
1

Toward Optimal Network Fault Correction in
Externally Managed Overlay Networks

Patrick P. C. Lee, Vishal Misra, and Dan Rubenstein

Abstract—We consider an end-to-end approach of inferring probabilistic data-forwarding failures in an externally managed overlay
network, where overlay nodes are independently operated by various administrative domains. Our optimization goal is to minimize the
expected cost of correcting (i.e., diagnosing and repairing) all faulty overlay nodes that cannot properly deliver data. Instead of first
checking the most likely faulty nodes as in conventional fault localization problems, we prove that an optimal strategy should start with
checking one of the candidate nodes, which are identified based on a potential function that we develop. We propose several efficient
heuristics for inferring the best node to be checked in large-scale networks. By extensive simulation, we show that we can infer the
best node in at least 95% of time, and that first checking the candidate nodes rather than the most likely faulty nodes can decrease the
checking cost of correcting all faulty nodes.

Index Terms—network management, network diagnosis and correction, fault localization and repair, reliability engineering.

F

Note: An earlier and shorter conference version of this
paper appeared in IEEE INFOCOM ’07 [23].

1 INTRODUCTION

Network components are prone to a variety of faults
such as packet loss, link cut, or node outage. To prevent
the faulty components from hindering network applica-
tions, it is important to diagnose (i.e., detect and localize)
the components that are the root cause of network faults,
as in [18], [19], [32]. However, it is also desirable to repair
the faulty components to enable them to return to their
operational states. Therefore, we focus on network fault
correction, by which we mean not only to diagnose, but
also to repair all faulty components within a network.
In addition, it has been shown that a network outage
can bring significant economic loss. For example, the
revenue loss due to a 24-hour outage of a Switzerland-
based Internet service provider can be more than CHF
30 million [15]. As a result, we want to devise a cost-
effective network fault correction mechanism that corrects
all network faults at minimum cost.

To diagnose (but not repair) network faults, recent
approaches like [4], [28], [36] use all network nodes to
collaboratively achieve this. For instance, in hop-by-hop
authentication [4], each hop inspects packets received
from its previous hop and reports errors when packets
are found to be corrupted. While such a distributed
infrastructure can accurately pinpoint network faults,

• P. Lee is with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Hong Kong.
E-mail: pclee@cse.cuhk.edu.hk

• V. Misra and D. Rubenstein are with the Department of Computer Science,
Columbia University, New York, NY 10027.
E-mail: {misra, danr}@cs.columbia.edu.

deploying and maintaining numerous monitoring points
in a large-scale network introduces heavy computational
overhead in collecting network statistics [10] and in-
volves complicated administrative management [7]. In
particular, it is difficult to directly monitor and access all
overlay nodes in an externally managed network, whose
routing nodes are independently operated by various
administrative domains. In this case, we can only infer
the network condition from end-to-end information.

Here, we consider an end-to-end inference approach
which, using end-to-end measurements, infers compo-
nents that are probably faulty in forwarding data in an
application-layer overlay network whose overlay nodes
are externally managed by independent administrative
domains. We start with a routing tree topology with a set
of overlay nodes, since a tree-based setting is typically
seen in destination-based routing (e.g., CAN [30] and
Chord [33]), where each overlay node builds a routing
tree with itself as a root, as well as in multicast routing,
where a routing tree is built to connect members in
a multicast group. We then monitor every root-to-leaf
overlay path. If a path exhibits any “anomalous be-
havior” in forwarding data, then some “faulty” overlay
node on the path must be responsible. In practice, the
precise definition of an “anomalous behavior” depends
on specific applications. For instance, a path is said to be
anomalous if it fails to deliver a number of correct pack-
ets within a time window. Using the path information
collected at the application endpoints (i.e., leaf nodes),
we can narrow down the space of possibly faulty overlay
nodes.

In the above end-to-end solution, one can tell whether
a path behaves anomalously, but cannot specifically tell
which and how many overlay nodes on the path are
faulty. Since we cannot directly monitor and access
externally managed overlay nodes, in order to correct



2

the faulty nodes, we need to contact the administrators
of the corresponding domains to manually check a se-
quence of potentially faulty nodes and fix any nodes
that are found to be actually faulty. Given the anomalous
paths in a tree, our main goal is to infer the best node
(or the best set of nodes) that should be first checked so
as to minimize the expected cost of correcting all faulty
nodes.

In this paper, we develop several optimality results for
inferring the best node that should be first checked by
a network fault correction scheme, with an objective to
minimize the expected cost of correcting all faulty nodes.
Our contributions include the following:

• Conventional failure localization problems (e.g.,
[18], [19], [32]) seek to identify the most likely faulty
node (i.e., the node with the highest conditional fail-
ure probability given a network with faulty nodes).
Here, we show that first checking the node that
is most likely faulty or has the least checking cost
does not necessarily minimize the expected cost of
correcting all faulty nodes.

• We formally identify a subset of nodes termed can-
didate nodes, one of which should be first checked in
order to minimize the expected cost of correcting all
faulty nodes. We develop a potential function that
determines the candidate nodes.

• Based on the potential function and candidate nodes
that we propose, we devise various heuristics for
the best node inference in a single tree and mul-
tiple trees, where the latter forms a more general
topology. We show via simulation that the candidate
node with the highest potential value is in fact the
best node that should be first checked by an optimal
strategy in at least 95% of time under a special
setting. In addition, we conduct simulation using
large-scale network topologies. As compared to the
strategies that first check the most likely faulty node
(or the set of most likely faulty nodes), we show
that by first checking the candidate nodes, we can
decrease the checking cost of correcting all faulty
nodes, for example, by more than 30% in some
scenarios.

The remainder of the paper is organized as follows.
In Section 2, we describe a class of externally managed
overlay networks where our network fault correction
mechanism is applicable. In Section 3, we formulate
the network fault correction problem. Section 4 demon-
strates that naive strategies that are intuitively optimal
are in fact not optimal in general. In Section 5, we intro-
duce a potential function for identifying the candidate
nodes and show the optimality results. In Section 6, we
propose several heuristics for the best node inference. In
Section 7, we evaluate the proposed heuristics in large-
scale networks. We review related work in Section 8 and
conclude the paper in Section 9.

Network
topology

failure
probabilities {pi}

checking
costs {ci}

logical
tree T Retaining only

bad paths

bad
tree T Inference

algorithm

best node(s)

Fig. 1. End-to-end inference approach for a network fault
correction scheme.

2 EXTERNALLY MANAGED OVERLAY NET-
WORKS

In this paper, we are interested in diagnosing and repair-
ing faulty nodes in an externally managed overlay network,
in which overlay nodes are independently operated
by multiple administrative domains. By an administra-
tive domain, we mean a single administrative authority
that controls a collection of resources (e.g., routers and
servers) [8]. Examples of externally managed overlay
networks include Resilient Overlay Network (RON) [3],
which provides routing resilience toward Internet path
outages, and Service Overlay Network (SON) [14], which
provides end-to-end quality-of-service guarantees. Both
RON and SON deploy overlay nodes over multiple
administrative domains that cooperatively accomplish
certain network services. To ensure the availability of
these network services, an effective network fault mech-
anism is therefore necessary.

Researchers also advocate the notion of security-
oriented overlay architectures, such as Secure Overlay
Services (SOS) [20] and Mayday [2], to defend against
denial-of-service attacks. In both SOS and Mayday, data
is securely tunneled over an overlay network. As shown
in [20], successful data delivery is preserved with a very
high probability even if a subset of overlay nodes are
failed (e.g., shut down by attackers). While data may
be re-routed to bypass failed nodes, robustness of data
delivery will be degraded if the failed nodes are not
immediately repaired because attackers can now devote
resources to attacking the remaining non-failed nodes.
Note that security-oriented overlay networks might be
deployed over a number of end sites rather than a
single ISP [20], and can be viewed as externally managed
networks since each end site is independently operated.
Thus, our proposed network fault correction mechanism
is also essential for this type of networks.

3 PROBLEM FORMULATION

In this section, we formulate our end-to-end inference
approach for network fault correction. We are interested
in diagnosing and repairing faulty nodes in an externally
managed overlay network, in which the overlay nodes
cannot be directly accessed. In order to diagnose failures,
we need to contact the administrators of the correspond-
ing domains to manually check potentially faulty nodes
(e.g., by conducting a set of sanity tests). Any nodes that
are found to be actually faulty will then be repaired.

