
1

On the Speedup of Recovery in Large-Scale
Erasure-Coded Storage Systems

Yunfeng Zhu, Patrick P. C. Lee, Yinlong Xu, Yuchong Hu, and Liping Xiang

Abstract—Modern storage systems stripe redundant data across multiple nodes to provide availability guarantees against node

failures. One form of data redundancy is based on XOR-based erasure codes, which use only XOR operations for encoding and

decoding. In addition to tolerating failures, a storage system must also provide fast failure recovery to reduce the window of vulnerability.

This work addresses the problem of speeding up the recovery of a single-node failure for general XOR-based erasure codes. We

propose a replace recovery algorithm, which uses a hill-climbing technique to search for a fast recovery solution, such that the solution

search can be completed within a short time period. We further extend the algorithm to adapt to the scenario where nodes have

heterogeneous capabilities (e.g., processing power and transmission bandwidth). We implement our replace recovery algorithm atop a

parallelized architecture to demonstrate its feasibility. We conduct experiments on a networked storage system testbed, and show that

our replace recovery algorithm uses less recovery time than the conventional recovery approach.

Index Terms—XOR-coded storage system, single-node failure, recovery algorithm

F

1 INTRODUCTION

We have witnessed different implementations of large-
scale storage systems, such as GFS [9], Dynamo [8], and
Azure [3], in which data is distributed over a collection
of nodes (or more generally, physical storage devices,
which we collectively term as “nodes” in this paper).
To ensure data availability, it is necessary to tolerate
node failures, which are common in large-scale storage
systems [9]. Data availability can be achieved by keeping
redundant data in multiple nodes based on replication
or erasure coding.

In addition to tolerating node failures, it is also nec-
essary to recover node failures, so as to preserve the
required redundancy level and avoid data unavailability.
In this paper, we focus on the recovery of a single-node
failure, which occurs more frequently than a concurrent
multi-node failure in practice [12], [15]. Recovery of a
single-node failure can be achieved by retrieving data
from existing surviving nodes and reconstructing the lost
data of the failed node in a new node.

To minimize the overall recovery time, one important
objective is to minimize the amount of data being read
from the surviving nodes. Here, we focus on the recovery
problem for a family of special-purpose codes called
XOR-based erasure codes, in which encoding and decoding
are purely based on XOR operations. Existing XOR-
based erasure codes provide different redundancy levels
that can tolerate double-node failures (e.g., RDP [7],

• Y. Zhu, Y. Xu, and L. Xiang are with University of Science & Technology
of China (emails: {zyfl,xlping}mail.ustc.edu.cn, ylxu@ustc.edu.cn)

• P. P. C. Lee and Y. Hu are with the Chinese University of Hong
Kong, Shatin, N.T., Hong Kong (email: pclee@cse.cuhk.edu.hk, yu-
chonghu@gmail.com).

• An earlier version of this paper appeared in IEEE Conference on Massive
Storage Systems and Technologies (MSST) [28]. This journal version
extends our prior work to support heterogeneous storage environments.

EVENODD [1], X-code [26]), triple-node failures (e.g.,
STAR [13]), or a general number of failures (e.g., Cauchy
Reed-Solomon (CRS) codes [2]). Recent studies have
proposed recovery solutions to minimize the amount of
data being read for different double-fault tolerant codes,
including RDP [25], EVENODD [23], and X-code [27].
However, extending such results for the STAR and CRS
codes, which can tolerate more than two node failures, is
non-trivial due to the completely different data layouts.
For general XOR-based erasure codes, the recovery prob-
lem of minimizing the amount of data read is NP-hard
[15]. One approach of solving the optimization problem
is to enumerate all recovery possibilities [15]. Such an
approach, which we call enumeration recovery, applies to
any XOR-based erasure code. However, while enumera-
tion recovery can always find the optimal single-node
failure recovery solution for any XOR-based erasure
code, enumerating all recovery possibilities is very time
consuming. Although the search space can be pruned
[15], the search time remains expensive.

In this paper, we focus on speeding up the recovery
of a single-node failure for XOR-based erasure-coded
storage systems. Instead of constructing new erasure
codes to improve recovery performance, we build a
recovery mechanism that is applicable for any given
XOR-based erasure code as in enumeration recovery,
while reducing the search complexity. Specifically, our
primary objective is to minimize the overall time of the
recovery operation, while the recovery solution can be
quickly determined. One fundamental requirement for
this objective is to minimize the amount of data read
from the surviving nodes for recovery. We thus propose
a replace recovery algorithm, which uses a hill-climbing
(greedy) approach [20] to find a near-optimal recovery
solution for general cases. Intuitively, it starts with a
feasible recovery solution, and incrementally replaces

2

the current solution with another one that reads less
data. We validate that it provides near-optimal recovery
for different variants of STAR and CRS codes. Also,
it is shown to achieve polynomial complexity. We fur-
ther extend our replace recovery algorithm to adapt to
the heterogeneous scenario where nodes have different
performance capabilities (e.g., processing power and
transmission capabilities). This implies that our replace
recovery algorithm can be applied in online mode based
on the current performance costs of surviving nodes.
Note that enumeration recovery is infeasible in doing
so due to its exponential complexity.

We implement our replace recovery algorithm atop a
parallelized, multi-core architecture, so as to validate its
practicality in real deployment. We conduct experiments
on a networked storage system testbed of different scales
(with up to 21 storage nodes). We validate the recovery
time improvement of our replace recovery over the
conventional recovery approach (which we define in
Section 2.1) for different XOR-based erasure codes.

We summarize our contributions as follows. We pro-
pose a replace recovery algorithm that speeds up single-
node failure recovery for any XOR-based erasure code.
The algorithm addresses the speedup issues in three as-
pects: (i) it reduces the search time of finding a recovery
solution; (ii) it returns a recovery solution that reduces
recovery I/Os (and hence recovery time); and (iii) it can
be extended for parallelized recovery using multi-core
technologies.

The rest of the paper proceeds as follows. Section 2
reviews related studies on single-node failure recovery.
Section 3 motivates the need of speeding up single-node
failure recovery. Section 4 proposes a simplified recovery
model. Section 5 presents our replace recovery algorithm
and shows how it can be extended for a heterogeneous
environment. Section 6 uses simulations to quantitatively
evaluate the efficiency of our replace recovery algorithm.
Section 7 presents our experimental results. Section 8
concludes this paper. We also refer readers to our digital
supplementary file for additional details of this work.

