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Abstract

Cloud block storage systems support diverse types of applications in modern cloud services. Characterizing
their I/O activities is critical for guiding better system designs and optimizations. In this paper, we present
an in-depth comparative analysis of production cloud block storage workloads through the block-level I/O
traces of billions of I/O requests collected from two production systems, Alibaba Cloud and Tencent Cloud
Block Storage. We study their characteristics of load intensities, spatial patterns, and temporal patterns. We
also compare the cloud block storage workloads with the notable public block-level I/O workloads from the
enterprise data centers at Microsoft Research Cambridge, and identify the commonalities and differences
of the three sources of traces. To this end, we provide 6 findings through the high-level analysis and 16
findings through the detailed analysis on load intensity, spatial patterns, and temporal patterns. We discuss
the implications of our findings on load balancing, cache efficiency, and storage cluster management in cloud
block storage systems.

1 Introduction
Traditional desktop and server applications, such as virtual desktops, operating systems, web services,
relational databases, and key-value stores, are now moving to the cloud. Cloud block storage systems
[3, 4, 21, 28, 29, 52, 53] form an infrastructure that allows cloud service providers to manage large-scale
physical storage clusters. They also provide virtual disks, referred to as volumes, for clients to host various
types of applications. To allow performance optimizations and efficient resource provisioning of cloud block
storage systems, it is critical to characterize and understand the I/O behaviors of the applications in production
environments.

Several field studies have analyzed the I/O behaviors of various architectures via the collection and
characterization of block-level I/O traces [1, 16, 19, 20, 33, 54]. In particular, the public block-level I/O
traces released by Microsoft Research Cambridge [33] have received wide attention from researchers and
practitioners. The traces, which we refer to as MSRC, have been extensively analyzed to motivate storage
system designs and optimizations, such as I/O scheduling [10, 23, 24, 33], caching [36, 37], erasure-coded
storage [12, 53], as well as cloud block storage [21].

However, the MSRC traces, which were collected from enterprise data centers more than a decade ago,
may not necessarily reflect the actual I/O behaviors of today’s cloud block storage systems. Modern cloud
environments often host much more diverse types of applications, some of which feature unique characteristics
(e.g., short-lived tasks [32]) that are not commonly found in traditional data center environments. Also,
the workloads in MSRC are generally read-dominant [33], while the workloads in cloud environments are
often write-dominant due to the heavy use of read caches in cloud applications [25, 46]. Such mismatches

*An earlier version of this article appeared in [22]. In this extended version, we further include the workload traces from Tencent
Cloud Block Storage [52] in our analysis. We extend our findings to show the commonalities and differences between the cloud
block storage workloads from Alibaba Cloud and Tencent Cloud Block Storage.



motivate the need of collecting and analyzing comprehensive block-level I/O traces from real-world cloud
block storage systems in large-scale production.

In this paper, we present an in-depth comparative study on the block-level I/O traces from two production
cloud block storage systems. The first set of traces, which we refer to as AliCloud, is collected by ourselves
from a production cloud block storage system deployed at Alibaba Cloud [22] and covers one-month I/O
activities of 1,000 volumes. The second set of traces, which we refer to as TencentCloud, is collected
from the Tencent Cloud Block Storage by Zhang et al. [52] and covers I/O activities of 4,995 volumes
over around nine days. Both sets of traces feature a large data scale, totaling billions of I/O requests
and hundreds of terabytes of I/O traffic. We compare the cloud block storage workload characteristics of
both AliCloud and TencentCloud traces with those of the MSRC traces, and identify the commonalities
and differences of the three sources of traces. To this end, we provide 6 findings through the high-level
analysis on the basic I/O characteristics of the traces, and further provide 16 findings through the detailed
analysis on the I/O behaviors in terms of the load intensities, spatial patterns, and temporal patterns. We
provide insights into load balancing, cache efficiency, and storage cluster management in cloud block
storage systems. Note that Zhang et al. [52] mainly use the TencentCloud traces for designing efficient
cache allocation schemes in cloud block storage systems, but do not provide an in-depth analysis on the
TencentCloud traces. To the best of our knowledge, compared with prior measurement studies on block-level
I/O traces [1, 16, 19, 20, 33, 49, 54] (see details in §5), our trace analysis is one of the largest measurement
studies on block-level I/O traces reported in the literature. We make the source code of all our analysis scripts
available at: http://adslab.cse.cuhk.edu.hk/software/blockanalysis.

