EDP. The
first one is the preliminary version proposed in our previous
conference version [25], which we term EDPv1. The second
one is the version proposed in this journal version, which
we term EDPv2. Compared to EDPv1, EDPv2 makes the
following extensions: (1) selecting the appropriate parity
elements being generated by sequential data (see Motiva-
tion 2), so as to reduce the I/Os when the requested data
elements are in the same parity chain; and (2) describing
a new definition of overlapped data elements (see Moti-
vation 3) and accordingly order the parity generation for
producing as many overlapped data elements as possible, so
as to reduce the I/Os when the requested data elements are
across parity chains. Thus, our evaluation mainly compares
EDPv2 with three baseline data placement schemes: the
horizontal and vertical data placements (see Section 2.2), as
well as EDPv1.
Evaluation Environment: We conduct our evaluation on a
Linux server with an X5472 processor and 8GB memory. The
operating system is SUSE Linux Enterprise Server and the
filesystem is EXT3. The deployed disk array consists of 15
Seagate/Savvio 10K.3 SAS disks, each of which has 300GB
storage capability and 10,000 rmp. The machine and the disk
array are connected by a Fiber cable with the bandwidth of
800MB/sec. We implement our selected erasure codes via
Jerasure 1.2 [20].
Evaluation Metrics: We are mainly interested in the follow-
ing two metrics in our evaluation:
• Total number of additionally read elements: the total

number of elements that are additionally accessed to
accomplish degraded reads.

• Average read time: the average time to perform a constant
number of read operations, including normal reads (i.e.,
all the read elements are available) and degraded reads.

5.1 Storage Overhead

We first measure the storage overhead to keep the placement
information (i.e., the mapping relationship between cells
and data elements of a stripe) generated by EDPv2. We vary
the number of disks in a stripe and calculate the incurred
storage overhead to keep the placement information of a
stripe. Table 2 presents the results. We observe that the
maintenance of the data placement information only takes
up marginal storage space in real storage systems. Take RDP
Code as an example. When p = 11, the storage overhead
is only 0.39KB. Note that the placement information, while

TABLE 2: Storage overhead to keep the data placement
information generated by EDPv2.

Codes p = 5 p = 7 p = 11 n = 9 n = 13

RDP Code 0.06KB 0.14KB 0.39KB – –
X-Code 0.06KB 0.14KB 0.39KB – –

HDP Code 0.06KB 0.14KB 0.39KB – –
BP-Code 0.03KB 0.07KB 0.20KB – –
V 2-Code – – – 0.07KB 0.15KB
T-Code – – – – 0.16KB

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(a) RDP Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(b) X-Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(c) HDP Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(d) BP-Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(e) V 2-Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(f) T-Code.

Fig. 15: The number of additionally read elements in degraded
reads under different read sizes.

being specified for a single stripe, applies to all stripes.
Given the set of disks for a stripe, a storage system can first
locate the stripe identity of any data element, and then use
the placement information to map it to the corresponding
disk and cell.

5.2 Impact of Read Size
We now evaluate the impact of read size (i.e., the number
of elements in a read operation). We set p = 7 for RDP
Code, X-Code, and HDP Code, and choose p = 11 for BP-
Code. Under this configuration, the number of disks in a
stripe of RDP Code, X-Code, HDP Code, and BP-Code is
8, 7, 6, and 10, respectively. In addition, we set the number
of disks of a stripe for V 2-Code and T-Code as 9 and 13,
respectively. This configuration ensures that the stripe sizes
(i.e., the number of disks in a stripe) in our evaluation close
to those in practical enterprise storage systems [3].

To systematically study the impact of read size, for a
given read size L (L ≥ 1), we let each data element of a
stripe serve as the start element, which should be read with
the next L− 1 sequential data elements in a read operation.
If some of the requested data elements in a read operation is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

4

8

1 2

1 6

Rea
dT

ime
(Se

c)

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(a) RDP Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2

4

6

8

1 0

Rea
dT

ime
(Se

c)

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(b) X-Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

1

2

3

4

5

Rea
dT

ime
(Se

c)

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(c) HDP Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2

4

6

8

1 0

1 2

Rea
dT

ime
(Se

c)

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(d) BP-Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

1

2

3

4

Rea
dT

ime
(Se

c)

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(e) V 2-Code.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2

4

6

8

1 0

1 2

1 4

Rea
dT

ime
(Se

c)

R e a d S i z e

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 1
E D P v 2

(f) T-Code.

