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1 ADDITIONAL RELATED WORK

This section supplements Section 2 of the main paper
with other related studies.

Data integrity protection is first considered in memory
management systems [8]. In online memory checking,
a user checks whether each read/write operation in
an unreliable memory device is correct, using a small,
trusted (and possibly private) memory device. Naor and
Rothblum [16] improve the efficiency of online memory
checking. Instead of reading all bits of a file during
checking, they sample bits from the file. The sampling
idea is also used in our data checking scheme.

Proof of retrievability (POR) [15] and proof of data pos-
session (PDP) [3] are recent works that explore efficient
data integrity checking (i.e., through sampling instead
of whole-file checking) in single-server archival storage
systems. POR [15] embeds a set of pseudorandom blocks
into an encrypted file stored in the server, and the client
can later check if the server keeps the pseudorandom
blocks. Error correcting codes are also included in the
stored file to allow recovery of a small amount of errors
within a file. However, the number of checks that the
client can issue is limited by the number of the embed-
ded random blocks. On the other hand, PDP [3] allows
the client to keep a small amount of metadata. The client
can then challenge the server against a set of random
file blocks to see if the server returns the proofs that
match the metadata on the client side. Both schemes
can further minimize the network transfer bandwidth
by aggregating proofs into smaller messages. However,
such aggregation techniques require the servers to have
certain encoding capabilities.

Several follow-up studies on POR and PDP improve
their computation and communication complexities (e.g.,
[10], [12], [22]). Adding protection of dynamic files (i.e.,
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files that can be updated after being stored) to PDP is
considered in [4], [13]. Some studies focus on the public
verifiability of efficient integrity checking schemes (e.g.,
[5], [20], [23]).

Multi-server (or multi-cloud) storage has been pro-
posed and implemented to protect against data loss [6],
[9], [14], [19] and mitigate vendor lock-ins [1]. Oggier et
al. [17] consider exact regenerating codes with collabora-
tive repairs, and verify the integrity of fully-regenerated
chunks with trusted hashes to guard against adversarial
corruptions. Zhu et al. [26] propose a cooperative PDP
scheme for multi-cloud storage, but it is difficult to de-
ploy the scheme in practice as it requires the cooperation
of different multiple cloud providers.

2 ILLUSTRATIONS OF FMSR CODES

This section supplements Section 3.1 of the main paper
with additional illustrations of FMSR codes on NCCloud
[14]. Figure 1(a) illustrates the entire file upload process
in NCCloud using FMSR codes for n = 4 and k = 2,
while Figure 1(b) shows how a file is encoded inside
NCCloud using matrix multiplication.

3 ILLUSTRATIONS OF FMSR-DIP CODES

This section supplements Section 4 of the main paper
with additional illustrations of FMSR-DIP codes. First,
we summarize the notations used in Table 1. Figure 2
shows an overview of how we augment an FMSR code
chunk into an FMSR-DIP code chunk.

4 AGGREGATING ROWS IN THICK CLOUD

STORAGE

This section supplements Section 4.1 of the main pa-
per. Our work assumes the thin-cloud setting in which
servers only need to support basic read/write opera-
tions. Here, we briefly remark on how FMSR-DIP codes
can be modified to utilize server-side encoding capa-
bilities when such functionalities are available in thick
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Fig. 1. An example of the file upload and encoding

operations in NCCloud using a (4,2)-FMSR code. Data is

stored in four servers, in which the data of any two servers

suffice to recover the original file. Each server stores two

code chunks of total size |F |/2.

TABLE 1

A summary of the key notations.

Symbols Meaning
n, k Parameters for FMSR codes
n′, k′ Parameters for AECC
b FMSR chunk size
b′ FMSR-DIP chunk size
F File to be backed up
|F | Original file size
{Fi} FMSR native chunks (i.e., partitions of

original file)
{Pi} FMSR code chunks
{P ′

i} FMSR-DIP code chunks
{αij} FMSR encoding coefficients
λ Checking percentage

cloud storage services. Our goal is to aggregate the
downloaded bytes during the Check operation, so as to
reduce the amount of data transfer.