Figure 1 summarizes the end-to-end inference ap-
proach. We consider a logical tree as T = (N, {pi}, {ci}),



3

where N is the set of overlay nodes, pi is the failure
probability of node i ∈ N , and ci is the checking cost of
deciding if node i ∈ N is faulty. The overlay node set
N provides the topological information and specifies the
sequence of overlay nodes, and hence the corresponding
administrative domains, along which each data packet is
traversed. On the other hand, the construction of {pi}
and {ci} are based on the following failure and cost
models, respectively.

Failure model. Our analysis focuses on overlay node
failures such that nodes cannot properly forward data.
For example, nodes can delay or drop packets to be
forwarded because of power outage, full transmission
queues, hardware errors, or route misconfiguration. In
addition, our analysis focuses on fail-stop failures, mean-
ing that a node completely stops its operations upon
failures. Examples of fail-stop failures include power
outage or machine shutdown. Under the fail-stop model,
the failure probabilities {pi} can then be characterized
via statistical measurements of reliability indexes [17]
or vulnerability modeling [13]. However, we note that
constructing accurate failure probabilities for overlay
nodes is difficult in practice. Thus, we also evaluate
the impact on our proposed approach due to inaccurate
estimates of failure probabilities (see Section 7). Here, we
consider the case where each overlay node is a physical
node that possesses a single identity, and hence we
assume that node failures and the corresponding failure
probabilities {pi} are all independent.

Cost model. We characterize the checking costs {ci}
using the personnel hours and wages required for trou-
bleshooting problems or the cost of test equipment. Thus,
the checking costs can be highly varying, depending
on the administrative domains in which the checked
nodes resides. Note that we do not consider the cost
of repairing overlay nodes, and that the total checking
cost is the only cost component being considered in our
optimization problem, as explained later in this section.

In our analysis, we assume that pi and ci can be any
values in [0, 1] and [0,∞), respectively. For instance, if
ci = 1 for all i, then the total checking cost denotes the
number of nodes that have been checked. Also, depend-
ing on the fault definition, the failure probabilities {pi}
can be significantly small for general failures [18], but
can also be non-negligible if we are concerned with how
likely a node is brought down due to catastrophic events
that lead to large-scale failures.

Each node in a logical tree T is classified as faulty or
non-faulty, depending on how we first define whether
a (root-to-leaf) path exhibits any “anomalous behavior”.
In practice, such a definition varies across applications.
For example, we say that a path behaves anomalously
if it fails to deliver a number of correct packets within
a time window, and that some node on the path is
faulty if it causes severe packet loss and delay. Note that
the inference approach only knows whether a path is
anomalous, but does not specifically know which and
how many nodes on the path are faulty. To help our

1

2 3

5 6 7

1

2 3 4

5 6 7 8

bad
path

bad
path

bad
path

good
path

Retaining 
bad paths

good node
Bad treeLogical tree

bad
path

bad
path

bad
path

Fig. 2. Given a logical tree, we retain only the bad paths
and indicate any good node. Since path 〈1, 4, 8〉 is a good
path, it is known that nodes 1, 4, and 8 are good. Nodes
4 and 8 can be pruned from the tree, and node 1 can be
indicated as good. The resulting set of bad paths will lead
to a bad tree.

discussion, each node in T is referred to as bad if it is
faulty, or as good otherwise. We say a path is bad if it
contains at least one bad node, and is otherwise good.
Also, we call T a bad tree if every path in the tree is a
bad path.

Since our failure model focuses on fail-stop failures,
we further assume that a node exhibits the same be-
havior across all paths upon which it lies. With this
assumption, if a node lies on at least one good path,
then we infer that it is a good node. Note that a good
node may still lie on one or more bad paths, but this
only means each such bad path contains some other bad
node. On the other hand, if a node exhibits different
behaviors across different paths, our analysis becomes
more complicated, as a good path now possibly contains
bad nodes as well. We pose the analysis of different
behaviors of a node as future work.

Given a logical tree T , we determine whether a path
is good or bad via end-to-end measurements that are
carried out between the root and leaf nodes of T . For
example, the root can send probes to the leaf nodes,
from which we collect the measurement results. Since we
focus on the data-forwarding failures, the probes should
represent the regular data packets that can be forwarded
by overlay nodes. Since a good path contains only good
nodes that need not be checked, we only need to focus
on the bad paths in T . Also, any node that lies on both
good and bad paths is indicated to be good. To illustrate,
Figure 2 shows how to retain only the bad paths in T
and indicate the good nodes. The resulting set of bad
paths will then form a bad tree. With a slight abuse of
notation, we denote this bad tree by T as well.

We then pass the bad tree T to the inference algorithm,
which determines, from the set of nodes that are not
indicated as good, the “best” node (or the “best” set of
nodes) to be checked, and repaired if necessary.

Before formalizing the notion of “best”, we first state
our optimization goal, namely, to minimize the expected
cost of correcting all faulty nodes in a given bad tree T .
Here, we assume that using end-to-end measurements
(i.e., sending probe packets from the root to leaf nodes)
to determine bad paths incurs negligible cost. Thus, the
correction cost has two main components: the cost of
checking all nodes and the cost of repairing all faulty



4

nodes. However, we do not consider the repair cost since
all faulty nodes have to be recovered eventually, and
any successful repair strategy has the same total cost of
repairing all faulty nodes. As a result, by cost, we here
refer to the checking cost only.

Because of our optimization goal, we can focus on
the sequential case where we check one node at a time,
since checking multiple nodes simultaneously does not
improve the expected checking cost, even though it
reduces the time required to repair all bad nodes on all
bad paths. As a result, our theoretical analysis assumes
that the inference algorithm returns only a single best
node, while we evaluate via simulation the impact of
simultaneously inferring and checking multiple nodes
in Section 7.

With the optimization goal, we select the “best” node
based on a diagnosis sequence S = 〈l1, l2, · · · , l|N |〉, defined
as the order of nodes to be examined given a bad tree T .
When node li is examined, it is either checked or skipped.
If node li lies on bad paths only, we cannot tell whether
it is good or bad. In this case, we have to check node li,
and repair it if it is determined to be bad. On the other
hand, if node li lies on a good path, it is known to be a
good node and does not need to be checked. In this case,
we say we skip node li. After node li has been checked
or skipped, it is known to be good. Thus, given a bad
tree T , the expected (checking) cost with respect to S is:

|N |∑

i=1

cli Pr(node li is checked
∣∣bad tree T , and nodes l1,
· · ·, li−1 known to be good).

We detail in Appendix A the calculation of the expected
cost of a diagnosis sequence. A diagnosis sequence S is
said to be optimal if its expected cost is minimum among
all possible diagnosis sequences. Therefore, among all
the nodes in a bad tree T , we formally define the best
node as the first node in an optimal diagnosis sequence
for T . In other words, the best node should be the node
to be first checked in order to minimize the expected cost
of correcting all faulty nodes.

We point out that the optimal decision of the inference
algorithm is derived from the current topology. The
decision will be revised for a new topology when the
faults are actually checked and repaired. In spite of
this, the topology may still change between the time
of identifying the physical topology and performing the
inference algorithm. However, as stated in [29], topology
change occurs in a coarse time scale (on the order of
minutes and hours). Thus, as long as the network fault
correction scheme has its monitoring period bounded
within the time scale of topology changes, the topology
should remain fairly stable.

A straightforward way to implement the inference
algorithm is based on the brute-force approach as shown
in Algorithm 1, which enumerates all possible diagnosis
sequences in order to determine the best node. How-
ever, the brute-force approach has factorial complexity
Θ(|N |3|N |!) (note that as shown in Appendix A, the

complexity of finding the expected cost of a diagnosis se-
quence is Θ(|N |3)). Therefore, in the following sections,
we seek to answer the following question: Given a bad
tree T , how can the inference algorithm determine the best
node in polynomial time?

Algorithm 1 Brute-force inference algorithm
Input: Bad tree T = (N, {pi}, {ci})

1: S∗ = φ, c∗ = ∞
2: for all diagnosis sequence S do
3: compute c = the expected cost of S
4: if c < c∗ then
5: S∗ = S, c∗ = c
6: return the first node in S∗

4 NAIVE HEURISTICS FOR THE INFERENCE
ALGORITHM

Intuitively, the best node returned by the inference al-
gorithm could be either the node that has the highest
conditional failure probability given a bad tree T (see
Appendix A for its calculation, whose complexity is
Θ(|N |2)), or the node that has the least checking cost.
In this section, we show that these naive choices do not
necessarily minimize the expected cost of correcting all
faulty nodes.