2 BACKGROUND AND RELATED WORK

In this section, we review the closely related work on the
failure recovery problem for XOR-based erasure codes.
Further literature review can be found in Section 1 of the
supplementary file.

2.1 Background: XOR-based Erasure Codes

We first define the vocabularies based on [18]. We con-
sider a storage system employing an XOR-based erasure
code. It contains an array of n nodes, in which k nodes
hold data, and the remaining m = n − k nodes hold
coding information (which we call parity) encoded from
the data. Each node is partitioned into fixed-size strips
with ω symbols each. A symbol can refer to a fixed-size
data block (or chunk) depending on the implementation
of the storage system. Each strip in a parity node is

encoded from a strip in each data node. We call the
collection of n = k + m strips that encode together a
stripe. A parity set is a set containing a parity symbol
together with the data symbols encoded in the parity
symbol. In reality, each stripe is encoded independently,
and the data and parity strips are rotated among the
nodes for load balancing [18]. Thus, the definitions of the
data (parity) nodes may vary across stripes, depending
on where the data (parity) strips are located.

We require the XOR-based erasure codes satisfy the
Maximum Distance Separable (MDS) property, such that
the original data can be reconstructed from any k out of
n surviving nodes. In other words, the storage system
can tolerate any m = n− k concurrent node failures.

Our work is applicable for large-scale distributed
storage systems, including clustered storage systems in
local-area networks (e.g., GFS [9] and HDFS [22]), or
dispersed storage systems in wide-area networks (e.g.,
Dynamo [8], Cleversafe [6], Azure [3]). Erasure coding
has been deployed in enterprise storage systems [6],
[12], [21], such that data is divided into stripes that are
distributed across different storage nodes. Here, we use
the term “node” in a broad sense to logically refer to
a general physical storage device (e.g., a storage server
or a network drive) deployed in a storage system. A
node can fail and lose all stored data, and we aim to
reconstruct the lost data in a new node. Our recovery
design is based on the given layout of data/parity sym-
bols across different nodes, and does not depend on the
implementation of the underlying storage architecture.

We illustrate the above definitions via an example.
We consider an XOR-based erasure code called RDP [7],
which is a double-fault tolerant code (i.e., m = 2) that
achieves optimality both in computations and I/Os. The
RDP encoding is applied to each stripe, which is a two-
dimensional array of size (p− 1)× (p+ 1), where p is a
prime number larger than 2. The first (p − 1) columns
in the array store data information, while the last two
columns store parity information. Figure 1 shows how
RDP encoding works for p = 5, where di,j is the i-th
symbol in column j. The first four nodes (Nodes 0 to 3)
are the data nodes, while the last two nodes (Nodes 4
and 5) are the parity nodes. Node 4 contains all the row
parity symbols, e.g., d0,4 is the XOR’s of symbols d0,0,
d0,1, d0,2, d0,3. Node 5 contains all the diagonal parity
symbols, e.g., d0,5 is the XOR’s of symbols d0,0, d3,2,
d2,3, d1,4. In addition to RDP, there are other examples
of XOR-based erasure codes that are also double-fault
tolerant, such as EVENODD [1] and X-Code [26].

We note that every XOR-based erasure code can be
represented by a generator matrix [18]. To illustrate, we
consider the Cauchy Reed Solomon (CRS) codes [2],
which can tolerate a general number of node failures.
Figure 2 shows the encoding mechanism of a CRS code
for k = 4, m = 2 and ω = 3. The idea is to multiply a
ωn× ωk matrix of bits with a column vector of ωk data
bits, so as to form a stripe of ωn data and parity bits.

To recover node failures, the conventional recovery ap-

3

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,4

d1,4

d2,4

d3,4

d0,5

d1,5

d2,5

d3,5

Data Nodes Parity Nodes

Fig. 1. RDP code with p = 5.

proach downloads the data and parity symbols from k

nodes, such that the amount of information being down-
loaded per file is equal to the original file size. Note that
this conventional recovery approach applies to all MDS
codes (e.g., Reed-Solomon codes [19] and all XOR-based
erasure codes) and any number of node failures no more
than m. However, the frequency of a single-node failure
is often higher than that of a concurrent multi-node
failure. This is generally true when the aggregated node
failure rate is lower than the node recovery rate [25].
Thus, using the conventional recovery approach as a
baseline, many studies (e.g., [4], [15], [17], [23]–[25], [27],
[29]) propose optimal or near-optimal recovery solutions
specifically for recovering a single-node failure. In this
paper, we seek to minimize the number of symbols being read
(or I/Os) from the surviving nodes for the single-node failure
recovery. In addition, we aim to maintain the recovery
efficiency in a heterogeneous storage environment.

In this paper, our algorithm design focuses on recov-
ering a failed data node, since in practice the number of
data nodes is larger than that of parity nodes (i.e., k > m)
in a storage system. If the failed node is a parity node,
then we assume that we resort to conventional recovery
as in [25], in which we read all original data symbols
and encode into the parity symbols. We can actually
minimize the number of read symbols for recovering
a parity node failure if we use enumeration recovery
[15] (see details in Section 2.3). On the other hand, it
remains an open issue of how to speed up the search of
efficient recovery solutions for parity node failures, and
we pose it as future work. In our following discussion,
by a single-node failure, we mean the failure of a single
data node.

We now overview the related work on the recovery
of single-node failures in XOR-based erasure codes. We
classify existing recovery solutions into two families,
namely hybrid recovery and enumeration recovery.

2.2 Hybrid Recovery

Some studies propose optimal recovery schemes for a
single-node failure specifically for double-fault tolerant
XOR-based erasure codes, with an objective of minimiz-
ing the number of read symbols. Xiang et al. [25] study
the optimal recovery of a single-node failure for RDP,
and the recovery solution reduces the number of read

D
a

ta
P

a
ri

ty

DataGenerator Matrix Stripe

w
0

1

2

3

4

5

6

7

8

9

10

11

0

{

* =

D

D

D

D

D

D

D

D

D

D

D

D

C

1

2

3

4

C

C

C

C

5C

1

0

2

3

4

5

Nodes

0

1

2

3

4

5

6

7

8

9

10

11

D

D

D

D

D

D

D

D

D

D

D

D

0

1

2

3

4

5

6

7

8

9

10

11

D

D

D

D

D

D

D

D

D

D

D

D

0C

1

2

3

4

C

C

C

C

5C

Fig. 2. CRS for k = 4, m = 2 and ω = 3.

symbols by 25% compared to conventional recovery.
Wang et al. [23] consider a similar single-failure recov-
ery problem in a distributed storage system that uses
EVENODD, and prove the same 25% improvement as
in RDP. Xu et al. [27] also propose optimal single-node
failure recovery for X-code. Wu et al. [24] propose effi-
cient single-node failure recovery for a new horizontal-
diagonal parity (HDP) code. These studies use the same
core idea of hybrid recovery for RDP in [25]. Thus, in the
following, we use RDP to explain the hybrid recovery
idea.