Fig. 16: Read time under different read sizes.

missing, the degraded read procedure will be triggered by
retrieving additional elements for data recovery. Otherwise,
the read operation will be served as a normal read. We
vary the value of L from 1 to 18. For each given read
size, we repeat the evaluation for all the six erasure codes,
accumulate the number of additionally read elements, and
calculate the average to complete a read operation. Figure 15
and Figure 16 show the results. We make two key findings.

First, Figure 15 shows that EDPv2 significantly reduces
the number of elements to be additionally retrieved in
degraded reads. In general, EDPv2 is more advantageous
when the read size is larger. Take X-Code as an example.
When L = 9, EDPv2 reduces 75.0%, 67.9%, and 20.1% of
extra elements to be retrieved in degraded reads compared
to the horizontal data placement, vertical data placement,
and EDPv1, respectively. When L = 18, the reductions will
increase to 84.2%, 79.3%, and 46.8%, respectively. Note that
for RDP Code, the I/O reduction introduced by EDPv2 is
marginal compared to the horizontal data placement. The
reason is that the data placement established by EDPv2 for
RDP Code is close to the horizontal data placement.

Second, Figure 16 shows that among the four data
placement methodologies, EDPv2 needs the shortest time
to serve a read operation for most of the codes. Take HDP
Code as an example. EDPv2 decreases the read time by
9.0%, 32.9%, and 6.2% on average when compared to the
horizontal data placement, vertical data placement, and
EDPv1, respectively. Notice that the time saving introduced
by EDPv2 is less significant compared to the additional
I/O reduction shown in Figure 15. The reason is that for
normal reads which are also evaluated in the read time test,
EDP will not reduce their additional I/Os which should
only be incurred when serving degraded reads. Also, as
the vertical data placement usually stores sequential data

elements (likely to be requested in a read operation) on a
disk, it almost causes the longest average read time among
all the four data placement methods.

5.3 Performance under Different Traces

We also evaluate the performance via different real traces.
We set p = 7 for RDP Code, X-Code, and HDP Code,
and choose p = 11 for BP-Code. Also, we set the number
of disks of a stripe for V 2-Code and T-Code as 9 and 13,
respectively. Our evaluation is driven by real-world block-
level MSR Cambridge Traces [17]. The traces are collected
from 36 volumes that span 179 disks of 13 servers for one
week (starting from Feb. 22, 2007), which describe the I/O
requests with various access characteristics of enterprise
storage servers. The total size of the 36 traces is 29GB. Each
request in traces records a timestamp, the disk number, the
offset to start the I/O operation (in bytes), the request size
(in bytes), the request type (read or write), and the response
time to complete the I/O. The 36 traces include 434 million
requests, of which there are 70% of read requests. During
the trace period, a total of 8.5TB (resp. 2.3TB) of data are
read from (resp. write to) the trace volumes. Here, we select
six volumes and mainly focus on the read operations (which
allow us to evaluate the impact of degraded reads). Table 3
lists the characteristics of the selected traces, including the
types of traces and the statistics of the read operations.
We can see that the selected traces have different average
read sizes, and it enables us to evaluate the performance of
EDPv2 for the traces with varied read sizes. Figure 17 and
Figure 18 show the evaluation results in terms of additional
I/O and the read time, respectively.