We first give a simple counter-example that disproves
the above naive choices. Figure 3 illustrates a bad tree
rooted at node 1 and the corresponding failure proba-
bilities {pi} and checking costs {ci}. As verified by the
brute-force approach in Algorithm 1, the best node is
node 2, where a possible optimal diagnosis sequence is
〈2, 1, 3, 4〉 and has expected cost 1.044. However, node 2
is neither the node with the highest conditional failure
probability, nor the node with the least checking cost,
nor the node with the highest ratio of the conditional
failure probability to the checking cost.

1

2

3 4

T
i pi ci Cond. pi (Cond. pi) : ci

1 0.1 1 0.6586 0.6586
2 0.05 0.3 0.3293 1.0977
3 0.08 0.2 0.1214 0.6072
4 0.1 0.1 0.1405 1.405

Fig. 3. A counter-example of showing the best node
(which is node 2) is not the one chosen by the naive
choices.

To further understand the performance of the naive
choices, we evaluate three naive heuristics for the in-
ference algorithm: (i) Naive-Prob, which returns the node
with the highest conditional failure probability, (ii) Naive-
Cost, which returns the node with the least checking cost,
and (iii) Naive-Prob-Cost, which returns the node with the
highest ratio of the conditional failure probability to the
checking cost. We compare their performance to that of
the brute-force inference algorithm in Algorithm 1 using
a special small-scale setting where a bad tree comprises
only two bad paths (e.g., see Figure 3). Such a setting



5

 0
 0.1
 0.2

 0.3
 0.4
 0.5
 0.6
 0.7

 0.8
 0.9

 1

 4  6  8  10  12  14  16

P
ro

po
rt

io
n 

of
 c

or
re

ct
 in

st
an

ce
s

|N| = Number of nodes

Naive-Prob
Naive-Cost

Naive-Prob-Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  6  8  10  12  14  16

P
ro

po
rt

io
n 

of
 c

or
re

ct
 in

st
an

ce
s

|N| = Number of nodes

Naive-Prob
Naive-Cost

Naive-Prob-Cost

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 4  6  8  10  12  14  16

P
ro

po
rt

io
n 

of
 c

or
re

ct
 in

st
an

ce
s

|N| = Number of nodes

Naive-Prob
Naive-Cost

Naive-Prob-Cost

(a) pi ∼ U(0, 1), ci = 1 (b) pi = 0.1, ci ∼ U(0, 1) (c) pi ∼ U(0, 1), ci ∼ U(0, 1)

Fig. 4. Proportions of instances in which Naive-Prob, Naive-Cost, and Naive-Prob-Cost return a correct best node.
Note that in (a), Naive-Prob and Naive-Prob-Cost are identical.

is to describe a scenario where most routing paths are
disjoint and at most two paths share the same physical
components.

Our evaluation setup is described as follows. For a
fixed number of nodes |N |, we randomly generate 200
bad trees, each of which comprises two bad paths such
that the position of the only non-leaf node that has
two child nodes is randomly chosen. Since, as stated in
Section 3, pi and ci can be any values in [0, 1] and [0,∞),
respectively, we arbitrarily choose three distributions
for our evaluation: (a) pi ∼ U(0, 1) and ci = 1, (b)
pi = 0.1 and ci ∼ U(0, 1), as well as (c) pi ∼ U(0, 1)
and ci ∼ U(0, 1), where U(u1, u2) denotes the uniform
distribution between u1 and u2.

Figure 4 illustrates the proportions of instances (out
of 200) in which Naive-Prob, Naive-Cost, and Naive-
Prob-Cost return correctly a best node (which may not
be unique). Depending on the distributions of pi and ci,
the proportion of instances where the best choice is made
can be as low as 10% for Naive-Prob and Naive-Cost
(see Figures 4(a) and 4(b)), and less than 55% for Naive-
Prob-Cost (see Figure 4(c)). Therefore, to determine the
best node to first check, our inference algorithm should
use a measure that better combines failure probabilities,
checking costs, as well as the structure of the bad tree.

5 CANDIDATE NODES

Instead of the naive choices described in the previous
section, we show in this section that we should first
check a candidate node, which is selected based on the
maximization of a potential function as described below.

We first give the notation and definitions that we will
use. Given a tree T , we define ancestors of node i to be
the nodes (not including node i) on the path from the
root of T to node i, and descendants of node i to be the
nodes that have node i as one of their ancestors. Let T
be the event that T is a bad tree, and Xi be the event
that node i is a bad node. Let Ai be the event that the
ancestors of node i are all good. If node r is the root
node, then we let Ar be always true and Pr(Ar) = 1.

5.1 Definitions of a Candidate Node and Potential
Definition 1: The potential of node i in a tree T is

defined as the value returned by the potential function:

φ(i, T ) =
Pr(T |Xi,Ai)pi

ci(1− pi)
.

Intuitively, the best node should be a node with a high
potential, since such a node in general has a small check-
ing cost, a large failure probability, and a large likelihood
of leading to a bad tree. Note that the term pi

ci(1−pi)

denotes the potential of a node for a single-bad-path
case (see Corollary 1 and [17]). Therefore, the potential
function φ(i, T ) is to combine the potential of a single
path (i.e., pi

ci(1−pi)
) and the likelihood of having a bad

tree with respect to the tree topology (i.e., Pr(T |Xi,Ai)).
The potential function is derived based on the optimality
results presented in the following subsection.

The potential of node i can be obtained by first com-
puting Pr(T |Xi,Ai) = Pr(T | pi = 1, pj = 0 ∀j ∈ Ai),
where Ai is the set of ancestors of node i. As shown in
Appendix A, we can compute the potential of a node in
Θ(|N |2) time.

Definition 2: For each path W in a tree T , we select
a single node i to be a candidate node if node i lies on
W and its potential φ(i, T ) is the highest among all the
nodes on W . If more than one node on W has the highest
potential, then we choose the one that is closest to the
root node of T as the candidate node.

We can view the selection of candidate nodes as a
mapping function that returns a single candidate node
given W and T . Note that it is possible for a path in
T to have multiple candidate nodes that correspond to
different paths in T .

5.2 Optimality Results
We now state the main optimality result as follows. In
the interest of space, the formal proofs are detailed in
[22].

Theorem 1: Given a bad tree T , there always exists an
optimal diagnosis sequence that starts with a candidate
node.

In other words, the best node returned by our infer-
ence approach should be one of the candidate nodes. We



6

5 6

1

2

3 4

T
i pi ci φ(i, T )
1 0.4 1 0.67
2 0.4 1 0.67
3 0.9 1 8.46
4 0.9 0.9 9.9
5 0.9 1 8.46
6 0.4 1 0.66

Fig. 5. Counter-example 1.

1

2 3

T
i pi ci φ(i, T )
1 0.1 1 0.111
2 0.9 1 7.2
3 0.8 1 3.6

Fig. 6. Counter-example 2.

present a sketch of proof of Theorem 1 in Appendix B
to illustrate the intuition of how the potential function
is derived and why a candidate node should be first
checked. The formal proof is presented in [22].

In some special cases, we can identify the best node
from a set of candidate nodes, as shown in the following
corollaries.

Corollary 1: Given a bad tree T which is a single path,
the best node is the one with the maximum pi

ci(1−pi)
.

Remark: Corollary 1 implies that the optimal diagnosis
sequence is in non-increasing order of pi

ci(1−pi)
. This

conforms to the result in [17].
In general, whether a node is the best depends on the

failure probabilities {pi}, the checking costs {ci}, as well
as the tree topology T . In spite of this, there are cases
where the most likely faulty node is in fact the best node.

Corollary 2: Given a bad tree T , if every node i has
pi = p and ci = c, where p and c are some fixed constants,
then the best node is the root node of T .

Remark: If T is a bad tree, then the root node r is also
the node that has the maximum conditional failure prob-
ability since Pr(Xr|T ) = p

Pr(T ) ≥ Pr(T |Xi)p
Pr(T ) = Pr(Xi|T )

for every node i.
Corollary 3: Consider a two-level tree T whose root

node is attached to |N | − 1 leaf nodes. If T is a bad tree
and every node i has ci = c for some constant c, the best
node is the one with the maximum conditional failure
probability.