To recover a single-node failure, the conventional re-
covery approach in essence recovers each lost symbol in
the failed node independently. Specifically, if a data node
is failed, we only use the row parity symbols together
with all other surviving data symbols in each row to
recover each lost symbol of the failed node. We illustrate
the idea of the conventional recovery approach using
Figure 1. For example, if Node 1 fails, one can read
d0,0, d0,2, d0,3, d0,4 to recover d0,1 of Node 1. Thus, the
total number of read symbols for repairing Node 1 is
16. In contrast, hybrid recovery [25] uses a combination
of row and diagonal parity sets of data and parity symbols
to repair Node 1, such as:

• d1,0, d3,3, d2,4, d1,5 to recover d0,1
• d0,2, d2,0, d3,4, d2,5 to recover d1,1
• d2,0, d2,2, d2,3, d2,4 to recover d2,1
• d3,0, d3,2, d3,3, d3,4 to recover d3,1

Since the above 16 symbols contain four overlapping
symbols d3,3, d2,4, d2,0, d3,4, the total number of read
symbols for repairing Node 1 is reduced to 12 (i.e.,
by 25%). Thus, the core idea of hybrid recovery is to
find the set of maximum-overlapping symbols to minimize
the number of read symbols for recovery. Note that
this hybrid recovery idea also provides optimal recovery
solutions for EVENODD [23] and X-code [27].

2.3 Enumeration Recovery

For general XOR-based erasure codes, one way to
achieve optimal recovery is to enumerate all recovery
possibilities based on the generator matrix. Such an
approach, which we call enumeration recovery, applies
to any XOR-based erasure code and is studied in [15],

4

which considers how to minimize the amount of data
being read in degraded read operations as well. Similar
approaches are also proposed for non-MDS codes [10].
Here, we use the example of CRS in Figure 2 to explain
how enumeration recovery works. To recover a data
node failure in CRS, the conventional recovery approach
may select the parity symbols in the first parity node
together with all surviving data symbols. For example,
if Node 0 is failed and data symbols D0, D1, D2 are
lost, then we can read parity symbols C0, C1, C2 and
data symbols D3, D4, ..., D11 for recovery. Thus, the total
number of symbols being read is 12. Alternatively, we
can reduce the number of symbols by enumerating the
recovery equations [10], [15]. A recovery equation is a
collection of symbols in a stripe whose corresponding
rows in the generator matrix sum to zero. An example
of a recovery equation is D0, D3, D6, D9, C0. Obviously,
we can recover any lost symbol in one recovery equa-
tion from all other surviving symbols in the recovery
equation. For example, if D0 is lost, then the remaining
symbols D3, D6, D9, C0 can be used to recover D0. Sup-
pose that we enumerate all the recovery equations for
the generator matrix. Then we can formulate the optimal
recovery problem for Node 0 as follows: Given three
sets E0, E1, E2, where Ei is the set of all the recovery
equations for lost symbol Di (0 ≤ i ≤ 2), we select one
equation ei from each set Ei such that the number of
symbols in the union of all ei’s is minimized. In this
example, we obtain an optimal solution:

• e0: D0, D5, D6, D7, D10, C3,
• e1: D1, D4, D7, D10, C1,
• e2: D2, D5, D8, D11, C2.

The total number of symbols in the union of e0, e1, e2
except D0, D1, D2 is equal to the number of read
symbols for recovery, which is reduced to 10. However,
we point out that the number of recovery equations
grows exponentially with the number of nodes. In general,
the problem of finding the optimal recovery solution that
minimizes the number of read symbols is NP-hard [15].

3 MOTIVATION

While enumeration recovery can find the optimal re-
covery solution for a single-node failure in any XOR-
based erasure codes, it has a very high computational
overhead. In an erasure code with parameters (n, k, m,
ω), enumeration recovery aims to find ω out of 2mω − 1
recovery equations that minimize the amount of data
being read during recovery. Therefore, enumeration re-
covery has a search space of up to

(

2
mω−1

ω

)

combinations
of recovery equations. To solve for the optimal recovery
solution, one enumeration recovery implementation is to
construct a weighted graph containing nodes that repre-
sent recovery equations, and then find the shortest path
on the graph [15]. Depending on the implementation of
the shortest-path algorithm, the size of the graph can be
potentially huge, as there are an exponential number of
nodes (i.e., recovery equations).

We by no means that claim that enumeration recov-
ery should be entirely substituted in real deployment.
In practice, we believe that a combination of recovery
approaches should be used. When the parameters are
deterministic (e.g., when nodes are homogeneous) and
the parameter values m and w are small, enumeration
recovery should be used since it provides an optimal
recovery solution; otherwise, we may require a recov-
ery solution that has efficient search performance while
providing near-optimal recovery performance. In the
following discussion, we address the latter issue to com-
plement enumeration recovery.

In Section 2 of the supplementary file, we describe
several scenarios where enumeration recovery becomes
infeasible to deploy.

4 RECOVERY MODEL

Given the high computational complexity of enumera-
tion recovery, we are motivated to find a new recovery
approach that can achieve effective recovery perfor-
mance in a computationally feasible manner. We note
that the main bottleneck of enumeration recovery is
the huge search space of recovery equations. To narrow
down the search space, we make one observation.

Observation. Consider a storage system using an
XOR-based erasure code with parameters (n, k,m, ω).
Suppose that a strip of ω symbols D0, D1, . . . , Dω−1 is
lost. Let Ei be the set of all recovery equations for
each lost symbol Di (0 ≤ i ≤ ω − 1). Then it is likely
that there exists an optimal recovery solution satisfy-
ing the corresponding recovery equations e0, e1, . . . , eω−1

(selected from E0, E1, . . . , Eω−1, respectively) such that
this solution has exactly ω parity symbols.

