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1 ADDITIONAL RELATED WORK

Our work focuses on the recovery solutions for XOR-
based erasure codes. We point out that regenerating codes
[5] have recently been proposed to minimize the recov-
ery bandwidth in distributed storage systems. The idea
is that surviving storage nodes compute and transmit
linear combinations of their stored data during failure
recovery. On the other hand, in XOR-based erasure
codes, we do not require storage nodes be equipped with
computational capabilities.

Authors of [6], [9], [14], [19] propose a new class
of local recovery erasure codes that reduce recovery
I/Os in distributed storage systems. The idea is to add
additional parities (i.e., additional redundancy) to the
existing stored data, so that recovery can be done by
connecting to fewer than k surviving nodes. Instead of
constructing new codes, our recovery solution builds on
existing constructions of XOR-based erasure codes and
preserve their data/parity layouts.

Recent work [25] discusses the failure recovery for
XOR-based erasure codes on heterogeneous storage de-
vices and proposes a cost-based heterogeneous recovery
scheme for two RAID-6 (double-fault tolerant) codes
RDP and EVENODD. The idea of the recovery scheme
is to eliminate the search for the recovery solutions that
are known to make no improvements to the resulting
recovery performance, thereby improving the efficiency
of the solution search process. Note that the search space
of the recovery scheme in [25] remains exponential with
respect to the number of nodes in the system, and it is
still an open issue of how to extend the results of [25]
for general XOR-based erasure codes.
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2 MOTIVATED SCENARIOS

In the following, we describe several scenarios where
enumeration recovery becomes infeasible to deploy, and
hence motivate the need of replace recovery in such
scenarios.

Limited hardware resources. Since the number of
recovery equations increases exponentially with m and
ω, enumeration recovery may consume substantial re-
sources for enumerating all recovery equations when m

and ω are large, which correspond to the codes with
a large strip size and a higher level of fault-tolerance,
respectively. For example, for the STAR code [10], we
have m = 3 and ω = p−1. If p = 13, then at most 236−1
recovery equations need to be considered. Therefore, the

search space can reach a maximum of
(

2
36

−1

12

)

combina-
tions of recovery equations, and is too huge to enumer-
ate. Our simulations (see the main file) show that with
mω ≥ 20, our enumeration recovery implementation
deployed on commodity hardware cannot be finished
within 13 days. Although one can use parallelization to
speed up the enumeration process, the computational
complexity remains exponential. Therefore, enumeration
recovery becomes computationally infeasible when the
available hardware resources are limited.

Remote recovery scenario. Nowadays, data recovery
of a failed storage system can be outsourced to third-
party companies (e.g., DataRecovery [3] and DataTech
Labs [4]). However, the recovery service providers usu-
ally do not know in advance the coding scheme and
parameters of the failed storage system. It is also dif-
ficult, while not impossible, to determine in advance the
optimal solutions for all possible coding schemes and
parameters. Thus, finding the optimal recovery solution
for a failed storage system can be viewed as an on-
demand decision task.

Heterogeneous recovery scenario. Enumeration re-
covery aims to minimize the number of read symbols for
recovery. We can see that the optimal recovery solution
is deterministic, meaning that for a given failed node, a
coding scheme, and the corresponding parameters, the
set of symbols being read from surviving nodes is fixed.
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Thus, if m and ω are small, one can first determine the
optimal solutions offline for each possible failed node.
However, practical storage systems are typically com-
posed of storage devices with heterogeneous capabilities
(e.g., processing power, connectivity bandwidth) [12],
[13]. In order to recover the failed node effectively, it is
intuitive to retrieve fewer (more) data symbols from the
surviving nodes with lower (higher) capabilities. Node
capabilities may vary, depending on the current usage
load of the storage system. Thus, it is important to find
the optimal recovery solution online based on the current
node capabilities. However, even it is possible to modify
the enumeration recovery approach to account for the
heterogeneous setting, its exponential complexity makes
the online approach infeasible to capture the current
node capabilities in a timely manner.