5.3 Why Selecting the Best Node from Candidate
Nodes is Difficult?
While we have proved that one of the candidate nodes
is the best node, we have not yet identified which
candidate node should be selected as the best node in
the general case. We show that deciding the best node
is non-trivial using several counter-examples that violate
our intuition. In the following discussion, the optimality
results are verified by the brute-force inference algorithm
in Algorithm 1.

Counter-example 1: Given a bad tree, the best node is not
the one with the highest potential. Figure 5 shows a bad
tree T in which the candidate nodes are nodes 3 and 4.
Although node 4 has the highest potential, node 3 is the

4 5

1

2 3

6 7

T

4 5

3

6 7

T’

i pi ci

1 0.939 1
2 0.806 1
3 0.042 1
4 0.979 1
5 0.326 1
6 0.992 1
7 0.997 1

Fig. 7. Counter-example 3.

best node (so is node 5). A possible optimal diagnosis
sequence is 〈3, 5, 1, 2, 4, 6〉, whose expected cost 4.309,
while the expected cost of any diagnosis sequence that
starts with node 4 is at least 4.344.

Counter-example 2: Checking simultaneously all candidate
nodes in a bad tree does not minimize the expected cost of
correcting all faulty nodes. Figure 6 illustrates a bad tree T
that has nodes 2 and 3 as the candidate nodes. To check
simultaneously all candidate nodes, we can construct a
diagnosis sequence S = 〈2, 3, 1〉, whose expected cost is
given by 2.134. However, the optimal diagnosis sequence
is S∗ = 〈2, 1, 3〉, whose expected cost is 2.107.

To explain this counter-example, note that after node 2
has been checked, we have a new tree T ′ = (N, {pi|p2 =
0}, {ci}), where setting p2 = 0 is to indicate that node 2 is
now known to be good (see Section 3). The potentials of
nodes 1 and 3 in T ′ are respectively φ(1, T ′) = 0.111 and
φ(3, T ′) = 0. Thus, node 1 is the only candidate node in
T ′, and it must be the next node to check.

Counter-example 3: The best node for a bad tree is not
necessarily the best node for a subtree. Consider a bad tree
T in Figure 7. The best node is node 7, and the optimal
diagnosis sequence is 〈7, 1, 2, 4, 3, 5, 6〉. However, for the
subtree T ′ rooted at node 3, if it is a bad tree, then the
best node is node 4, and the optimal diagnosis sequence
is 〈4, 3, 7, 5, 6〉. The reason is that the subtree T ′, when
residing in T , may or may not be a bad tree. Even
if we have found the best node in T , the best node
can still vary if we know that subtree T ′ is a bad tree.
Therefore, we cannot determine the optimal solution to
a problem by first solving for the optimal solutions to
the subproblems, and this makes the best node inference
difficult.

5.4 Evaluation of Candidate-based Heuristics

Given the difficulty of finding the best node among a
set of candidate nodes, we evaluate the performance of
three candidate-based heuristics that approximate the
best node selection of the inference algorithm. These
heuristics are: (1) Cand-Prob, which selects the candidate
node with the highest conditional failure probability
given a bad tree, (2) Cand-Cost, which selects the can-
didate node with the least checking cost, and (3) Cand-
Pot, which selects the candidate node with the highest
potential. Our evaluation setting is the same as that in
Section 4, i.e., we determine the proportion of instances
(out of 200) in which a candidate-based heuristic selects



7

a best node for a given two-path bad tree of size |N |
under different distributions of pi and ci.

Figure 8 plots the results. Comparing the results to
those in Figure 4, we find that all candidate-based heuris-
tics are more likely to make the best choice than the naive
ones. In particular, Cand-Pot outperforms all naive and
candidate-based heuristics. In most cases, the candidate
node with the highest potential is actually the best node
in at least 95% of time.

5.5 Complexity of Finding the Node with Maximum
Potential
Since the computation of the potential of a node needs
Θ(|N |2) time (see Section 5.1), the complexity of Cand-
Pot, which searches among all nodes for the one with
the highest potential, is Θ(|N |3). This may lead to the
scalability issue when the network grows. However, in
most cases, the bad tree is only a subset of the entire
routing tree. Hence, the bad tree that is parsed by Cand-
Pot is likely to be within a manageable size in general.

6 HEURISTICS FOR THE INFERENCE ALGO-
RITHM

While the brute-force inference algorithm (see Algo-
rithm 1) returns the best node, its factorial complex-
ity prohibits its use in large-scale networks. Thus, we
propose three different groups of efficient heuristics
for the inference algorithm that are suitable for large-
scale networks. Each heuristic belongs to one of the
two classes: (i) naive heuristics, which consider only the
most likely faulty nodes based on the conditional failure
probability distribution, and (ii) candidate-based heuristics,
which consider the candidate nodes based on both the
conditional failure probability as well as the checking
cost distributions.

6.1 Single Node Inference for a Single Tree
We consider two heuristics Naive-Prob (see Section 4)
and Cand-Pot (see Section 5), which respectively return
the node that is most likely faulty given a bad tree and
the candidate node with the highest potential.

6.2 Multiple Node Inference for a Single Tree
Instead of sequentially checking one node at a time, we
can also infer and check multiple nodes in parallel so as
to reduce the time needed to repair all bad nodes.

We first extend Naive-Prob to Pa-Naive-Prob (where
“Pa” stands for “parallel”), which returns the most likely
faulty subset Ipnp of nodes that cover all the bad paths
in a given bad tree T , i.e., Ipnp = arg maxI Pr(XI |T ),
where T is the event that T is a bad tree, and XI is the
event that the subset I of nodes are all bad and cover all
bad paths in T . Since Pr(T |XI) is one, it is equivalent to
evaluate Ipnp = arg maxI Pr(XI) = arg maxI

∏
i∈I pi. We

can determine Ipnp using Algorithm 2, whose complexity
is Θ(|N |).

Algorithm 2 Pa-Naive-Prob
Input: a bad tree T = (N, {pi}, {ci})

1: for all node i ∈ N in reverse breadth-first-search order do
2: if node i is a leaf node then
3: s(i) = pi; mark node i /* s(i) denotes the score of i

*/
4: else if node i is a non-leaf node then
5: if pi >

∏
j∈Ci

s(j) then /* Ci = set of child nodes of
i */

6: s(i) = pi; mark node i
7: else
8: s(i) =

∏
j∈Ci

s(j)
9: Ipnp = φ; Q = φ; enqueue root node of T to Q

10: while Q 6= φ do
11: dequeue node i from Q
12: if node i is marked then
13: Ipnp = Ipnp ∪ {i}
14: else
15: enqueue all child nodes of i to Q
16: return Ipnp

We also implement a candidate-based heuristic for
inferring multiple nodes termed Pa-Cand, which returns
the minimum-sized subset Ipc of candidate nodes that
cover all bad paths in a bad tree. The algorithm of
finding Ipc is shown in Algorithm 3, whose complexity
is Θ(|N |3) due to the search of candidate nodes.

Algorithm 3 Pa-Cand
Input: a bad tree T = (N, {pi}, {ci})

1: determine the set of candidate nodes in T
2: Ipc = φ; Q = φ; enqueue root node of T to Q
3: while Q 6= φ do
4: dequeue node i from Q
5: if node i is a candidate node then
6: Ipc = Ipc ∪ {i}
7: else
8: enqueue all child nodes of i to Q
9: return Ipc

6.3 Multiple Node Inference for Multiple Trees
A limitation of the above heuristics is that a single logical
tree only includes a subset of physical components in
the entire network. In order to cover more physical
components, it is important to conduct the inference
algorithm on multiple bad trees, which collectively form
a directed acyclic graph. In general, finding a minimum
subset of nodes that cover a general set of paths can be
viewed as a set-cover problem, which is NP-hard [11].
Therefore, we consider two multi-tree-based heuristics
termed Mt-Pa-Naive-Prob and Mt-Pa-Cand (where “Mt”
stands for “multiple trees”), which respectively call Pa-
Naive-Prob and Pa-Cand independently on each of the
bad trees and return the union of the results.