Clearly, there must be a feasible recovery solution with
exactly ω parity symbols, for example, by using the ω

parity symbols in any parity node and the data symbols
in the k − 1 data nodes based on the MDS property
(see Section 2.1). Our observation is that the failure of
a single data node corresponds to the loss of a strip of
ω data symbols per stripe, so we need only ω parity
symbols to recover the lost ω data symbols. If we use
more than ω parity symbols, then it is likely to involve
more data symbols to be read. In some situations, we
can use exactly ω parity symbols to deduce the optimal
recovery solution. To illustrate, in Section 2.2, the optimal
recovery solution for RDP contains exactly ω = 4 parity
symbols d2,4, d1,5, d3,4, and d2,5; in Section 2.3, the
optimal solution contains ω = 3 parity symbols C1, C2,
and C3.

Actually, we can always find an optimal recovery solu-
tion that has exactly ω parity symbols for RDP codes, as
proven in [25], although it remains open if we can always
find an optimal recovery solution with ω parity symbols
for general codes. Nevertheless, using this observation
as our search criterion suffices for practical purposes,
based on our simulations (see Section 6) and experiments
(see Section 7). We now formulate a simplified recovery

5

model that solves the single-node failure recovery prob-
lem for any XOR-based erasure code.

Simplified recovery model. To recover a failed node,
we aim to choose a collection of parity symbols (together
with the corresponding surviving data symbols that
encode the parity symbols) to regenerate a strip of ω

data symbols per stripe, subject to:

1) The collection of parity symbols is of size ω sym-
bols.

2) The collection of parity symbols (and their encod-
ing data symbols) suffices to resolve the ω lost data
symbols.

3) The number of all data symbols encoded in the ω

parity symbols is minimum.

The above simplified recovery model now reduces the
solution space to the collections of parity symbols of
a fixed size (instead of arbitrary collections of parity
symbols). This significantly reduces the computational
complexity when compared to enumeration recovery.

Objectives. Based on the simplified recovery model,
our goal is to design a recovery algorithm that achieves
the following objectives:

1) Search efficiency. The algorithm finds a recovery
solution with polynomial complexity.

2) Effective recovery performance. The number of read
symbols of the resulting recovery solution should
be close to that of the optimal solution.

3) Adaptable to heterogeneous node capabilities. The re-
covery algorithm can be easily converted to handle
heterogeneous node capabilities, and hence can
promptly return an effective recovery solution in
the online recovery scenario.

5 REPLACE RECOVERY ALGORITHM

Our simplified recovery model states that there exists a
recovery solution that contains exactly ω parity symbols
for regenerating ω lost data symbols for each stripe in a
single-node failure. However, it remains computationally
expensive to search for the “optimal” collection of ω

parity symbols (out of
(

mω

ω

)

possible candidates) in
general. In this section, we propose a computationally
efficient replace recovery algorithm that seeks to minimize
the number of read symbols for single-node failure re-
covery, or more generally, to minimize the total recovery
cost. Note that the algorithm is applicable for any XOR-
based erasure code.

The idea of our replace recovery algorithm is as fol-
lows. Let Pi be the set of parity symbols in the ith parity
node, where 1 ≤ i ≤ m. Let X be the collection of ω

parity symbols used for recovery, and Y be the collection
of parity symbols that are considered to be included
in X . First, we initialize X with the ω parity symbols
of P1. It can be easily shown that X can resolve the
ω lost data symbols with other k − 1 surviving nodes,
due to the MDS property (see Section 2.1). Then we set
Y to be the collection of parity symbols in P2. Now
we replace “some” parity symbols in X with the same

number of parity symbols in Y , such that X still resolves
the ω lost data symbols, while reducing the most number
of read symbols. We repeat this by resetting Y with
P3, · · · ,Pm. Finally, we obtain the resulting X . The parity
symbols in X , as well as the corresponding encoding
data symbols, are retrieved for recovery. In essence, our
replace recovery algorithm uses a hill-climbing (greedy)
approach [20] to optimize the solution.

Before presenting our replace recovery algorithm, we
need a primitive function that determines if X is valid
to resolve the ω data symbols after being replaced with
other parity symbols in Y . For each parity symbol, we
define an ω-bit encoding vector that specifies how the
strip of lost data symbols is encoded to the parity symbol.
The ith bit (where 1 ≤ i ≤ ω) of the encoding vector
of a parity symbol is set to 1 if the ith data symbol
is encoding to that parity symbol, or 0 otherwise. For
example, referring to the CRS example in Figure 2, the
encoding vectors for the parity symbols C0 and C1 are
(1,0,0) and (0,1,0), respectively. We say X is valid if the
encoding vectors for the ω parity symbols in X satisfy
that: (i) they cover all the ω lost data symbols and (ii)
they are linearly independent (e.g., checked by Gaussian
Elimination).

5.1 Algorithm Design

Algorithmic details. Algorithm 1 shows the replace
recovery algorithm whose objective is to minimize the
number of read symbols during recovery. We call it
homogeneous replace recovery (HoRR). In the algorithm,
we first initialize X with P1 (Step 1). Then we consider
Y = Pi (2 ≤ i ≤ m) (Step 3). For each parity symbol in
Y , we compute the number of read symbols by replacing
every parity symbol in X (Steps 4-13). Note that we only
consider the replacement that is valid and can reduce the
number of read symbols of X (Step 8). We then find the
replacement with the minimum number of read symbols,
and replace the old parity symbol X ′ in X with the new
parity symbol Y ′ in Y and remove Y ′ from Y (Steps 14-
18). We repeat Steps 4-18 until Y is empty or there is no
reduction by any replacement (Step 19).

Example. We illustrate Algorithm 1 via the CRS ex-
ample in Figure 2. First, we initialize X with {C0, C1,
C2} of the first parity node (Node 4). Note that the
number of read symbols of X is 12 per stripe (i.e.,
the number of all data symbols in a stripe). Now we
consider Y = {C3, C4, C5}. We can verify that C3, C4,
and C5 can only replace C0, C1, and C2, respectively, to
make X valid. All replacements give the number of read
symbols equal to 10 symbols (the maximum reduction
achievable). Let us replace C0 by C3 (i.e., X = {C3, C1,
C2}). We now consider again Y = {C4, C5}, but it does
not give any reduction of the number of read symbols.
Since m = 2, we finish Algorithm 1 and return X = {C3,
C1, C2} for recovery. Note that this is also an optimal
solution.