We highlight some major findings of our trace analysis. From the high-level analysis, small I/O requests
dominate in all traces. Both AliCloud and TencentCloud are write-dominant, while MSRC is read-dominant.
For load intensities, all traces show similar amounts of I/O traffic, while AliCloud and TencentCloud show
more diverse burstiness across volumes and have higher activeness than MSRC. For spatial patterns, all
traces show aggregations of reads and writes in small working sets. In particular, TencentCloud shows the
highest level of aggregations of reads, implying a more skewed access pattern in reads. All traces also show
high fractions of random I/Os and varying patterns in the update coverage across volumes. For temporal
patterns, all traces have varying temporal update patterns across volumes and different access tendencies for
the written blocks. For example, each written block in AliCloud and TencentCloud is likely to be followed by
a write, while that in MSRC is about equally likely to be followed by either a read or a write.

The rest of the paper proceeds as follows. In §2, we present our cloud block storage architecture and
its design considerations. In §3, we introduce the traces for our analysis, and present 6 findings via our
high-level analysis. In §4, we conduct an in-depth analysis and provide 16 findings on load intensities, spatial
patterns, and temporal patterns. We emphasize the commonalities and differences of the findings between
AliCloud and TencentCloud. We further discuss the implications of our findings in terms of load balancing,
cache efficiency, and storage cluster management in cloud block storage systems. In §5, we review related
work. In §6, we conclude the paper.

2 Background and Methodology
We introduce the cloud block storage architecture considered in the paper (§2.1). We further elaborate on
how our trace analysis should characterize the I/O activities in response to the design considerations for cloud
block storage (§2.2).

2.1 Cloud Block Storage
Figure 1 depicts the architecture of a cloud block storage system considered in the paper. The cloud block
storage system serves as a middleware layer that bridges: (i) the virtual disks (referred to as volumes) that are
perceived by upper-layer applications, and (ii) the storage clusters that provide physical storage space owned
by cloud service providers. Each application is allocated with a dedicated volume. It issues read or write
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Figure 1: Architecture of a cloud block storage system. It comprises multiple volumes that host a mix of
cloud applications (e.g., virtual desktops, operating systems, web services, relational databases, and key-value
stores).

requests through the dedicated volume to the storage clusters. Each volume is typically replicated across
multiple storage clusters for fault tolerance. For performance and reliability, today’s storage cluster are often
backed by flash-based solid-state drives (SSDs) instead of hard disk drives (HDDs) [15, 27, 48, 49].

In production, a cloud block storage system may manage diverse types of upper-layer cloud applications
(Figure 1). The I/O characteristics of such applications are often largely different, as we show in this paper.

2.2 Analysis Methodology
Cloud block storage systems should maintain quality-of-services guarantees (e.g., low-latency requests
and fairness) and efficient resource utilizations (e.g., long device lifetime). We highlight three design
considerations for cloud block storage systems, namely load balancing, cache efficiency, and storage cluster
management. In the following, we explain how each of the design considerations can be addressed in our
trace analysis of I/O activities in cloud block storage.

Load balancing. Maintaining load balancing across storage devices is important for availability and perfor-
mance. If load imbalance exists, some storage devices may be overloaded by a large number of I/O requests
and cannot serve incoming requests in a timely manner, thereby increasing the overall I/O latencies. In
addition, the overloading of I/O requests may aggravate flash wearing [48], leading to reduced endurance.
Since load balancing addresses the performance differences due to the uneven distribution of I/O traffic, our
trace analysis should examine the load intensities of I/O traffic.

Cache efficiency. To speed up I/O performance, storage systems typically cache frequently accessed data
based on efficient resource allocation schemes and admission policies [5,44]. However, the high variations of
I/O characteristics may introduce improper cache space allocation and cache management policies, which
degrade hit ratios and increase the overall I/O latencies. To investigate how the caching design can leverage
workload characteristics, our trace analysis should address the spatial and temporal aggregations of I/O traffic.