3 SIMULATIONS: RECOVERY PERFORMANCE

OF HORR

We evaluate the recovery performance of HoRR in a
homogeneous setting. We aim to show that the number
of read symbols returned by replace recovery is very
close to that of enumeration recovery.

We consider different coding schemes under different
fault tolerance levels. In the interest of space, we do not
evaluate all coding schemes in the literature. We refer
readers to [11] for the recovery performance of more
coding schemes based on enumeration recovery. On the
other hand, our goal is not to compare the recovery per-
formance of different coding schemes; instead, we aim
to compare different recovery schemes (i.e., conventional
recovery, enumeration recovery, and replace recovery)
for a specific coding scheme.

RAID-6 codes. We refer readers to the optimal re-
covery solutions of some RAID-6 codes including: RDP
[23], EVENODD [21], and X-code [24]. Note that X-code
is a vertical code and has no explicit parity nodes, but
instead its parity symbols are placed in rows. To apply
replace recovery, we create two imaginary parity nodes
that correspond to the row parties (computed by the
XOR-sums along diagonals of slope −1 and slope 1).
We then apply replace recovery to the first p − 2 lost
data symbols in the failed strip, while the last two
parity symbols of the failed strip are recovered by the
corresponding data symbols used for encoding.

In general, for the RAID-6 codes (e.g., HDP [22]) where
parity symbols are distributed among all nodes, we can
also create imaginary parity nodes to apply our replace
recovery. For example, for HDP [22], we can create two
imaginary nodes that store the horizontal parity symbols
and the anti-diagonal parity symbols, respectively.

Here, we focus on a class of minimum density RAID-
6 codes [17], whose bit encoding matrices have mini-
mum number of ones (i.e., non-zero entries) [17]. They
can provide an optimal combination of different per-
formance properties. Three constructions of minimum

density RAID-6 codes are known: Blaum-Roth [1], Lib-
eration [16] and Liber8tion [15]. Here, we show that
our replace algorithm also provides optimal recovery
performance for minimum density RAID-6 codes. We
focus on Liber8tion, which has a strip size 8 and hence
can be easily fit into blocks of practical file system.
We implement Liber8tion, and evaluate via simulations
the number of read symbols of both enumeration and
replace approaches when a data node fails. Figure 1
shows the percentage of the number of read symbols
compared to conventional recovery for different values
of k (i.e., the number of data nodes). We observe that our
replace algorithm achieves the same minimum number
of read symbols as in enumeration recovery, and saves
the number of read symbols by 26.56-29.17% compared
to conventional recovery.
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Fig. 1. Percentage of symbols per stripe needed for

single-node failure recovery in Liber8tion compared to

conventional recovery.

STAR codes. We now consider STAR [10]. For any
prime p, STAR is composed of p + 3 nodes, where the
first p columns are data nodes and the remaining three
columns are parity nodes. We first present a theorem
that specifies the lower bound of the optimal recovery
solution for STAR.

Theorem 3.1: The minimum number of read symbols
for a single-node failure recovery for STAR is lower
bounded by ( 2

3
p2 − p) (symbols per stripe).

Proof: Recall that a parity set is a set that contains
a parity symbol and the data symbols encoded into that
parity symbol. To recover a failed data node in STAR,
we can select x parity sets of slope 0, y parity sets of
slope −1, and z parity sets of slope 1. We can select p−1
parity sets from any combinations of x, y, and z, such
that x + y + z = p − 1. Thus, the number of symbols in
the selected parity sets is xp+(y+z)(p−1), in which the
number of overlapping symbols is at most x(y+ z)+ yz.
Thus, the number of read symbols for recovery per stripe
(denoted by R) will be:

R ≥ xp+ (y + z)(p− 1)− x(y + z)− yz

= (p− 1)p+ (y + z)2 − p(y + z)− yz

≥ (p− 1)p+
3

4
(y + z)2 − p(y + z)

=
3

4
[(y + z)2 −

4

3
p(y + z) +

4

9
p2] + (p− 1)p−

1

3
p2

≥ (p− 1)p−
1

3
p2

=
2

3
p2 − p (symbols per stripe).
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Thus, R is lower bounded by ( 2
3
p2 − p) symbols.