Figure 17 indicates that among the three data placement
methodologies, EDPv2 always needs the least elements that
are additionally read in degraded reads for data recovery.
For example, when replaying the trace wdev_3 to the data
encoded by V 2-Code (see Figure 17(b)), EDPv2 needs 48.6%
(resp. 35.7%) fewer elements that are additionally read in
degraded reads compared to the horizontal (resp. vertical)
data placement. Moreover, EDPv2 reduces more elements
when the read size increases. Take the trace wdev_2 whose
average read size is 6.12KB as an example. When being
deployed over T-Code, EDPv2 can only reduce 2.3% (resp.
1.1%) of additional elements retrieved in degraded reads
compared to the horizontal (resp. vertical) data placement.
As a comparison, for the trace wdev_3 with a larger average
read size (i.e., 63.27KB), EDPv2 can reduce 46.3% and 38.1%
of extra elements in degraded reads, when compared to the
horizontal and vertical data placement.

Figure 18 shows that EDPv2 decreases the time when
replaying the read operations. Take the HDP Code as an ex-
ample. EDPv2 reduces 16.3% (resp. 20.5%) of the read time
when replaying the read operations of rsrch_1 compared
to the horizontal (resp. vertical) data placement.

5.4 Scalability

We finally evaluate the scalability of EDPv2 in terms of the
number of elements to be additionally read in degraded
reads when the stripe size (i.e., the number of disks in a
stripe) increases. For RDP Code, X-Code, HDP Code, and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Num
.of

Add
ition

ally
Rea

dE
lem

ents
(10

3)

(a) wdev 2.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Num
.of

Add
ition

ally
Rea

dE
lem

ents
(10

2)

(b) wdev 3.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s(1

06)

(c) web 1.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s(1

05)

(d) web 3.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0

2

4

6

8
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Num
.of

Add
ition

ally
Rea

dE
lem

ents
(10

2)
(e) rsrch 1.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Num
.of

Add
ition

ally
Rea

dE
lem

ent
s(1

06)

(f) rsrch 2.

Fig. 17: The number of additionally read elements in degraded reads under different real traces.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0

2

4

6

8

1 0
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Re
ad

Tim
e(S

ec)

(a) wdev 2.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Rea
dT

ime
(Se

c)

(b) wdev 3.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Rea
dT

ime
(Se

c)

(c) web 1.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Re
ad

Tim
e(S

ec)

(d) web 3.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Rea
dT

ime
(Se

c)

(e) rsrch 1.

R D P C o d e X - C o d e
H D P - C o d e

B P - C o d e
V 2 - C o d e T - C o d e

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0
H o r i z o n t a l D a t a P l a c e m e n t
V e r t i c a l D a t a P l a c e m e n t
E D P v 2

Re
ad

Tim
e(S

ec)

(f) rsrch 2.

Fig. 18: The read time for different real traces. The smaller value is better.
TABLE 3: Characteristics of selected workloads.

Workloads wdev 2 wdev 3 rsrch 1 rsrch 2 web 1 web 3

Types Test web server Test web server Research project Research project Web/SQL server Web/SQL server
Num. of read operations 189 11 43 13,6364 87,058 10,050
Average read size (KB) 6.12 63.27 13.9 4 45.9 74.9

BP-Code, we vary the selection of p. For V 2-Code, we
choose different parameters of n.

Figure 19 shows that given an erasure code and a
data placement methodology, the number of elements to
be additionally read generally increases with the stripe
size. The reason is that when the stripe size increases, the
parity chains of an erasure code will accordingly extend
to preserve the given fault tolerance. Consequently, more
elements should be accessed to repair a lost element in a
longer parity chain.

When the stripe size increases, EDPv2 will still preserve
its effectiveness on reducing the number of extra elements
that are accessed in degraded reads. For example, when
being deployed over X-Code with p = 5, EDPv2 cuts down
38.6% (resp. 27.8%) of elements that are additionally read

for recovery in degraded reads compared to the horizontal
(resp. vertical) data placement in the trace web_3 (see Fig-
ure 19(d)). When the scale of X-Code increases to p = 11,
this reduction reaches 56.1% (resp. 50.6%).