Storage cluster management. Enterprise storage clusters increasingly move to flash-based storage, which
is sensitive to varying workload patterns in both performance and endurance. In particular, the update
patterns can determine the effectiveness of garbage collection and wear-leveling in flash [17]. Storage cluster
management should address the variations of workload patterns, so as to maintain high performance and
endurance of the underlying flash devices. Thus, our trace analysis should focus on the spatial and temporal
patterns for update requests. Also, as small and random I/Os can degrade the performance and endurance of
flash storage [31], our trace analysis should also examine the randomness of I/Os.

3 Traces
We describe the three sets of traces used in our analysis and state the limitations of our trace analysis (§3.1).
We then present a high-level analysis on the basic statistics as well as the commonalities and differences on
all three traces (§3.2).
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3.1 Trace Overview
Our trace analysis is based on three sets of block-level I/O traces collected from different production
environments. For brevity, we refer to the traces as AliCloud, TencentCloud, and MSRC in short in the
following discussion.

AliCloud. The traces were collected by ourselves from a cloud block storage system deployed at Alibaba
Cloud over a one-month period in January 2020. The traces are now released at [2]. They comprise block-level
I/O requests collected from 1,000 volumes, each of which has a raw capacity from 40 GiB to 5,000 GiB. The
workloads span diverse types of cloud applications (§2.1). Each collected I/O request specifies the volume
number, request type, request offset, request size, and timestamp (in units of microseconds).

TencentCloud. The traces were collected from the cloud block storage system at Tencent Cloud Block
Storage [52] from 12:00 AM on October 1, 2018 to 1:00 AM on October 10, 2018 in the GMT+8 time zone
(i.e., 9.04 days in total); note that the requests are missing between 1:00 AM and 2:00 AM on October 8,
2018. The traces can be downloaded from the SNIA IOTTA repository [40]. They comprise block-level I/O
requests collected from 4,995 volumes. The workloads are based on a mixture of cloud applications, including
applications dominated by random accesses and applications with large amount of I/O activity [52]. Each
collected I/O request contains the volume number, request type, request offset, request size, and timestamp as
in the AliCloud traces, except that the timestamp in the TencentCloud traces is in units of seconds. However,
the TencentCloud traces do not provide the raw capacities of individual volumes.

MSRC [33]. The traces were collected by Microsoft Research Cambridge from a data center of Microsoft
Windows servers over a one-week period in February 2007 and can be downloaded from the SNIA IOTTA
repository [30]. They comprise block-level I/O requests from 36 volumes over 179 disks in 13 servers. The
workloads span a variety of applications, including home directories, project directories, web services, source
control, media services, etc. Each collected I/O request includes the volume number, request type, request
offset, request size, and timestamp as in the AliCloud and TencentCloud traces; it also includes the response
time of the request. Both the timestamp and the response time are specified in units of 100 ns, based on the
Windows Filetime timestamp format used by Microsoft Windows servers.

Limitations of our trace analysis. Our trace analysis has several limitations. First, both the AliCloud and
TencentCloud traces do not record the response times of the I/O requests as in MSRC, so we cannot conduct
latency analysis on I/O requests in actual deployment. In particular, the timestamp field in the TencentCloud
traces is in units of seconds, so it is difficult to conduct fine-grained analysis on the inter-arrival times of
requests in the TencentCloud traces. Also, both traces do not indicate the specific applications running atop
individual volumes, so we cannot investigate the relationship between specific application workloads and
their I/O patterns. Furthermore, all three traces do not include the caching policies, cache hit/miss ratios (i.e.,
we cannot study the impact of caching in actual deployment) and the age or usage of each volume (i.e., we
cannot study the relationships between I/O patterns and volume ages). Finally, all three traces do not capture
the information of physical storage devices (e.g., data placement and failure statistics), so we cannot study
the performance and reliability correlations in physical storage.

3.2 High-level Comparative Analysis
We now present a high-level comparative analysis on AliCloud, TencentCloud, and MSRC by collectively
analyzing the I/O requests of all volumes in each set of traces and presenting the overall basic statistics. Our
goal is to examine the basic properties of the cloud block storage workloads in AliCloud and TencentCloud
as well as the classical enterprise data center workloads in MSRC. To this end, we identify the commonalities
and differences of all three traces.