Note that in typical overlay networks, an overlay
node may possess multiple logical identities, or may
be shared by multiple overlay networks. Thus, multiple
failed points may actually correspond to the failure of a
single physical node, and this implies that node failures



8

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4  6  8  10  12  14  16

P
ro

po
rt

io
n 

of
 c

or
re

ct
 in

st
an

ce
s

|N| = Number of nodes

Cand-Prob
Cand-Cost
Cand-Pot

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4  6  8  10  12  14  16

P
ro

po
rt

io
n 

of
 c

or
re

ct
 in

st
an

ce
s

|N| = Number of nodes

Cand-Prob
Cand-Cost
Cand-Pot

 0.8
 0.82
 0.84

 0.86
 0.88
 0.9

 0.92
 0.94

 0.96
 0.98

 1

 4  6  8  10  12  14  16

P
ro

po
rt

io
n 

of
 c

or
re

ct
 in

st
an

ce
s

|N| = Number of nodes

Cand-Prob
Cand-Cost
Cand-Pot

(a) pi ∼ U(0, 1), ci = 1 (b) pi = 0.1, ci ∼ U(0, 1) (c) pi ∼ U(0, 1), ci ∼ U(0, 1)

Fig. 8. Proportions of correct instances in which Cand-Prob, Cand-Cost, and Cand-Pot, start with a best node.

are correlated. Our multi-tree-based heuristics provide a
preliminary attempt to illustrate how we can correlate
node failures in multiple tree-based topologies.

7 EXPERIMENTS IN LARGE-SCALE
NETWORKS

In this section, we evaluate via simulation the naive
heuristics (i.e., Naive-Prob, Pa-Naive-Prob, and Mt-Pa-
Naive-Prob) and the candidate-based heuristics (i.e.,
Cand-Pot, Pa-Cand, and Mt-Pa-Cand) described in Sec-
tion 6 in correcting faulty nodes in large-scale networks.

7.1 Experimental Setup
We use the BRITE generator [27] to generate random
overlay networks based on the router Waxman model.
In our prior conference version [23], we also consider
the router-level Barbási-Albert model [5]. While unstruc-
tured overlay networks (e.g., Gnutella [9]) generally
follow the Barbási-Albert model, structured networks
(e.g., CAN [30] and Chord [33]) are similar to random
networks in the sense that nodes have similar degrees
[12]. As shown in our simulation results, both graph
models lead to similar observations. Thus, we focus on
the Waxman model in this paper.

Each network topology that we generate contains 200
nodes and 800 links. We treat the nodes and links as
overlay nodes and overlay links, respectively. We then
construct 10 topologies with random node placement
and random link weights. Each topology is further
assigned 20 sets of parameters using different seeds,
leading to a total of 200 instances. Our simulation focuses
on monitoring overlay nodes so as to demonstrate the
importance of first checking candidate nodes. In each
of the instances, each overlay node is assigned a failure
probability pi and a checking cost ci. Unless otherwise
specified, pi and ci follows one of the three distributions:
(a) pi ∼ U(0, 0.2) and ci = 1, (b) pi = 0.1 and ci ∼ U(0, 1),
as well as (c) pi ∼ U(0, 0.2) and ci ∼ U(0, 1), where
U(u1, u2), as defined in Section 4, denotes the uniform
distribution between u1 and u2.

To construct a logical tree, we first create a shortest-
path tree rooted at a randomly selected router based
on the given overlay link weights, and then randomly

choose from the shortest-path tree a subset of K paths
to be included in the logical tree. Our experiments will
study the results with different values of K. For the
heuristics that have multiple logical trees, we simply
repeat the logical tree construction by selecting a random
subset of routers to be the roots of the logical trees.
Finding the efficient set of trees that cover all network
components has been considered in [1], [6] and is beyond
the scope of this paper.

Given a single or multiple logical trees, we simulate
the faults by letting each overlay node fail independently
with its assigned failure probability. To ensure that the
inference algorithm is actually executed, we require that
at least one bad node resides in a logical tree. Given a
logical tree, we first retain only the bad paths and form
a bad tree. We then check the node (or nodes) returned
from the inference algorithm that is implemented using
different heuristics. For any located bad node, we “re-
pair” it by switching it to a good node. We repeatedly
update the set of bad paths and execute the inference
algorithm until all bad nodes are repaired.

Due to the large network size, we cannot apply the
brute-force inference algorithm in Algorithm 1 to de-
termine the proportion of correct identification as in
Sections 4 and 5. Therefore, our experiments mainly
focus on two metrics to evaluate our heuristics:
• Total checking cost, the sum of costs of checking the

node (or nodes) returned by the inference algorithm
until all bad nodes are repaired.

• Number of rounds, the number of times the infer-
ence algorithm is executed until all bad nodes are
repaired.

7.2 Experimental Results
In the following results, each data point is averaged
over 200 instances and is plotted with its 95% confidence
interval.

Experiment 1 (Comparison of single-tree-based
heuristics). We first consider the performance of the
heuristics when we only monitor a single logical tree.
Figure 9 shows the performance of Naive-Prob, Cand-
Pot, Pa-Naive-Prob, and Pa-Cand versus K, the num-
ber of paths that are included in a logical tree. As K
increases, more nodes are being monitored, and hence



9

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30  35

T
ot

al
 c

he
ck

in
g 

co
st

K = number of paths

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35

T
ot

al
 c

he
ck

in
g 

co
st

K = number of paths

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35

T
ot

al
 c

he
ck

in
g 

co
st

K = number of paths

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

(a) pi ∼ U(0, 0.2), ci = 1 (b) pi = 0.1, ci ∼ U(0, 1) (c) pi ∼ U(0, 0.2), ci ∼ U(0, 1)

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 r

ou
nd

s

K = number of paths

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 r

ou
nd

s

K = number of paths

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 r

ou
nd

s

K = number of paths

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

(d) pi ∼ U(0, 0.2), ci = 1 (e) pi = 0.1, ci ∼ U(0, 1) (f) pi ∼ U(0, 0.2), ci ∼ U(0, 1)

Fig. 9. Experiment 1: Comparison of Naive-Prob, Cand-Pot, Pa-Naive-Prob, and Pa-Cand in terms of the total checking
cost (see (a) to (c)) and the number of rounds (see (d) to (f)), where K = 5, 10, 15, 20, 25, and 30. For clarity of
presentation, data points are shifted slightly on x-axis.

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8

T
ot

al
 c

he
ck

in
g 

co
st

b

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8

T
ot

al
 c

he
ck

in
g 

co
st

b

Naive-Prob
Cand-Pot

Pa-Naive-Prob
Pa-Cand

(a) K = 5 (b) K = 20

Fig. 10. Experiment 2: Comparison of single-based heuristics in terms of the total checking cost under a contrived
checking cost distribution.

the total checking costs of all heuristics increase as
well. We note that the distributions of pi and ci can
influence the difference between the total checking costs
of the naive heuristics (i.e., Naive-Prob and Pa-Naive-
Prob) and candidate-based heuristics (i.e., Cand-Pot and
Pa-Cand). When pi is varied and ci is fixed (see Fig-
ure 9(a)), both naive and candidate-based heuristics have
nearly identical total checking cost. This also confirms
the effectiveness of conventional fault localization ap-
proaches, whose focus is to identify the most likely faults
without considering the variance of the cost component.
However, the candidate-based heuristics reduce the total
checking costs of the naive heuristics when ci is var-
ied, for instance, by 8-18% when pi is fixed and ci is
varied (see Figure 9(b)), and by 7-12% when both pi

and ci are varied (see Figure 9(c)). It should be noted
that such cost reduction can imply significant revenue
saving, given that the revenue loss due to a network

outage is generally huge [15]. This demonstrates the
competence of the candidate-based heuristics when the
physical components have varying checking costs (see
Section 3).

We also note that Naive-Prob and Cand-Pot, the se-
quential heuristics that infer one node at a time, take
more rounds to execute the inference algorithm as K
grows. On the other hand, Pa-Naive-Prob and Pa-Cand,
which return multiple nodes at a time, significantly
reduce the number of rounds, while only slightly increas-
ing the total checking cost (by less than 1% in general)
as compared to their respective sequential heuristics.
Furthermore, both Pa-Naive-Prob and Pa-Cand take a
similar number of rounds to execute the inference algo-
rithm, with less than one round of difference.

Experiment 2 (Comparison of single-tree-based
heuristics under a contrived checking cost distribu-
tion). We point out that some distributions of checking



10

costs can lead to a large performance improvement of
the candidate-based heuristics over the naive heuristics.
Intuitively, if checking costs are fixed for all nodes in a
bad tree, then both naive and candidate-based heuristics
prefer to first check the nodes near the root node, as
such nodes have higher conditional failure probabilities
On the other hand, if the nodes around the leaf positions
have small checking costs, then they may be preferred
to be first checked by the candidate-based heuristics
based on the potential calculation, but not by the naive
heuristics, which do not consider checking costs. We
examine this observation in this experiment using a
contrived checking cost distribution.