The idea is as follows. During the Check operation,
instead of downloading all the randomly selected bytes
from the servers, we can divide the random indices into
groups and request each server to return the XOR-sum
of all the selected bytes on a group-by-group basis for
each chunk. Thus, for each group, we download one
byte from each code chunk. Due to the distributive nature
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Fig. 2. An overview of how an FMSR code chunk P1 is

augmented into an FMSR-DIP code chunk P ′
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Fig. 3. Integration of the DIP scheme into NCCloud.

of finite field operations, the XOR-sum of the selected
bytes of the code chunks can be decoded to the XOR-sum of
the corresponding bytes of the native chunks. We can then
perform rank checking on the XOR’ed bytes instead.

To illustrate, suppose that in the Check operation,
we apply the XOR-sum to the r1th and r2th rows of
the FMSR-DIP code chunks, i.e., {P ′

ir1
⊕P ′

ir2
}1≤i≤n(n−k).

First, we remove the PRF, i.e., Pir1 ⊕Pir2 = P ′
ir1

⊕P ′
ir2

⊕
PRF(i||r1)⊕ PRF(i||r2). Note that:

Pir1 ⊕ Pir2 =
∑k(n−k)

j=1 αijFjr1 ⊕
∑k(n−k)

j=1 αijFjr2

=
∑k(n−k)

j=1 αij(Fjr1 ⊕ Fjr2).

If Pir1⊕Pir2 is error-free, then it can be correctly decoded
into the XOR-sum of the r1th and r2th rows of bytes of
the native chunks. We then apply rank checking to verify
Pir1 ⊕ Pir2 as before.

We can further reduce data transfer by allowing
servers to XOR bytes across different chunks. Note
that the XOR-sum of the r1th and r2th row of different
chunks Pi and Pi′ (that is Pir1 ⊕ Pir2 ⊕ Pi′r1 ⊕ Pi′r2 ) is
the following:
(

∑k(n−k)
j=1 αij(Fjr1 ⊕ Fjr2)

)

⊕
(

∑k(n−k)
j=1 αi′j(Fjr1 ⊕ Fjr2)

)

=
∑k(n−k)

j=1 (αij ⊕ αi′j)(Fjr1 ⊕ Fjr2).

5 ADDITIONAL IMPLEMENTATION DETAILS

This section supplements Section 5 of the main paper
with additional implementation details.

5.1 Integration of DIP into NCCloud

We implement a standalone DIP module and a storage
interface module, and integrate them with NCCloud as
shown in Figure 3. In the Upload operation, NCCloud
generates code chunks for a file based on FMSR codes.
The code chunks will be temporarily stored in the local
filesystem instead of being uploaded to the servers as
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in [14]. The DIP module then reads the FMSR code
chunks from the local filesystem, encodes them with
DIP, and passes the resulting FMSR-DIP code chunks
to the storage interface module, which will upload the
FMSR-DIP code chunks to multiple servers (or a cloud-
of-clouds [1], [6], [14]). In the Download operation, the
DIP module checks the integrity of the chunks retrieved
from the servers before relaying the chunks to NCCloud
for decoding. Note that we can issue a range GET request
to download a selected range of bytes.

Our DIP module mostly operates on a per-chunk basis.
Thus, it can harness parallelism in today’s multi-core
technologies by concurrently encoding different code
chunks. For example, a (4,2)-FMSR code will create eight
FMSR code chunks, each of which can be encoded into
an FMSR-DIP code chunk with a dedicated process. In an
eight-core machine, we can have up to eight-fold speed-
up over the sequential approach. This can significantly
speed up the entire DIP operation.

Our current implementation uses a modular approach
that separates the FMSR code module (i.e., NCCloud)
and the DIP module. It is possible to combine the two
modules into a single design to reduce the overhead,
so as to eliminate the passing of FMSR code chunks
between NCCloud and our DIP module using a local
staging directory. In addition, we may exploit certain
inherent properties of such combination to further re-
duce the computational overhead, and we pose this
issue as future work. On the other hand, our modular
approach allows us to flexibly enable DIP on demand in
real deployment.

5.2 Instantiating Cryptographic Primitives

We implement all cryptographic operations using
OpenSSL 1.0.0g [18]. All cryptographic primitives use
128-bit secret keys. The primitives are instantiated as
described below.

Symmetric encryption. We use AES-128 in cipher-
block chaining (CBC) mode.

Pseudorandom function (PRF). We use AES-128 for
PRF. The PRF input is first transformed to a plaintext
block, which is then encrypted with AES-128.