6 CONCLUSION

Erasure codes have been intensively used in current storage
systems due to their high storage efficiency. In view of the
commonplace of single failure and read operations in real-
world applications, this paper proposes EDP, an encoding-
aware data placement scheme to optimize single-failure de-
graded reads. EDP suggests generating parity elements by
using sequential data elements. It then designs an order
to generate parity elements and refines the data layout

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

R D P (p = 5)
R D P (p = 7)

R D P (p = 1 1)
X - C o d e (p = 5)

X - C o d e (p = 7)
X - C o d e (p = 1 1)

H D P - C o d e (p = 5)
H D P - C o d e (p = 7)

H D P - C o d e (p = 1 1)
B P - C o d e (p = 1 1)

B P - C o d e (p = 1 3)
V 2 - C o d e (n = 9)

V 2 - C o d e (n = 1 3)
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0
H o r i z o n t a l D a t a P l a c e m e n t V e r t i c a l D a t a P l a c e m e n t E D P v 2

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts
(10

3)

(a) wdev 2.

R D P (p = 5)
R D P (p = 7)

R D P (p = 1 1)
X - C o d e (p = 5)

X - C o d e (p = 7)
X - C o d e (p = 1 1)

H D P - C o d e (p = 5)
H D P - C o d e (p = 7)

H D P - C o d e (p = 1 1)
B P - C o d e (p = 1 1)

B P - C o d e (p = 1 3)
V 2 - C o d e (n = 9)

V 2 - C o d e (n = 1 3)
0 . 0

0 . 4

0 . 8

1 . 2

1 . 6

2 . 0
H o r i z o n t a l D a t a P l a c e m e n t V e r t i c a l D a t a P l a c e m e n t E D P v 2

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts
(10

2)

(b) wdev 3.

R D P (p = 5)
R D P (p = 7)

R D P (p = 1 1)
X - C o d e (p = 5)

X - C o d e (p = 7)
X - C o d e (p = 1 1)

H D P - C o d e (p = 5)
H D P - C o d e (p = 7)

H D P - C o d e (p = 1 1)
B P - C o d e (p = 1 1)

B P - C o d e (p = 1 3)
V 2 - C o d e (n = 9)

V 2 - C o d e (n = 1 3)
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0 H o r i z o n t a l D a t a P l a c e m e n t V e r t i c a l D a t a P l a c e m e n t E D P v 2

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts
(10

6)

(c) web 1.

R D P (p = 5)
R D P (p = 7)

R D P (p = 1 1)
X - C o d e (p = 5)

X - C o d e (p = 7)
X - C o d e (p = 1 1)

H D P - C o d e (p = 5)
H D P - C o d e (p = 7)

H D P - C o d e (p = 1 1)
B P - C o d e (p = 1 1)

B P - C o d e (p = 1 3)
V 2 - C o d e (n = 9)

V 2 - C o d e (n = 1 3)
0 . 0

0 . 8

1 . 6

2 . 4

3 . 2 H o r i z o n t a l D a t a P l a c e m e n t V e r t i c a l D a t a P l a c e m e n t E D P v 2

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts
(10

5)

(d) web 3.

R D P (p = 5)
R D P (p = 7)

R D P (p = 1 1)
X - C o d e (p = 5)

X - C o d e (p = 7)
X - C o d e (p = 1 1)

H D P - C o d e (p = 5)
H D P - C o d e (p = 7)

H D P - C o d e (p = 1 1)
B P - C o d e (p = 1 1)

B P - C o d e (p = 1 3)
V 2 - C o d e (n = 9)

V 2 - C o d e (n = 1 3)
0

2

4

6

8
H o r i z o n t a l D a t a P l a c e m e n t V e r t i c a l D a t a P l a c e m e n t E D P v 2

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts
(10

2)

(e) rsrch 1.

R D P (p = 5)
R D P (p = 7)

R D P (p = 1 1)
X - C o d e (p = 5)

X - C o d e (p = 7)
X - C o d e (p = 1 1)

H D P - C o d e (p = 5)
H D P - C o d e (p = 7)

H D P - C o d e (p = 1 1)
B P - C o d e (p = 1 1)

B P - C o d e (p = 1 3)
V 2 - C o d e (n = 9)

V 2 - C o d e (n = 1 3)
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0
H o r i z o n t a l D a t a P l a c e m e n t V e r t i c a l D a t a P l a c e m e n t E D P v 2

Nu
m.

ofA
ddi

tion
ally

Re
ad

Ele
me

nts
(10

6)

(f) rsrch 2.