For a given logical tree T that we monitor, we first
identify the depth di of each node i, i.e., the path length
from root to node i (we let dr = 0 for root r). Also, we let
dmax be the maximum depth of all nodes in T . Then we
let the checking cost ci of node i be ci = (1.5−di/dmax)b,
where b is some exponent that we vary in our evaluation.
Note that as b increases, nodes closer to the root node
will have increasingly higher checking costs than those
near the leaf nodes. Here, we set pi ∼ U(0, 0.2), and
consider the cases where K = 5 and K = 20 in a logical
tree.

Figure 10 shows the total checking costs of different
heuristics versus b. The improvement of the candidate-
based heuristics over the naive heuristics increases with
b. Specifically, when b ≥ 4, Cand-Pot (resp. Pa-Cand)
reduces the total checking cost of Naive-Prob (resp. Pa-
Naive-Prob) by more than 30% when K = 5 and by more
than 20% when K = 20.

Experiment 3 (Comparison of multi-tree-based
heuristics). We now evaluate the performance of the
heuristics when we monitor multiple logical trees. Fig-
ure 11 illustrates the performance of Mt-Pa-Naive-Prob
and Mt-Pa-Cand with respect to the number of logical
trees, where we fix K = 20 in each logical tree. Similar to
Experiment 1, Mt-Pa-Cand can reduce the total checking
cost of Mt-Pa-Naive-Prob, for example, by 10-16% when
pi is fixed and ci is varied (see Figure 10(b)), and by
7-11% when both pi and ci are varied. Also, both Mt-Pa-
Naive-Prob and Mt-Pa-Cand call the inference algorithm
with about the same number of rounds.

Experiment 4 (Inaccuracies in failure probability es-
timation). In general, it is difficult to accurately estimate
the failure probabilities of all overlay nodes. In this
experiment, we study how our heuristics are affected
subject to the inaccurate failure probability estimation.
We let pi and p′i be the actual and estimated failure
probability for node i, respectively. We let pi ∼ U(0, 0.2).
We then consider three cases (i) p′i = pi (i.e., no error), (ii)
p′i = 0.1, and (iii) p′i = 0.2. We assume that ci ∼ U(0, 1).

Figure 12(a) shows the performance of the single-tree-
based heuristics Naive-Prob and Cand-Pot versus K (as
in Experiment 1). As expected, the inaccurate estimation
of failuire probabilities increases the total checking costs
of all heuristics. However, Cand-Pot still reduces the
total checking costs of Naive-Prob in all cases (by 14-

18%). Figure 12(b) shows the performance of the multi-
tree-based heuristics Pa-Naive-Prob and Pa-Cand (as in
Experiment 2, where we also set K= 20 here), and Pa-
Cand still gives smaller total checking costs than Pa-
Naive-Prob for different estimates of failure probabilities.

Summary: We show that the candidate-based heuris-
tics can decrease the total checking cost of the naive
heuristics that focus on most likely faults, especially
when the overlay nodes have varying checking costs.
Also, multiple node inference can speed up the fault
correction process, with only a slight increase in the
total checking cost as compared to single node inference.
Furthermore, we observe similar improvement of the
candidate-based heuristics over the naive heuristics even
though the estimates of failure probabilities are inaccu-
rate.

8 RELATED WORK

Our end-to-end inference solution is inspired by [7], [10],
[16], [26], which also use end-to-end measurements to
infer link statistics or the underlying network topology.
We extend this end-to-end approach to the application
of network fault management.

Fault diagnosis is an important topic in network man-
agement (see survey in [31]). For example, the codebook
approach [35] and the Bayesian approach [21] consider
a deterministic setting where network faults are equally
likely to occur. To address probabilistic faults, [18], [19],
[32] seek to localize the most probable subset of faults
given the observed symptoms. Katzela and Schwartz
[19] show that such a problem is generally NP-hard.
In view of this, Steinder and Sethi [32] formulate the
problem based on bipartite belief networks and propose
efficient techniques on localizing end-to-end multi-layer
failures. Kandula et al. [18] propose to infer the most
likely faulty IP links with the assumption of significantly
small failure probabilities. All these schemes focus on
localizing faults. In this paper, in addition to probabilistic
fault localization, we take the subsequent step of repair-
ing faults as well. We show that checking first the most
likely faults does not give optimal results in general.

References [25], [36] consider various dimensions of
performance of failure detection in overlay networks,
in which nodes periodically probe their neighbors to
determine failures. Our work considers the case where
nodes are externally managed and they need to be
manually checked in order to determine failures.

Fault correction has also been studied extensively in
reliability engineering (see survey in [24]). The work
that is closest to ours is in [17], [34], whose objective
is also to minimize the cost of correcting all faulty units.
However, the optimality assumes a series system, which
is equivalent to a single path in a network setting. In
contrast, we consider a routing tree whose paths are
shared and dependent.



11

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7  8  9

T
ot

al
 c

he
ck

in
g 

co
st

Number of logical trees

Mt-Pa-Naive-Prob
Mt-Pa-Cand

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8  9

T
ot

al
 c

he
ck

in
g 

co
st

Number of logical trees

Mt-Pa-Naive-Prob
Mt-Pa-Cand

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8  9

T
ot

al
 c

he
ck

in
g 

co
st

Number of logical trees

Mt-Pa-Naive-Prob
Mt-Pa-Cand

(a) pi ∼ U(0, 0.2), ci = 1 (b) pi = 0.1, ci ∼ U(0, 1) (c) pi ∼ U(0, 0.2), ci ∼ U(0, 1)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 r

ou
nd

s

Number of logical trees

Mt-Pa-Naive-Prob
Mt-Pa-Cand

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 r

ou
nd

s

Number of logical trees

Mt-Pa-Naive-Prob
Mt-Pa-Cand

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 r

ou
nd

s

Number of logical trees

Mt-Pa-Naive-Prob
Mt-Pa-Cand

(d) pi ∼ U(0, 0.2), ci = 1 (e) pi = 0.1, ci ∼ U(0, 1) (f) pi ∼ U(0, 0.2), ci ∼ U(0, 1)

Fig. 11. Experiment 3: Comparison of Mt-Pa-Naive-Prob and Mt-Pa-Cand in terms of the total checking cost (see (a)
to (c)) and the number of rounds (see (d) to (f)).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  5  10  15  20  25  30  35

T
ot

al
 c

he
ck

in
g 

co
st

K = number of paths

Naive-Prob, pi’ = pi
Cand-Pot, pi’ = pi

Naive-Prob, pi’ = 0.1
Cand-Pot, pi’ = 0.1

Naive-Prob, pi’ = 0.2
Cand-Pot, pi’ = 0.2

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8  9

T
ot

al
 c

he
ck

in
g 

co
st

Number of logical trees

Pa-Naive-Prob, pi’ = pi
Pa-Cand, pi’ = pi

Pa-Naive-Prob, pi’ = 0.1
Pa-Cand, pi’ = 0.1

Pa-Naive-Prob, pi’ = 0.2
Pa-Cand, pi’ = 0.2

(a) Single-tree case (b) Multi-tree case

Fig. 12. Experiment 4: Comparison of naive and candidate-based heuristics in terms of the total checking cost with
inaccurate failure probability estimation.

9 CONCLUSIONS

We present the optimality results for an end-to-end infer-
ence approach to correct (i.e., diagnose and repair) prob-
abilistic network faults at minimum expected cost. One
motivating application of using this end-to-end inference
approach is an externally managed overlay network,
where we cannot directly access and monitor nodes that
are independently operated by different administrative
domains, but instead we must infer failures via end-
to-end measurements. We show that first checking the
node that is most likely faulty or has the least checking
cost does not necessarily minimize the expected cost of
correcting all faulty nodes. In view of this, we construct
a potential function for identifying the candidate nodes,
one of which should be first checked by an optimal
strategy. Due to the difficulty of finding the best node
from the set of candidate nodes, we propose several
efficient heuristics that are suitable for correcting fault
nodes in large-scale overlay networks. We show that the

candidate node with the highest potential is actually the
best node in at least 95% of time, and that checking first
the candidate nodes can reduce the cost of correcting
faulty nodes as compared to checking first the most
likely faulty nodes.