Pseudorandom permutation (PRP). Our PRP imple-
mentation is based on AES-128, but applied in a different
way as in PRF. Note that the domain size of the PRP is
the number of elements to be permuted. To implement
a PRP with a small and flexible domain size, we follow
the approach in Method 1 of [7]. We first create a list of
indices from 0 to d − 1, where d is the desired domain
size of our PRP. Then we encrypt each index in turn
with AES-128 and sort the encrypted indices. Finally,
the permutation is given by the positions of the original
indices in the sorted list of encrypted indices. A more
efficient way can be used to generate a small PRP [10],
at the expense of a larger storage overhead.

Message authentication codes (MACs). We use
HMAC-SHA-1 to compute MACs.

(a) Standard ECC

(4,2)-RS

PRP PRP

(4,2)-AECC

(4,2)-RS

(b) Our AECC

Fragment 2 Fragment 3 Fragment 4Fragment 1

3 41 2 7 85 6 c da b g hf

3 41 2 7 85 6 d ac b g fe h

4 21 3 5 76 8 c da b g he f

e

Fig. 4. Comparing standard ECC and our AECC (using

for example (4,2)-Reed-Solomon encoding). The bytes of

the same shade correspond to the same stripe.

Adversarial error-correcting codes (AECCs). We ap-
ply the systematic AECC adapted from [10], [11] with
two main differences. First, for efficiency, we do not
encrypt the AECC parities, since we will apply PRF to
the entire DIP-encoded chunk after applying AECC. PRF
itself serves as an encryption. Second, and most notably,
instead of applying a single PRP to the entire code
chunk, we first divide the code chunk into k′ fragments,
and apply a different PRP to each fragment. The secret
key of the PRP for each fragment is formed by the
XOR-sum of a master PRP secret key and the fragment
number. Applying PRP to a fragment rather than a
chunk reduces the domain size and hence the overall
memory usage. The trade-off is that we reduce the
security protection. Also, our approach is more resilient
to burst errors since each byte of a stripe is confined
to its own fragment, while in permuting over the entire
chunk, a stripe may have many of its bytes clustered
together.

Figure 4 shows our AECC implementation, in which
we use zfec [25] for the underlying systematic ECC
(based on Reed-Solomon codes). We first apply a PRP to
each of the k′ fragments within the FMSR code chunk.
We then apply systematic ECC to the permuted chunk
(divided into b/k′ stripes of k′ bytes each), where the
ith stripe (1 ≤ i ≤ b/k′) comprises the bytes in the
ith positions of all fragments. Finally, we permute each
fragment of the ECC parities, and append the permuted
parities to the code chunk.

6 USES OF SECURITY PRIMITIVES

This section supplements Section 6 of the main paper
with additional details about the effects of the various
security primitives used in FMSR-DIP codes.

Pseudorandom function (PRF). The effect of applying
PRF on the data is similar to encrypting the data. It
randomizes the data so that it is infeasible for the adver-
sary to manipulate the original data and hence corrupt
the data in such a way that the corrupted bytes form
consistent systems of linear equations during the Check
operation. PRF is important for guarding against a mobile
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Fig. 5. Running time of the entire Download operation on a local cloud.
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Fig. 6. Running time of the entire Repair operation on a local cloud.

Byzantine adversary [9], which can possibly corrupt data
on all servers over time via creeping corruption [9].

To illustrate the necessity of PRFs in our construction,
consider the following attack on our construction in
the absence of PRFs. Remember that our adversary is
mobile, and thus can zero out bytes at a specific offset on
all chunks (i.e., a row) across multiple epochs. Note that
a random linear combination of zeroes is always zero, so
a row of zeroes is always consistent and decodable (to
give zeroes). If the adversary corrupts only a few rows at
a time, it would be near impossible for us to detect the
attack before too many rows are corrupted, rendering
our data irrecoverable.

Symmetric encryption. We encrypt the metadata to
hide the encoding coefficients of FMSR codes. This pro-
tects against the scenario where the PRF values can be
recovered with known encoding coefficients and original
file content.

Adversarial error-correcting codes (AECC). We use
AECC to randomize the stripe structure, so that it is
infeasible for the adversary to deterministically render
chunks unrecoverable.

Message authentication codes (MAC). We include the
MACs of individual chunks as metadata, and replicate
them to all servers to allow integrity verification of any
chunks.

7 ADDITIONAL EVALUATION RESULTS

This section supplements Section 7 of the main paper.
Here, we present evaluation results of the running time
overhead of FMSR-DIP codes in the Download and
Repair operations. We further analyze the monetary cost
overhead with the pricing models of different commer-
cial cloud providers.