Complexity. We now evaluate the complexity of Al-
gorithm 1 for searching X . We can easily see that the

6

Algorithm 1 Replace Recovery Algorithm

1: Initialize X = P1

2: for i = 2 to m do
3: Set Y = Pi

4: for each parity symbol Y in Y do
5: Set f = false;
6: for each parity symbol X in X do
7: Set X ′ = X − {X}+ {Y }
8: if X ′ is valid and reduces the number of read

symbols of X then
9: Compute RX,Y = number of read symbols of X ′

10: Set f = true;
11: end if
12: end for
13: end for
14: if f == true then
15: Find (X ′, Y ′) = argmin(X,Y) RX,Y

16: Replace X ′ with Y ′ in X
17: Remove Y ′ from Y
18: end if
19: Repeat Steps 4-18 until Y is empty or f == false
20: end for
21: Return X

for-loop of Steps 4-13 takes O(ω2) time, and Step 19 will
repeat the for-loop for at most ω times. We iterate Steps
4-19 for m−1 parity nodes, so the total search complexity
is O(mω3), which is polynomial-time.

Algorithmic enhancements. We can improve the ac-
curacy of Algorithm 1 by searching for more candidate
collections of parity symbols for X . This increases the
likelihood for our replace search to achieve the optimal
point. Here, we propose two enhancements that increase
our search space, while maintaining the polynomial
complexity.

• Multiple rounds. In Step 1, we only use P1 for the
initialization of X . We can repeat Algorithm 1 for
additional m−1 rounds by using Pi (2 ≤ i ≤ m) for
initialization.

• Successive searches. In Step 2, after we consider
Pi, we re-consider the previously considered i −
2 parity symbol collections P2, · · · Pi−1, as they
might provide better results. We can replace the
for-loop in Step 2 with successive searches as:
P2,P3, (P2),P4, (P2,P3), · · · ,Pi, (P2, · · · ,Pi−1), · · ·
(this technique is also called univariate search).

The successive searches increase the iterations of Step 2
by m times, and the multiple initializations iterate
the whole process by another m times. Thus, the
search complexity increases to O(m3ω3), which remains
polynomial-time.

5.2 Extension to a Heterogeneous Environment

We now show how Algorithm 1 can be modified slightly
to adapt to the scenario where nodes have heterogeneous
capabilities. Here, we consider a metric called the recov-
ery cost [29] for the recovery solution X of the failed node
k. Suppose that the recovery operation of X reads yi
symbols from Node i (i 6= k). Let ci be the unit recovery

cost of fetching a single symbol from Node i. The total
recovery cost is then defined as:

n
∑

i=0,i6=k

ciyi.

In this paper, we define ci as the inverse of the trans-
mission bandwidth of Node i. Thus, the total recovery
cost can be viewed as the total amount of transmission
time to download the symbols from all surviving nodes
per stripe. Recall from Section 2.1 that a storage system
divides data into stripes, each of which is encoded in-
dependently. Also, the data and parity strips are rotated
across different stripes for load balancing. Since the cost
model is defined on a per-stripe basis, we can use multi-
threading to parallelize the cost computations across
different stripes. Each thread determines, based on the
above equation, the symbols to be read from a stripe for
recovery, and then reads the symbols accordingly.

To get the heterogeneous version of our replace re-
covery algorithm (i.e., HeRR), we merely substitute the
computation of the number of read symbols for X in
Algorithm 1 (in Steps 8-9) with the computation of the
recovery cost for X .

In this work, we focus on finding a cost-effective
recovery solution with the values of ci’s as inputs. We
assume that ci can be determined in advance before
running our recovery algorithm, say by taking the mov-
ing average of periodic measurements [5]. An important
future work is to construct an automatic recovery mecha-
nism that integrates real-time measurements of ci’s, node
failure detection, and an efficient recovery algorithm.

We now illustrate via a contrived example how HeRR
significantly improves the recovery performance over
the conventional recovery and HoRR in some specific
scenarios. Figure 3(a) shows a heterogeneous distributed
storage system where a centralized proxy controller
connects to 6 nodes. Suppose that the storage system
adopts CRS in Figure 2 as its coding scheme. Each node
stores 3 symbols of size α each (in unit of Mb). Suppose
that Node 0 fails. The proxy downloads data from other
surviving nodes and regenerates the lost data in the new
node (i.e., Node 6). The unit cost ci of each node is set to
the inverse of the link transmission bandwidth of Node i.
We now compute the total recovery costs using the
conventional recovery, HoRR, and HeRR, respectively.

Conventional. The proxy reads 3 symbols from each
of Nodes 1 to 4 (see Figure 3(b)). Thus, the total recovery
cost is:

3α

645
+

3α

40
+

3α

345
+

3α

793
= 0.0921α (in sec).

HoRR. HoRR returns the recovery solution X = {C3,
C1, C2} (see Section 5.1). Thus, the proxy downloads the
data and parity symbols from 5 nodes (see Figure 3(c)).
The total recovery cost is:

2α

645
+

3α

40
+

2α

345
+

2α

793
+

1α

973
= 0.0875α (in sec).

7

Node 0 Node 1

Node 2

Node 3Node 4

Node 5

Proxy

Node 6

807Mbps 645Mbps

40Mbps

345Mbps793Mbps

973Mbps

 0

Nodes

 1 2 3 4 5

Nodes

1 2 3 4 50

Nodes

1 2 3 4 50

(a) Heterogeneous setting (b) Conventional approach (c) HoRR approach (d) HeRR approach

Fig. 3. An example for three recovery approaches: conventional, HoRR and HeRR.

HeRR. The HeRR algorithm works as follows. We
initialize X with {C0, C1, C2}. Note that the recovery
cost of X is 0.0623α. We now consider Y = {C3, C4, C5}.
We can verify that C3, C4, and C5 can only replace
C0, C1, and C2, respectively, to make X valid. Among
these three, the latter two replacements both reduce
the recovery cost to 0.0653α (the maximum reduction
achievable). We first try to replace C1 by C4 (i.e., X =
{C0, C4, C2}) and consider Y = {C3, C5}. We find no
replacement gives any smaller recovery cost.

We then rollback to replace C2 by C5 (i.e., X = {C0,
C1, C5}) and consider Y = {C3, C4}. We now find the
replacement of C0 by C3 further reduces the recovery
cost to 0.0651α, which is also the optimal heterogeneous
recovery solution. Thus, HeRR finally returns X = {C3,
C1, C5}. The proxy then reads symbols (see Figure 3(d)).
The total recovery cost is:

2α

645
+

2α

40
+

3α

345
+

1α

793
+

2α

973
= 0.0651α (in sec).

To summarize, compared to the conventional recovery,
the total recovery cost reduction of HoRR is only 4.99%,
while that of HeRR is 29.32%. This example justifies that
HeRR works better in a heterogeneous environment.