APPENDIX A
CALCULATION OF TWO QUANTITIES
Conditional Failure Probabilities. To compute the con-
ditional failure probability of a node given a bad tree T ,
we first denote the nodes in T by 1 to |N | in breadth-
first-search order. Let Ti be the subtree rooted at node
i, for 1 ≤ i ≤ |N |. Thus, T = T1. Let Ci be the set such
that k ∈ Ci if node k is a child of node i. Let Xi be the
event that node i is bad (i.e., Pr(Xi) = pi). Let Ti be the
event that subtree Ti is bad. Thus, the conditional failure
probability of node i given a bad tree T is:

Pr(Xi|T1) =
Pr(T1|Xi)pi

Pr(T1)
(by Bayes’ rule),



12

where

Pr(Ti) = pi + (1− pi)
∏

k∈Ci
Pr(Tk), ∀ i ∈ [1, |N |],

Pr(Ti|Xj) =

{
Pr(Ti), if i > j
1, if i = j
pi + (1− pi)

∏
k∈Ci

Pr(Tk|Xj), if i < j.

The idea here is that subtree Ti is a bad tree if (i) node i
is bad or (ii) node i is good and each of its child subtrees
is a bad tree. Using dynamic programming [11], we can
compute the conditional failure probability of a node in
Θ(|N |2) time.

Expected Cost of a Diagnosis Sequence. Let S =
〈l1, l2, · · · , l|N |〉 be a diagnosis sequence on T =
(N, {pi}, {ci}). Let T be the event that T is a bad tree.
Let T D

li
be the event that the subtree rooted at node li

is a bad tree after nodes l1, · · · , li−1 have been examined
(i.e., checked or skipped). Let AD

li
be the event that every

ancestor j of node li, such that j ∈ {li+1, · · · , l|N |} (i.e.,
node j is examined after node li), is a good node.

When node li is to be examined, nodes l1, · · · , li−1 are
known to be good nodes. To account for the presence
of any known good node i in a bad tree T during the
calculation, we can set its failure probability pi = 0. Thus,

Pr(T D
li

) = Pr(Tli |pl1 = · · · = pli−1 = 0), and
Pr(AD

li
) = Pr(Ali |pl1 = · · · = pli−1 = 0),

where Tli is the event that the subtree rooted at node li
is bad, and Ali is the event that all ancestors of node li
are good.

If the subtree rooted at node li remains a bad tree or
at least one of the ancestors of node li is a bad node,
then node li still lies on bad paths only and it has to be
checked. Thus,

Pr(node li is checked
∣∣T , nodes l1, · · ·, li−1 known to be good)

=Pr(T D
li
∪ AD

li
|T ).

Suppose that T is a bad tree. Thus, the expected cost
of S given that T is a bad tree is:

∑n

i=1
cli Pr(T D

li
∪ AD

li
|T )

=
∑n

i=1
cli

[
1− Pr(T D

li
∩ AD

li

∣∣T )
]

=
∑n

i=1
cli

[
1− Pr(AD

li

∣∣T ) + Pr(T D
li
∩ AD

li

∣∣T )
]

=
∑n

i=1
cli

[
1− Pr(T

∣∣AD
li

) Pr(AD
li

)

Pr(T )
+

Pr(T
∣∣TD

li
,AD

li
) Pr(TD

li
) Pr(AD

li
)

Pr(T )

]
.

Note that T D
li

depends on node li and its descendants,
while AD

li
depends on the ancestors of node li. Thus, T D

li
and AD

li
are independent. We can obtain Pr(T

∣∣AD
li

) by
setting pj = 0 for every ancestor j of node li such that j ∈
{li+1, · · · , l|N |}. and computing Pr(T ) using the modified
failure probabilities. We can compute Pr(T ∣∣T D

li
,AD

li
) in

the same way, except that we additionally set pli = 1 for
the event T D

li
. Also, we can compute Pr(T D

li
) and Pr(AD

li
)

as previously stated. Computing Pr(T ) takes Θ(|N |2)
time. Thus, the complexity of computing the expected
cost is Θ(|N |3).

APPENDIX B
PROOFS

Part of the notation used in the proofs is defined in
Section 5. In addition, we say nodes i and j are ancestrally
related if node i is either an ancestor or descendant of
node j (i.e., there exists a path in T that covers both
nodes i and j), or ancestrally unrelated otherwise. To
illustrate the ancestral relationships within a tree, we use
the tree in Figure 3 as an example. Node 1 (resp. node 3)
is an ancestor (resp. descendant) of node 3 (resp. node 1).
Node 3 is ancestrally related to node 1, but is ancestrally
unrelated to node 4.

Sketch of Proof of Theorem 1: Consider two di-
agnosis sequences Sj = 〈j, k, l3, · · · l|N |〉 and Sk =
〈k, j, l3, · · · , l|N |〉. If nodes j and k are ancestrally un-
related, then both Sj and Sk have the same expected
cost since having checked one node has no impact on
whether we will check another node on a different path.

On the other hand, if nodes j and k are ancestrally
related, then given that T is a bad tree and that node
j (resp. k) has been checked in Sj (resp. Sk), we skip
node k (resp. j) and save cost ck (resp. cj) if and only
if checking node j (resp. k) reveals a good path in T .
This requires the following conditions to hold: (i) node j
(resp. k) is bad, (ii) node k (resp. j) is good, and (iii) there
exists a path Wjk containing nodes j and k such that all
nodes other than nodes j and k on Wjk are good. Let
Wjk be the event that condition (iii) holds. Note that Wjk

are independent of Xj and Xk since Wjk corresponds to
the nodes other than nodes j and k. Thus,

E[cost of Sj |T ]− E[cost of Sk|T ]
= −ck Pr(Xj ,Xk,Wjk|T ) + cj Pr(Xj ,Xk,Wjk|T )
= 1

Pr(T )

[− ck Pr(T |Xj ,Xk,Wjk) Pr(Xj ,Xk,Wjk) +
cj Pr(T |Xj ,Xk,Wjk) Pr(Xj ,Xk,Wjk)

]
(by Bayes’ rule)

= cjck Pr(Xj) Pr(Xk) Pr(Wjk)
Pr(T )

[− Pr(T |Xj ,Xk,Wjk) Pr(Xj)

cj Pr(Xj)
+

Pr(T |Xj ,Xk,Wjk) Pr(Xk)

ck Pr(Xk)

]

(since Xj , Xk, and Wjk are independent)

= cjck Pr(Wjk) Pr(Xj) Pr(Xk)
Pr(T ) [−φ(j, T ) + φ(k, T )] · · · (*).

To understand (*), without loss of generality, let node
j be an ancestor of node k. The event Wjk implies
that all ancestors of node j are good, and the event
Wjk ∩ Xj implies that all ancestors of node k (includ-
ing node j) are good. Given that node j (resp. node
k) is bad, whether its descendants are good has no
impact on Pr(T |Xj ,Aj) (resp. Pr(T |Xk,Ak)). Therefore,
Pr(T |Xj ,Aj) = Pr(T |Xj ,Xk,Wjk) and Pr(T |Xk,Ak) =
Pr(T |Xj ,Xk,Wjk).

From (*), in order that node j should be checked before
node k, the expected cost of Sj should be no greater than
that of Sk, or equivalently, φ(j, T ) ≥ φ(k, T ). Therefore,
it is intuitive to first check a node with high potential.

Proof of Corollary 1: Note that if T is a single path,
then Pr(T |Xi,Ai) = 1 for all i. Thus, the best node will be



13

the only candidate node whose potential is maxi
pi

ci(1−pi)
.

Proof of Corollary 2: Let node r be the root node.
Then Pr(T |Xr,Ar) = 1. Thus, its potential φ(r, T ) is no
less than that of any other non-root node in T . Therefore,
node r is the only candidate node in T and is hence the
best node to be first checked.

Proof of Corollary 3: Consider a two-level tree T
whose root node r is attached to |N | − 1 nodes. If node
r has the maximum conditional failure probability given
that T is a bad tree, then for every leaf node i 6= r, we

have Pr(Xr|T ) ≥ Pr(Xi|T ) ⇔ pr

Pr(T ) ≥
prpi+(1−pr)

∏
j 6=r

pj

Pr(T )

⇔ pr

c(1−pr) ≥
∏

j 6=r
pj

c(1−pi)
⇔ φ(r, T ) ≥ φ(i, T ). Thus, the root

node also has the maximum potential, implying that it
is the only candidate node. By Theorem 1, it is also the
best node.