We use simulations to compare both conventional and
replace recoveries with the lower bound. Figure 2 shows
the results. We observe that replace recovery is very close
to the lower bound for p < 40. We also verify that replace
recovery can give a result lower than 0.69p2 for p < 1000.
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Fig. 2. Number of symbols per stripe needed for a single-

node failure recovery in STAR.

CRS codes. We now consider CRS [2]. We use simu-
lations to evaluate the savings of replace recovery over
conventional recovery in terms of the number of read
symbols. We also evaluate the savings of enumeration
recovery to verify the accuracy of replace recovery. Fig-
ure 3 presents the results for different combinations of
m, ω, and k. For m = 2, we observe that replace recovery
achieves the same optimal result as in enumeration
recovery, and the savings over conventional recovery
are 15.75-25.00%. For m = 3, replace recovery achieves
near-optimal performance. When compared to conven-
tional recovery, the savings of replace recovery are 16.25-
22.22%, while the savings of enumeration recovery are
19.75-25.00%.
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(a) CRS(m=2, ω=4) (b) CRS(m=2, ω=5)
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Fig. 3. Number of symbols (per stripe) needed for single-

node failure recovery for enumeration and HoRR recover-

ies in CRS with m=2 and m=3.

4 IMPLEMENTATION DETAILS

In this section, we present the design and implementa-
tion for our replace recovery algorithm. We implement
it on a parallel architecture that can scale the recovery
performance in practice.

4.1 Recovery Thread

We implement the recovery operation with a recovery
thread, a process that interconnects all nodes and co-
ordinates all data reads and writes with the nodes.
A recovery thread can be viewed as an intermediate
controller process that relays data among the nodes.
To recover a single-node failure, the recovery thread
performs three steps: (i) reading data from the surviving
nodes, (ii) reconstructing the lost data, and (iii) writing
the reconstructed data to a new node. Note that the
recovery thread implementation only requires the nodes
support standard read/write functions.

4.2 Parallel Recovery Architecture

For further performance improvements, we implement a
parallel recovery architecture that parallelizes the recovery
operation via multi-threaded and multi-server designs.
Figure 4 shows the architecture.

Multi-threaded recovery. As modern architectures
shift toward multi-core, parallelizing the recovery pro-
cess with multiple recovery threads becomes possible
within a multi-core server. Two multi-threaded tech-
niques have been proposed for recovery in RAID sys-
tems [8]: disk-oriented reconstruction (DOR) and stripe-
oriented reconstruction (SOR). We can implement the DOR
and SOR as follows. In DOR, we create n > 1 recovery
threads, each associated with one node, where n is the
total number of nodes. Each of the n − 1 threads reads
data chunks from its associated surviving node, and the
remaining thread reconstructs and writes the resulting
data chunks to the new node. In contrast, in SOR,
we create multiple recovery threads, each associated
with a group of stripes (note that each stripe spans all
the nodes). Since each stripe is independently encoded,
each thread can recover its own group of stripes inde-
pendently as well. Since DOR needs to manage many
threads if the number of nodes increases, in our imple-
mentation, we use SOR as our multi-threaded recovery
strategy.

Multi-server recovery. To further boost the recovery
performance, we deploy a cluster of recovery servers
to extend the scale of parallelism. The cluster is com-
posed of one dispatcher and multiple executers, as shown
in Figure 4. The dispatcher splits the whole recovery
operation into different independent tasks, each of which
corresponds to the recovery of a group of stripes. It then
assigns each task to a different executer. An executer
notifies the dispatcher after completing its task, so that it
can be assigned the next task. Each assigned task can be
further decomposed into different groups of stripes, each
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Fig. 4. Our parallel recovery architecture for scaling the

recovery performance.

being processed by a recovery thread based on the SOR
approach. Note that in actual deployment, the executors
are deployed in different servers, while the dispatcher
may be deployed in one of the executor servers, given
that its dispatching workload is lightweight in general.