6 SIMULATIONS

We present simulation results for the performance of
our proposed replace recovery algorithm. In Section 3
of the supplementary file, we evaluate the recovery
performance of HoRR for different coding schemes (e.g.,
RAID-6, STAR, and CRS) in a homogeneous setting.
Here, we focus on the recovery performance of HeRR
and the search performance.

6.1 Recovery Performance for HeRR

We evaluate the performance of HeRR in a heteroge-
neous storage environment. Note that our simulations
consider a star-like network topology as in Figure 3(a),
where a centralized proxy controller connects to a num-
ber of nodes, each having link transmission bandwidth
following a uniform distribution U(0.3Mbps, 120Mbps),
which is the link bandwidth distribution in PlanetLab
[16]. As described in Section 5.2, we use the recovery
cost as the metric to evaluate the recovery efficiency in
heterogeneous environments, and let ci be the inverse of
the link transmission bandwidth of each Node i.

Comparisons with conventional recovery and HoRR.
Here, we use STAR and CRS as representative coding
schemes, and consider different parameter settings. We
conduct 500 simulation runs for each of the parameter
settings. We then plot the results via box plots. A box
plot shows the minimum, lower quartile, median, upper
quartile, maximum of all sampled results, and provides
the outliers as well.

Figure 4 shows the percentage reduction of the re-
covery cost of HeRR over conventional recovery and
HoRR. From Figures 4(a) and 4(b), HeRR can reduce the
recovery cost of the conventional approach in both STAR
and CRS codes by around 40% and 30%, respectively.
Also, from Figures 4(c) and 4(d), HeRR can reduce
the recovery cost of HoRR, by around 20% and 10%
in STAR and CRS codes, respectively. There are some
outlier simulation runs in which HeRR can reduce the
recovery cost of HoRR by over 90% (e.g., p = 5, 7 for
STAR and k = 6 for CRS). The main reason is that
in those runs, some parity nodes happen to have very
small transmission bandwidths. Since HoRR only seeks
to minimize the number of symbols read, its recovery
performance may suffer from the bottlenecked parity
node. On the other hand, in those outlier runs, HeRR
will bypass the slow parity node and switch to other
parity nodes for recovery.

Comparison with enumeration recovery. We further
compare HeRR with enumeration recovery [15], which
enumerates all possible recovery solutions and returns
the one with the minimum recovery cost. Similar to
above, we conduct 500 simulation runs and obtain the
average results. Here, we briefly summarize our findings
for some parameters. For STAR with p = 5, enumeration
recovery has 6.75% less recovery cost than HeRR; for
CRS with m = 3 and ω = 4, it has around 14% less
recovery cost for k = 6 to k = 10. On the other hand,
we cannot include all optimal results here due to the
high computational overhead. We discuss this in the next
subsection.

6.2 Search Performance

We evaluate via simulations the search performance of
both enumeration and replace recoveries using com-
modity hardware configurations. Our goal is to show
that enumeration recovery becomes infeasible for large
parameters, while replace recovery can be completed
with significantly less computational time.

8

p=5 p=7 p=11 p=13 p=17

0
2
0

4
0

6
0

8
0

1
0
0

R
e

d
u

c
ti
o

n
 o

f
re

c
o
ve

ry
 c

o
s
t

(%
)

k=6 k=7 k=8 k=9 k=10

0
2
0

4
0

6
0

8
0

1
0
0

R
e

d
u

c
ti
o

n
 o

f
re

c
o
ve

ry
 c

o
s
t

(%
)

(a) STAR, over conven-
tional

(b) CRS(m = 3, ω = 4),
over conventional

p=5 p=7 p=11 p=13 p=17

0
2
0

4
0

6
0

8
0

1
0
0

R
e

d
u

c
ti
o

n
 o

f
re

c
o
ve

ry
 c

o
s
t

(%
)

k=6 k=7 k=8 k=9 k=10

0
2
0

4
0

6
0

8
0

1
0
0

R
e

d
u

c
ti
o

n
 o

f
re

c
o
ve

ry
 c

o
s
t

(%
)

(c) STAR, over HoRR (d) CRS(m = 3, ω = 4),
over HoRR

Fig. 4. Percentage reduction of recovery cost of HeRR

over conventional ((a) and (b)) and HoRR ((c) and (d)).

Our evaluation is conducted on a Linux desktop
computer running with 3.2GHz CPU and 2GB RAM.
As discussed in Section 3, in enumeration recovery, we
need to search for a maximum of

(

2
mω−1

ω

)

combinations
of recovery equations. Here, we consider CRS, which
allows us to configure different values of m and ω.

Table 1 shows the search time for different CRS
variants when enumeration and replace recoveries are
used. The search time of enumeration recovery increases
exponentially with the number of recovery equations.
For example, for k = 10, m = 3, and ω = 6, it takes more
than 18 hours to find the optimal solution for recovering
one failed node; for k = 12, m = 4, and ω = 5, the search
cannot be finished within 13 days. On the other hand, the
search time of replace recovery can be completed within
0.5 seconds for all the CRS variants that we consider.

TABLE 1

Search times of enumeration and replace recoveries.

CRS(k,m,ω) mω Time Time
(Enumeration) (Replace)

CRS(10,3,5) 15 6m32s 0.08s
CRS(12,4,4) 16 17m17s 0.09s
CRS(10,3,6) 18 18h15m17s 0.24s
CRS(12,4,5) 20 13d18h6m43s 0.30s

7 EXPERIMENTS

In Section 4 of the supplementary file, we describe how
we implement our replace recovery algorithm and how
we extend the algorithm to support parallelization.

Based on our implementation, we conduct testbed
experiments on the single-node recovery approaches for
different XOR-based erasure codes. The goal of our

testbed experiments is to demonstrate that our replace
recovery algorithm reduces the recovery time over con-
ventional recovery in both single-threaded and paral-
lelized recovery implementations. Unlike disk simula-
tions [25], our experimental results capture the actual
I/O performance with real storage nodes.

7.1 Methodology

...

recovery architecture

nodes

Gigabit switch
files

NCFS

Fig. 5. Our testbed topology.