On the other hand, suppose that some leaf node
k 6= r has the maximum conditional failure probabil-
ity. Suppose the contrary that the optimal diagnosis
sequence S∗ does not start with node k. Hence, let
S∗ = 〈l1, l2, · · · , lj−1, k, lj+1, · · · , l|N |〉. We want to show
that moving node k to the front of S∗ does not increase
the expected cost of S∗. We consider two cases:
• Case 1: Node l1 is the root node r. Consider the diag-

nosis sequence S′ = 〈k, r, l2, · · · , lj−1, lj+1, · · · , l|N |〉.
Note that for any node lm, where m = 2, · · · , j −
1, j + 1, · · · , |N |, if it is checked (resp. skipped) in
S∗, it will also be checked (resp. skipped) in S′, and
vice versa. Thus, we skip node r (resp. k) in S′ (resp.
S∗) and save cost c if and only if node r (resp. k)
is good. The difference between the expected cost
in S′ and S∗ is E[cost of S′|T ] − E[cost of S∗|T ]
= −c Pr(Xr|T ) + c Pr(Xk|T ) ≤ 0, since Pr(Xk|T ) is
maximum.

• Case 2: Node l1 6= r is a leaf node. In S∗, we
claim that node l2 is the root node r. After l1 is
checked, the next node in S∗ will be a candidate
node in T ′ = (N, {pi|pl1 = 0}, {ci}). Since every
leaf node in T ′ has zero potential, the root node
r is the only candidate node, and hence l2 = r.
We then construct a diagnosis sequence S′′ =
〈k, r, l1, l3, · · · , lj−1, lj+1, · · · , l|N |〉. Similar to Case 1,
the difference of the expected cost in S′′ and S∗ is
E[cost of S′′|T ] − E[cost of S∗|T ] = −c Pr(Xl1 |T ) +
c Pr(Xk|T ) ≤ 0, since Pr(Xk|T ) is maximum.

Since there exists a diagnosis sequence that starts with
node k and has no greater expected cost than does S∗,
node k is a best node.

ACKNOWLEDGMENT

The authors would like to thank the anonymous re-
viewers for their useful comments on improving this
paper. This work was supported in part by the National
Science Foundation under grant numbers CNS-0626795
and CCR-0615126.

REFERENCES

[1] M. Adler, T. Bu, R. Sitaraman, and D. Towsley. Tree Layout for
Internal Network Characterizations in Multicast Networks. In
Proc. of NGC’01, 2001.

[2] D. Andersen. Mayday: Distributed Filtering for Internet Services.
In 4th Usenix Symposium on Internet Technologies and Systems, Mar
2003.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Re-
silient Overlay Networks. In Proc. of the 18th ACM Symposium on
Operating Systems Principles (SOSP), Oct 2001.

[4] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy.
Highly Secure and Efficient Routing. In Proc. of IEEE INFOCOM,
March 2004.

[5] A.-L. Barabási and R. Albert. Emergence of Scaling in Random
Networks. Science, 286:509–512, Oct 1999.

[6] Y. Bejerano and R. Rastogi. Robust Monitoring of Link Delays
and Faults in IP Networks. In Proc. of IEEE INFOCOM, 2003.

[7] R. Cáceres, N. Duffield, J. Horowitz, and D. Towsley. Multicast-
based Inference of Network-Internal Loss Characteristics. IEEE
Trans. on Information Theory, 45(7):2462–2480, November 1999.

[8] K. Carlberg. Emergency Telecommunications Services (ETS) Re-
quirements for a Single Administrative Domain, Jan 2006. RFC
4375.

[9] Clip2. The Gnutella Protocol Specification v0.4. Available on
http://www.limewire.com.

[10] M. Coates, A. O. Hero, R. Nowak, and B. Yu. Internet Tomogra-
phy. IEEE Signal Processing Magazine, pages 47–65, May 2002.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. MIT Press, 2nd edition, 2001.

[12] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A Taxonomy of Botnet
Structures. In Proc. of NDSS, 2007.

[13] W. Du and A. Mathur. Testing for Software Vulnerability Using
Environment Perturbation. In Proc. of the International Conference
on Dependable Systems and Networks, 2000.

[14] Z. Duan, Z.-L. Zhang, and Y. Hou. Service Overlay Networks:
SLAs, QoS, and Bandwidth Provisioning. IEEE/ACM Trans. on
Networking, 11(6):870–883, Dec 2003.

[15] T. Dübendorfer, A. Wagner, and B. Plattner. An Economic Damage
Model for Large-Scale Internet Attacks. In Proc. of IEEE WETICE,
Jun 2004.

[16] N. Duffield, J. Horowitz, F. L. Presti, and D.Towsley. Multicast
Topology Inference from Measured End-to-End Loss. IEEE Trans.
on Information Theory, 48:26–45, January 2002.

[17] B. Gnedenko and I. A. Ushakov. Probabilistic Reliability Engineer-
ing. John Wiley & Sons, Inc., 1995.

[18] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A Tool for Failure
Diagnosis in IP Networks. In ACM SIGCOMM MineNet-05, Aug
2005.

[19] I. Katzela and M. Schwartz. Schemes for Fault Identification
in Communication Networks. IEEE/ACM Trans. on Networking,
3(6):733–764, 1995.

[20] A. Keromytis, V. Misra, and D. Rubenstein. SOS: An Architecture
for Mitigating DDoS Attacks. IEEE JSAC, Special Issue on Service
Overlay Networks, 22(1), January 2004.

[21] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP
Fault Localization Via Risk Modeling. In Proc. of NSDI, 2005.

[22] P. P. C. Lee, V. Misra, and D. Rubenstein. Toward
Optimal Network Fault Correction via End-to-End
Inference. Computer Science Technical Report,
Columbia University, May 2006. URL: http://dna-
wsl.cs.columbia.edu/pubsdb/citation/paperfile/121/tr.ps.

[23] P. P. C. Lee, V. Misra, and D. Rubenstein. Toward Optimal
Network Fault Correction via End-to-End Inference. In Proc. of
IEEE INFOCOM, May 2007.

[24] S. Lee and K. G. Shin. Probabilistic Diagnosis of Multiprocessor
Systems. ACM Computing Survey, 26(1):121–139, March 1994.

[25] Z. Li, L. Yuan, P. Mohapatra, and C.-N. Chuah. On the Analysis
of Overlay Failure Detection and Recovery. Computer Networks,
51:3823–3843, 2007.

[26] F. LoPresti, N. Duffield, J. Horowitz, and D. Towsley.
Multicast-based Inference of Network-Internal Delay Distribu-
tions. IEEE/ACM Trans. on Networking, 10(6):761–775, Dec 2002.

[27] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Ap-
proach to Universal Topology Generation. In Proc. of MASCOTS,
Aug 2001.



14

[28] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih:
Detecting and Isolating Malicious Routers. In Proc. of the IEEE
Conference on Dependable Systems and Networks (DSN), June 2005.

[29] M. Rabbat, R. Nowak, and M. Coates. Multiple Source, Multiple
Destination Network Tomography. In Proc. of IEEE INFOCOM,
2004.

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A Scalable Content-Addressable Network. In Proc. of ACM
SIGCOMM, 2001.

[31] M. Steinder and A. Sethi. A Survey of Fault Localization Tech-
niques in Computer Networks. Science of Computer Programming,
Special Edition on Topics in System Administration, 53(2):165–194,
Nov 2004.

[32] M. Steinder and A. S. Sethi. Probabilistic Fault Localization
in Communication Systems Using Belief Networks. IEEE/ACM
Trans. on Networking, 12(5):809–822, Oct 2004.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-To-Peer Lookup Service for Internet
Applications. In Proc. of ACM SIGCOMM, 2001.

[34] I. A. Ushakov. Handbook of Reliability Engineering. John Wiley &
Sons, Inc., 1994.

[35] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.
High Speed and Robust Event Correlation. IEEE Communications
Magazine, 34(5):82–90, May 1996.

[36] S. Q. Zhuang, D. Geels, I. Stoica, and R. H. Katz. On Failure
Detection Algorithms in Overlay Networks. In Proc. of IEEE
INFOCOM, March 2005.