Fig. 19: The number of elements to be additionally read under different stripe sizes.

to achieve further optimization. Experimental results show
that EDP can effectively decrease the number of data to be
additionally retrieved in degraded reads, and shorten the
read time.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 61602120, 61327902,
61433008, U1435216, 61672159, U1705262), the Technology
Innovation Platform Project of Fujian Province (Grant No.
2014H2005), the Fujian Collaborative Innovation Center for
Big Data Application in Governments, the Fujian Engineer-
ing Research Center of Big Data Analysis and Processing,
the Fujian Provincial Natural Science Foundation (Grant No.
2017J05102), and the Research Grants Council of Hong Kong
(GRF 14216316 and CRF C7036-15G).

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd: An efficient
scheme for tolerating double disk failures in raid architectures.
IEEE Transactions on Computers, 44(2):192–202, 1995.

[2] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An xor-based erasure-resilient coding scheme.
Technical report, 1995.

[3] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling. Hdfs
raid. In Hadoop User Group Meeting, 2010.

[4] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al. Windows
azure storage: a highly available cloud storage service with strong
consistency. In Proc. of ACM SOSP, 2011.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. Row-diagonal parity for double disk failure correc-
tion. In Proc. of USENIX FAST, 2004.

[6] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed
storage systems. In Proc. of USENIX OSDI, 2010.

[7] Y. Fu and J. Shu. D-code: An efficient raid-6 code to optimize i/o
loads and read performance. In Proc. of IEEE IPDPS, 2015.

[8] Y. Fu, J. Shu, and Z. Shen. Ec-frm: An erasure coding framework
to speed up reads for erasure coded cloud storage systems. In
Proc. of IEEE ICPP, pages 480–489, 2015.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
In ACM SIGOPS Operating Systems Review, 2003.

[10] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in windows azure storage. In
Proc. of USENIX ATC, 2012.

[11] C. Huang and L. Xu. Star: An efficient coding scheme for correct-
ing triple storage node failures. Computers, IEEE Transactions on,
57(7):889–901, 2008.

[12] C. Jin, H. Jiang, D. Feng, and L. Tian. P-code: A new raid-6 code
with optimal properties. In Proc. of ACM ICS, 2009.

[13] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang.
Rethinking erasure codes for cloud file systems: minimizing i/o

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

for recovery and degraded reads. In Proc. of USENIX FAST, 2012.
[14] M. Li and P. P. Lee. Stair codes: a general family of erasure

codes for tolerating device and sector failures in practical storage
systems. In Proc. of USENIX FAST, 2014.

[15] R. Li, P. P. Lee, and Y. Hu. Degraded-first scheduling for mapre-
duce in erasure-coded storage clusters. In Proc. of IEEE/IFIP DSN,
2014.

[16] S. Lin, G. Wang, D. S. Stones, X. Liu, and J. Liu. T-code: 3-erasure
longest lowest-density mds codes. IEEE Journal on Selected Areas
in Communications, 28(2), 2010.

[17] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. ACM Trans-
actions on Storage (TOS), 4(3):10, 2008.

[18] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a
large disk drive population. In Proc. of USENIX FAST, 2007.

[19] J. S. Plank and M. Blaum. Sector-disk (sd) erasure codes for mixed
failure modes in raid systems. ACM Transactions on Storage (TOS),
10(1):4, 2014.

[20] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A li-
brary in c/c++ facilitating erasure coding for storage applications-
version 1.2. University of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[21] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study
on the facebook warehouse cluster. In Proc. of USENIX HotStorage,
2013.

[22] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers. In Proc. of ACM
SIGCOMM, 2014.

[23] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial & Applied Mathematics,
8(2):300–304, 1960.

[24] B. Schroeder and G. Gibson. Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you? In Proc. of USENIX
FAST, 2007.