Our experimental testbed is built on an open-source
networked storage system called NCFS [11]. Figure 5
shows our testbed. NCFS interconnects, over a network,
different physical storage devices, each of which corre-
sponds to a node as being considered in our experiments.
It transparently stripes data across all nodes according
to the respective coding scheme. We integrate different
coding schemes into NCFS. We deploy our recovery
architecture alongside NCFS and the nodes, while our
architecture implements both conventional and replace
recoveries. Our architecture is deployed on a Linux-
based server equipped with an Intel Quad-Core 2.66GHz
CPU and 4GB RAM. We interconnect all physical en-
tities over a Gigabit Ethernet switch. Both NCFS and
the recovery architecture communicate with the storage
devices via the ATA over Ethernet protocol.

Our storage system consists of a cluster of (logical)
nodes, each represented by a physical storage device.
We experiment different numbers of nodes in the cluster,
with at most 21 nodes depending on the parameters
chosen for the coding schemes. Each logical node cor-
responds to a physical PC which has a SATA disk in-
stalled. For simplicity, we assume that the logical nodes
have identical hardware configurations, although their
actual hardware configurations (e.g., CPU speed, RAM
capacity) may vary. We do not specifically optimize our
implementation to demonstrate the absolute recovery
performance. Instead, our goal is only to evaluate the
relative performance of our replace recovery compared
to the conventional approach under fair conditions.

We are mainly interested in the metric recovery time
(per MB of data being recovered) needed to perform
a recovery operation. We obtain the average recovery
time as follows. We write 1GB of data into each node
via NCFS using the specified coding scheme (i.e., if
there are n nodes, then we write a total of nGB). Then
NCFS will stripe the data across the nodes. We disable
one of the data nodes in the storage system to make it
resemble a failed node. We then perform the recovery

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.209

0.239
0.225

0.220

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.146

0.185
0.211

0.183

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.118

0.234
0.232

0.245

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

(7,2) (11,2) (13,2) (17,2)

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional Replace

0.158

0.201
0.193

0.191

(a) RDP (b) EVENODD (c) X-CODE (d) CRS(k, m = 2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

p=7 p=11 p=13 p=17

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Conventional Replace

0.144

0.286
0.258

0.262

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

(7,3) (11,3) (13,3) (17,3)

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Conventional Replace

0.167

0.123
0.088

0.128

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

- (12,4) (10,6) -

R
e

c
o

v
e

ry
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

p
e

r
M

B

Conventional Replace

0.111
0.155

(e) STAR (f) CRS(k, m = 3) (g) CRS(k, m > 3)

Fig. 6. Experiment 1 - Comparisons between conventional and replace recoveries for different codes that have

different fault tolerance levels. We also indicate the percentage decrease in recovery time of replace recovery over

conventional recovery for each code.

operation, that is, reading data from surviving nodes,
reconstructing data, and writing data to a new node
that we prepare. The recovery operation is done three
times. We repeat this for all data nodes, and obtain the
overall average. For instance, referring to RDP (p = 5)
in Figure 1 (see Section 2.1), there are four data nodes.
Thus, we run a total of 4×3 recovery operations, and
average the recovery times over the 12 runs.

7.2 Results

We present results of our testbed experiments. Here, we
fix the chunk size to be 512KB and use only a single
recovery thread in our recovery architecture (i.e., without
using parallelization). In Section 5 of the supplementary
file, we also evaluate the impact of chunk size on the
recovery performance, and the recovery performance
using parallelization.

Experiment 1: Recovery time performance. We now
compare the recovery times of different XOR-based era-
sure codes using both conventional and replace recover-
ies, assuming a single recovery thread is used.

Figures 6(a)-(d) shows the results for various double-
failure tolerant coding schemes, including RDP, EVEN-
ODD, X-Code, CRS(k, m = 2). We note that replace re-
covery reduces the recovery time of conventional recov-
ery in all cases. As shown in our experimental results (see
the supplementary file), the data read part contributes
the largest proportion of the recovery time. Since replace
recovery aims to reduce the amount of data being read
from surviving nodes, it reduces the overall recovery
time. Take RDP as an example. Replace recovery reduces
the recovery time respectively by 20.9% (p = 7), 23.9%
(p = 11), 22.5% (p = 13), and 22.0% (p = 17). These
empirical results also conform to the previous theoretical
analysis [25], which shows that the optimal recovery can
reduce the number of reads by at about 25%.

Figures 6(e)-(g) show the results for various coding
schemes that tolerate any three or more node failures.
We observe that for STAR, replace recovery reduces the
recovery time of conventional recovery by 25-29% (for
p = 11, 13, and 17), which is consistent with our analysis
in Section 6. For CRS(k = 10, m = 6) and CRS(k = 12,
m = 4), our experimental results indicate 15.5% and
11.1% reductions of recovery time, respectively. It is im-
portant to note that the parameters (k = 10, m = 6) have
been used in a commercial dispersed storage system [6].

Experiment 2: Heterogeneous environment. We now
evaluate the recovery performance of our heterogeneous
version of replace recovery (i.e., HeRR) in a hetero-
geneous setting. Here, we consider STAR(p = 7) and
CRS(k = 7, m = 3), assuming only single-threaded
recovery is used.

In order to mimic a heterogeneous environment, we
run intensive I/O applications in 3 nodes (namely,
Node 1, 3, 8). We further use a standard storage bench-
mark IOzone [14] to measure the read bandwidth for
each node. The results show that the actual read band-
width of the above 3 nodes is roughly 23Mbps, while
other nodes have 65Mbps of bandwidth. We then use
HeRR to find out the efficient heterogeneous recovery
solutions for STAR and CRS, respectively.

Figure 7 shows the total recovery time performance
of different recovery approaches for STAR and CRS in
our heterogeneous storage environment. We observe that
HoRR reduces the recovery time by 7.2% and 4.4%,
respectively. On the other hand, HeRR achieves 14.3%
and 13.4% reductions of recovery time of conventional
recovery. This validates that HeRR outperforms HoRR
in a real heterogeneous environment. We also validate
that our experimental results conform to our theoretical
findings based on the analysis in Section 5.2. Note that
in some extreme scenarios, the improvement of HeRR

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

STAR - CRS

R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

p
e
r

M
B

Conventional HoRR HeRR

0.072
0.044

0.143
0.134

Fig. 7. Experiment 2 - Comparisons between three

recovery approaches for STAR (p = 7) and CRS(k = 7,

m = 3), respectively.

over HoRR can be more significant (see Section 6.1).