4.3 Implementation of XOR-based Erasure Codes

We implement both conventional and replace recover-
ies for the following XOR-based erasure codes: RDP
[23], EVENODD [21], X-code [24] (all of which are
double-fault tolerant), STAR (triple-fault tolerant), and
Cauchy Reed-Solomon (CRS) codes (multi-failure toler-
ant). While there are many existing double-fault tolerant
XOR-based erasure codes, we pick RDP, EVENODD,
and X-Code because their optimal recovery solutions
have been found (see [21], [23], [24], respectively) and
we can compare the solutions of our replace recovery
approach with their respective optimal results. Note
that the numbers of nodes (i.e., n) being used for RDP,
EVENODD, X-Code, and STAR are mainly determined
by a prime number p. For clarity, Table 1 summarizes the
configurations of the codes that we have implemented
based on p.

TABLE 1

Configurations of the codes that we consider.

Code n k m Remarks

RDP p+ 1 p− 1 2 prime p > 2

EVENODD p+ 2 p 2 prime p

X-Code p p− 2 2 prime p

STAR p+ 3 p 3 prime p

CRS For general n = k +m

We set the unit of XOR of encoding/decoding to
be four bytes long, so as to make our implementation
compatible with both 32-bit/64-bit machines [18]. The
stripe unit in CRS is a ω-bit word, where ω must be large
enough so that the total number of nodes n is at most
2ω . Note that in CRS, ω does not need to be a multiple
of the machine word length, but should be as small as
possible. Here, we select ω = 6 for CRS, meaning that
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Fig. 5. Experiment 1 - Impact of chunk size.

we allow at most 64 nodes in the system. Note that from
our simulations, we also see the improvements of our
replace recovery algorithm for different values of ω (see
Figure 3).

In our implementation, we treat each symbol as a
chunk, which can be of large size in general. Unlike
typical file systems that use small block sizes (for ex-
ample, the default block size in Linux file systems is
4KB), operating on large chunks is typical in distributed
storage systems (e.g., GFS [7] uses the chunk size 64MB).
We evaluate how the recovery performance is influenced
by the chunk size in our experiments in the next section.

5 ADDITIONAL EXPERIMENTS

Experiment 1: Impact of chunk size. We first evaluate
how different chunk sizes influence the recovery perfor-
mance using HoRR. We consider different chunk sizes,
ranging from 512KB to 8MB. We focus on various coding
schemes that can tolerate different numbers of failures,
including RDP(p = 7), STAR(p = 7), and CRS(k = 7,
m = 2).

Figures 5(a) shows the recovery time (per MB) for
different chunk sizes using conventional recovery and
replace recovery. We observe that as the chunk size
increases, the recovery time decreases. The reason is
that given the same amount of data, the number of
accesses decreases for a larger chunk size. The rate of
decrease diminishes as the chunk size further increases,
so we expect that the recovery time stabilizes for a
large enough chunk size. As shown in the figure, the
decrease trend applies to both conventional and replace
recoveries. In fact, similar results are observed for all
coding schemes and this effect is also demonstrated in
prior work [11].

As described in Section 4.1, a recovery operation
consists of three main parts. In order to evaluate the
contribution of each part to the whole recovery perfor-
mance, we provide a performance breakdown for the
recovery operation. Here we take conventional recovery
for STAR(p = 7) as an example. Figure 5(b) shows
the breakdown (i.e., reading data from surviving nodes,
reconstructing lost data, and writing data to a new node)
for STAR. We observe that the reconstruction part con-
tributes less than 10% in STAR, and we believe that the
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Fig. 6. Experiment 2 - Multi-threaded recovery based on SOR.