[25] Z. Shen, P. Lee, J. Shu, and W. Guo. Encoding-aware data place-
ment for efficient degraded reads in xor-coded storage systems. In
Proc. of IEEE SRDS, 2016.

[26] Z. Shen and J. Shu. Hv code: An all-around mds code to improve
efficiency and reliability of raid-6 systems. In Proc. of IEEE/IFIP
DSN, 2014.

[27] Z. Shen, J. Shu, and Y. Fu. Parity-switched data placement:
Optimizing partial stripe writes in xor-coded storage systems. To
appear at IEEE Transactions on Parallel and Distributed Systems.

[28] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Peer-to-Peer Systems,
pages 328–337. Springer, 2002.

[29] C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie. Hdp code:
A horizontal-diagonal parity code to optimize i/o load balancing
in raid-6. In Proc. of IEEE/IFIP DSN, 2011.

[30] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie. H-code: A hybrid mds
array code to optimize partial stripe writes in raid-6. In Proc. of
IEEE IPDPS, 2011.

[31] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two
erasure codes in hdfs. In Proc. of USENIX FAST, 2015.

[32] P. Xie, J. Huang, Q. Cao, X. Qin, and C. Xie. V 2-code: A new
non-mds array code with optimal reconstruction performance for
raid-6. In Cluster Computing (CLUSTER), 2013 IEEE International
Conference on, pages 1–8, 2013.

[33] P. Xie, J. Huang, Q. Cao, and C. Xie. Balanced p-code: A raid-6
code to support highly balanced i/os for disk arrays. In Proc. of
IEEE NAS, 2014.

[34] L. Xu and J. Bruck. X-code: Mds array codes with optimal
encoding. IEEE Transactions on Information Theory, 45(1):272–276,
1999.

[35] J. Zhang, X. Liao, S. Li, Y. Hua, X. Liu, and B. Lin. Aggrecode:
constructing route intersection for data reconstruction in erasure
coded storage. In Proc. of IEEE INFOCOM, 2014.

[36] Y. Zhang, C. Wu, J. Li, and M. Guo. Tip-code: A three independent
parity code to tolerate triple disk failures with optimal update
complextiy. In Proc. of IEEE/IFIP DSN, 2015.

[37] Y. Zhu, P. P. Lee, Y. Hu, L. Xiang, and Y. Xu. On the speedup of

single-disk failure recovery in xor-coded storage systems: Theory
and practice. In Proc. of IEEE MSST. IEEE, 2012.

[38] Y. Zhu, J. Lin, P. Lee, and Y. Xu. Boosting degraded reads in
heterogeneous erasure-coded storage systems. IEEE Transactions
on Computers, 64(8):2145–2157, 2015.

Zhirong Shen received the BS degree from Uni-
versity of Electronic Science and Technology of
China in 2010, and the Ph.D degree with De-
partment of Computer Science and Technology
from Tsinghua University in 2016. He is now a
postdoctoral fellow of the Department of Com-
puter Science and Engineering at the Chinese
University of Hong Kong. His current research
interests include storage reliability and storage
security. He is a member of the IEEE.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an Associate Professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests are in cloud storage, dis-

tributed systems and networks, and security/resilience. He is a senior
member of the IEEE.

Jiwu Shu received the Ph.D degree in com-
puter science from Nanjing University in 1998,
and finished the postdoctoral position research
at Tsinghua University in 2000. Since then, he
has been teaching at Tsinghua University. His
current research interests include storage se-
curity and reliability, non-volatile memory based
storage systems, and parallel and distributed
computing. He is a senior member of the IEEE.

Wenzhong Guo received the BS and MS de-
grees in computer science, and the PhD de-
gree in communication and information system
from Fuzhou University, Fuzhou, China, in 2000,
2003, and 2010, respectively. He is currently a
full professor with the College of Mathematics
and Computer Science at Fuzhou University. His
research interests include intelligent information
processing, sensor networks, network comput-
ing, and network performance evaluation. He is
a member of the IEEE.