7.1 Running Time Overhead of Download and Re-
pair

Figures 5 and 6 show the running times of Download
and Repair, respectively. Under the (4,2)-FMSR code, in
Download, the DIP-Decode part accounts for 3.80% (for
1MB) to 15.7% (for 100MB) of the overall Download
time, while in Repair, the DIP-Decode and DIP-Encode
parts altogether account for 3.19% (for 1MB) to 15.7% (for
100MB) of the overall Repair time. Using a 100MB file
and varying (n, k) for FMSR codes, in Download, the
DIP-Decode part accounts for 4.14% (for (10,8)-FMSR)
to 15.8% (for (4,2)-FMSR) of the overall Download time,
while in Repair, the DIP-Decode and DIP-Encode parts
altogether account for 3.24% (for (10,8)-FMSR) to 15.8%
(for (4,2)-FMSR) of the overall Repair time.

7.2 Monetary Cost Analysis

In this subsection, we describe the monetary overhead
of FMSR-DIP codes in each of the operations compared
to the original FMSR code implementation in NCCloud
[14]. Table 2 shows the pricing models of three commer-
cial cloud providers: S3 [2], Rackspace [21], and Azure
[24]. We see that the monetary cost of cloud storage is
mainly attributed to three components: (i) amount of
storage, (ii) amount of data transfer outbound from the
cloud, and (iii) number of requests made.

Upload. The major source of the monetary overhead of
our DIP scheme compared to NCCloud is (n′, k′)-AECC,
which expands the stored data and increases the storage
cost by roughly n′/k′ (note that the inbound transfer
cost is free for all commercial cloud providers that we
consider, as shown in Table 2). The cost due to the
expanded file metadata is a negligible constant if the file
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TABLE 2

Monthly price plans (in US dollars) for Amazon S3 (US

Standard), Rackspace Cloud Files and Windows Azure

Storage, as of February, 2012.

S3 RS Azure
Storage (per GB) $0.125 $0.15 $0.14
Data transfer in (per GB) free free free
Data transfer out (per GB) $0.12 $0.18 $0.12
PUT,POST (per 10K requests) $0.10 free $0.01
GET (per 10K requests) $0.01 free $0.01

size is large enough. For example, when using the (4,2)-
FMSR code, our encrypted metadata size is 320B, which
is 160B more than the current NCCloud implementation.
Furthermore, some cloud providers such as Rackspace
and Azure allow a small metadata to be associated with
an uploaded object for free.

Check. Since NCCloud does not support the Check
operation, we briefly discuss the sources of the Check
cost. The Check cost is composed of the download
traffic cost and the GET request cost. To minimize the
download traffic cost, we can reduce the checking per-
centage. To minimize the GET request cost, we can set
a larger check block size in order to save on the per-
request cost, with a trade-off of a lower probability
of detecting corruptions (see the evaluation results of
the main paper). On the other hand, we can increase
the checking percentage together with the check block
size while maintaining the same Check cost. Taking S3
and Azure as examples (see Table 2), they both charge
$0.01/10000 for each GET request and $0.12/230 for each
byte of download, so the cost of one GET request is
roughly 9000 times that of downloading one byte. Thus,
we can maintain the same Check cost with a larger check
block size as follows. Suppose we have a check block size
of BC1 bytes and checking percentage of λ1. If we want
to increase the check block size to BC2 bytes, we can also
increase the checking percentage to

BC2(9000 +BC1)

BC1(9000 +BC2)
· λ1

while maintaining the same Check cost.
Download. When no corrupted data is detected, we

do not have to download the AECC parities. Thus, the
monetary cost incurred by DIP is similar to NCCloud.
Our DIP scheme adds a small constant overhead (inde-
pendent of the file size) in downloading the metadata,
which now has a larger size than the original NCCloud
implementation.

Repair. The major monetary overhead again comes
from (n′, k′)-AECC in encoding the new FMSR code
blocks. As discussed above, if there is no corrupted data
in surviving servers, we preserve the network transfer
cost of NCCloud when downloading data from the
surviving servers (aside from the small constant meta-
data traffic). Also, the inbound transfer cost of writing
reconstructed FMSR-DIP code chunks to a new server is
free for many commercial cloud storage providers [14].

Therefore, we still preserve the cost saving property of
the Repair operation in NCCloud when compared to
conventional repair methods (by up to 50% for RAID-
6 [14]).
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