XOR-based encoding/decoding operations in STAR have
minimal computational overhead. More importantly, the
read part contributes over 60% of the overall recovery
time for all chunk sizes. Note that if the number of nodes
increases, then more data will be read from surviving
nodes, so it is expected that the read part will contribute
a larger proportion to the overall recovery time. To
summarize, the experiment results show that in order to
reduce the overall recovery time, it is critical to minimize
the number of read symbols, and hence the amount of
data read from surviving nodes.

In our experiments, we fix the default chunk size to
be 512KB, which been chosen by some existing storage
systems (e.g., OBFS [20]). Although the 512KB chunk size
gives the maximum (worst) recovery time in general,
our main goal is to compare the relative recovery per-
formance of conventional and replace recoveries, rather
than their actual recovery performance.

Experiment 2: Parallel recovery. We now evaluate the
recovery performance of HoRR based on parallelization
(see Section 4.2). We aim to show that replace recovery
still outperforms conventional recovery in parallelized
implementation. Here, we use RDP(p = 13), STAR(p =
13), and CRS(k = 12, m = 4) as representatives for
different degrees of fault tolerance.

We first evaluate the recovery performance of SOR-
based multi-threaded implementation, while we still use
a single recovery server. Figure 6 shows the recovery
time versus the number of recovery threads being de-
ployed in a single server. As the number of threads
increases (with no more than four threads), the recovery
times for both conventional and replace recoveries signif-
icantly decrease. For example, let us consider CRS(k =
12, m = 4). When four recovery threads are used, the
recovery times of conventional and replace recoveries
are reduced by 61% and 64%, respectively when com-
pared to the single-threaded case. However, when the
number of threads goes beyond four, the improvement
is marginal. The main reason is that the performance
gain is bounded by the number of CPU cores (recall that
our recovery server is equipped with a Quad-Core CPU).
More importantly, the results presented in Figure 6 show
the applicability of replace recovery in parallelized im-
plementation. We observe that replace recovery uses less
recovery time than conventional recovery regardless of

the number of recovery threads being used. For example,
in STAR, replace recovery reduces the recovery time
of conventional recovery by 25.7-28.7%; in CRS, the
recovery time reduction is 15.3-18.6% when more than
one recovery thread is used.

We now evaluate the recovery performance when we
use multiple recovery servers. Here, we deploy two ex-
ecutors in two separate Quad-Core servers (as opposed
to one Quad-Core server in our prior experiments) for
parallel recovery. We configure each executor server to
run four recovery threads (i.e., we have a total of eight
recovery threads). Also, we deploy the dispatcher in one
of the executor servers. In multi-server recovery mode,
the dispatcher splits the whole recovery process into
eight tasks (with a group of stripes). It first dispatches
one task to each of the two executers. When one of
the executors finishes its assigned task, the dispatcher
assigns that executor another task.

We now measure the recovery time performance with
this parallel setup. Figure 7 compares the recovery
times of four recovery approaches: (i) single-server,
multi-threaded (conventional), (ii) single-server, multi-
threaded (replace), and (iii) multi-server (conventional),
and (iv) multi-server (replace). We observe that multi-
server implementation reduces the recovery time com-
pared to the single-server implementation. For example,
for replace recovery, the multi-server implementation
reduces the recovery time by 24.4%, 22.0%, 19.82% for
RDP, STAR, and CRS, respectively when compared to
the single-server approach. In theory, we should expect
50% reduction, but the coordination overhead between
the dispatcher and executors may degrade the actual
performance. Nevertheless, the multi-server approach
can provide additional recovery time improvements.

Note that even in multi-server implementation, we
still observe the improvements of replace recovery over
conventional recovery, as the recovery time is reduced
by 25.3%, 28.0%, 21.50% for RDP, STAR, and CRS, re-
spectively. The results also validate the applicability of
replace recovery in parallelized implementation.
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