8 CONCLUSIONS

We propose mechanisms for speeding up single-node
failure recovery for large-scale storage systems that use
XOR-based erasure codes. Our objective is to minimize
the amount of data, or the number of symbols, being
read from surviving nodes during the recovery opera-
tion. We propose a replace recovery algorithm that pro-
vides near-optimal recovery performance for different
coding schemes, while the algorithm has a polynomial
computational complexity. We also extend replace re-
covery to adapt to heterogeneous storage environments.
We implement our replace recovery algorithm on top
of a parallel recovery architecture for scalable recovery
performance. Experiments on a networked storage sys-
tem testbed show that our replace recovery significantly
reduces the recovery time over conventional recovery.
The source code of our implementation is available at
http://ansrlab.cse.cuhk.edu.hk/software/zpacr.

ACKNOWLEDGMENT

This work is supported by National Nature Science
Foundation of China under Grant No. 61073038, Key Sci-
ence and Technology Program of Anhui Province, China
under Grant No. 1206c0805003, and grants from the
University Grants Committee of Hong Kong (AoE/E-
02/08 and ECS CUHK419212).

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An
Efficient Scheme for Tolerating Double Disk Failures in RAID
Architectures. IEEE Trans. on Computers, 44(2):192–202, 1995.

[2] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An XOR-Based Erasure-Resilient Coding Scheme.
International Computer Sciences Institute Technical Report ICSI TR-
95-048, 1995.

[3] B. Calder et al. Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency. In Proc. of ACM
SOSP, 2011.

[4] Q. Cao, S. Wan, C. Wu, and S. Zhan. An Evaluation of Two Typical
RAID-6 Codes on Online Single Disk Failure Recovery. In Proc.
of IEEE NAS, pages 135–142. IEEE, 2010.

[5] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging Endpoint
Flexibility in Data-Intensive Clusters. In Proc. of ACM SIGCOMM,
2013.

[6] CLEVERSAFE. Cleversafe Dispersed Storage. http://www.
cleversafe.org/downloads, 2008.

[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. Row-Diagonal Parity for Double Disk Failure
Correction. In Proc. of USENIX FAST, 2004.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value Store. In Proc. of
ACM SOSP, 2007.

[9] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System.
In Proc. of ACM SOSP, 2003.

[10] K. Greenan, X. Li, and J. Wylie. Flat XOR-Based Erasure Codes in
Storage Systems: Constructions, Efficient Recovery, and Tradeoffs.
In Proc. of IEEE MSST, 2010.

[11] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S. Lui. NCFS:
On the Practicality and Extensibility of a Network-Coding-Based
Distributed File System. In Proc. of NetCod, July 2011.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, Jun 2012.

[13] C. Huang and L. Xu. STAR: An Efficient Coding Scheme for
Correcting Triple Storage Node Failures. IEEE Trans. on Computers,
57(7):889–901, 2008.

[14] IOzone Filesystem Benchmark. http://www.iozone.org.
[15] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethink-

ing Erasure Codes for Cloud File Systems: Minimizing I/O for
Recovery and Degraded Reads. In Proc. of USENIX FAST, 2012.

[16] S. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Measuring
Bandwidth Between PlanetLab Nodes. In Proc. of PAM, 2005.

[17] S. Li, Q. Cao, J. Huang, S. Wan, and C. Xie. PDRS: A New
Recovery Scheme Application for Vertical RAID-6 Code. In Proc.
of IEEE NAS, pages 112–121. IEEE, 2011.

[18] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A
Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries for Storage. In Proc. of USENIX FAST, pages
253–265, 2009.

[19] I. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[20] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2009.

[21] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel
Erasure Codes for Big Data. Proceedings of the VLDB Endowment,
2013.

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, May 2010.

[23] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes
in Distributed Storage Systems. In IEEE GLOBECOM Workshops,
2010.

[24] C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie. HDP
Code: A Horizontal-Diagonal Parity Code to Optimize I/O Load
Balancing in RAID-6. In Proc. of IEEE/IFIP DSN, 2011.

[25] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid Ap-
proach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

[26] L. Xu and J. Bruck. X-code: MDS Array Codes with Optimal
Encoding. IEEE Trans. on Information Theory, 45(1):272–276, 1999.

[27] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. Lui. Single
Disk Failure Recovery for X-Code-Based Parallel Storage Systems.
IEEE Trans on Computers, 2013. (To appear).

[28] Y. Zhu, P. Lee, Y. Hu, L. Xiang, and Y. Xu. On the Speedup
of Single-Disk Failure Recovery in XOR-Coded Storage Systems:
Theory and Practice. In Proc. of IEEE MSST, 2012.

[29] Y. Zhu, P. P. C. Lee, L. Xiang, Y. Xu, and L. Gao. A Cost-based
Heterogeneous Recovery Scheme for Distributed Storage Systems
with RAID-6 Codes. In Proc. of IEEE/IFIP DSN, 2012.

11

Yunfeng Zhu received his B.S. from the School
of Computer Science, University of Science and
Technology of China, Anhui, China, in 2008. He
is currently working toward the Ph.D. degree at
the School of Computer Science and Technol-
ogy, University of Science and Technology of
China, Hefei, China. His research interests in-
clude distributed storage system, cloud storage
and data deduplication.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an assistant professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests are in cloud storage, dis-

tributed systems and networks, and security/resilience.

Yinlong Xu received his B.S. in Mathematics
from Peking University in 1983, and MS and
Ph.D in Computer Science from University of
Science and Technology of China(USTC) in
1989 and 2004 respectively. He is currently
a professor with the School of Computer Sci-
ence and Technology at USTC. Prior to that,
he served the Department of Computer Science
and Technology at USTC as an assistant pro-
fessor, a lecturer, and an associate professor.
Currently, he is leading a group of research

students in doing some networking and high performance computing re-
search. His research interests include network coding, wireless network,
combinatorial optimization, design and analysis of parallel algorithm,
parallel programming tools, etc. He received the Excellent Ph.D Advisor
Award of Chinese Academy of Sciences in 2006.

Yuchong Hu received the B.S. degree in Com-
puter Science and Technology from the School
for the Gifted Young, University of Science &
Technology of China, Anhui, China, in 2005. He
received the Ph.D. degree in Computer Science
and Technology from the School of Computer
Science, University of Science & Technology of
China, in 2010. He was a postdoctoral fellow
at the Institute of Network Coding, the Chinese
University of Hong Kong. His research interests
include network coding and distributed storage.

Liping Xiang received her B.S. from the Depart-
ment of Information and Computational Science,
Anhui University, China, in 2007. She is currently
working toward the Ph.D. degree at the School of
Computer Science and Technology, University of
Science and Technology of China, Hefei, China.
Her research interests include distributed stor-
age system, data recovery, and network coding.