Table 1 summarizes different categories of basic statistics in AliCloud, TencentCloud, and MSRC,
including: (i) the numbers of reads and writes, (ii) the total amounts of data read, written, and updated, as
well as (iii) the working set sizes (WSSs) of reads, writes, and updates (an update request refers to a write
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AliCloud TencentCloud MSRC

#Volumes 1,000 4,995 36
Duration (days) 31 9.04 7

#Reads (millions) 5,058.6 10,030.2 304.9
#Writes (millions) 15,174.4 23,592.0 128.9
Read Traffic (TiB) 161.6 282.3 9.04
Write Traffic (TiB) 455.5 837.2 2.39

Update Traffic (TiB) 429.2 804.2 2.01
Total WSS (TiB) 29.5 38.7 2.87
Read WSS (TiB) 10.1 14.6 2.82
Write WSS (TiB) 26.3 33.0 0.38

Update WSS (TiB) 18.6 21.2 0.17

Table 1: Basic statistics of AliCloud, TencentCloud, and MSRC.
AliCloud TencentCloud MSRC

Read WSS over total WSS (A.1) 34.3% 37.6% 98.4%
75th percentiles of read/write sizes (A.2) 12 KiB/16 KiB 32 KiB/12 KiB 64 KiB/20 KiB
Volumes with short active periods (A.3) 15.7% 1.7% 0.0%

Write-dominant volumes (A.4) 91.5% 92.3% 52.8%
Higher fractions of WSS in larger volumes (A.5) Yes - -

Larger requests in larger volumes (A.6) Yes - -

Table 2: Summary of the key properties of AliCloud, TencentCloud, and MSRC in Findings A.1-A.6.

request to a block that has been written at least once). We define the total read, write, and update WSSs as the
numbers of unique logical addresses being accessed (i.e., read, written, and updated, respectively) by all I/O
requests of the traces multiplied by the block size 4 KiB. Table 2 further summarizes the key properties of all
three traces observed in our high-level analysis.

In terms of scale, both AliCloud and TencentCloud have much larger scale than MSRC in various aspects,
including the number of volumes, the trace duration, the total number of I/O requests, and the total I/O traffic
size. For example, AliCloud contains 20.2 billion I/O requests, 46.6× the total number of I/O requests in
MSRC. It also has more volumes (27.8×), a larger total I/O traffic size (54.1×), and a larger WSS (10.3×),
compared with those in MSRC. TencentCloud has an even larger scale than AliCloud in terms of the number
of volumes (5.0×), the total number of I/O requests (1.7×), and the total I/O traffic size (1.8×), except that
its duration only lasts for 9.04 days. In the following, we elaborate the I/O characteristics of the three traces.
Finding A.1: Reads span a small proportion of working sets in both AliCloud and TencentCloud.

Referring to Table 1, reads in AliCloud and TencentCloud only occupy 34.3% and 37.6% of the total
WSS, respectively, while reads in MSRC occupy a much larger proportion (98.4%) of the total WSS. On the
other hand, writes in AliCloud and TencentCloud occupy 89.4% and 85.2% of the total WSS, respectively.
The results indicate that a substantial amount of written data is never read again in both AliCloud and
TencentCloud. One possible reason is that some applications tend to only write data but rarely read data (e.g.,
backups or journaling), although we cannot identify the specific applications running on individual volumes
(§3.1).
Finding A.2: Small-size I/Os dominate in all AliCloud, TencentCloud, and MSRC.

Figure 2(a) shows the cumulative distributions of request sizes across all I/O requests in all three traces.
We see that all traces feature small-size I/O requests (less than 100 KiB). Specifically, in AliCloud, 75% of
reads and writes are no larger than 12 KiB and 16 KiB, respectively, while in TencentCloud, 75% of reads
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Figure 2: Finding A.2: Cumulative distributions of I/O request sizes.

and writes are no larger than 32 KiB and 12 KiB, respectively. In MSRC, 75% of reads and writes are no
larger than 64 KiB and 20 KiB, respectively.

The dominance of small-size I/O requests also holds in individual volumes. We compute the average
request size for each volume. Figure 2(b) shows the cumulative distributions of the average request sizes
of all volumes in all three traces. We see that 75% of the average read and write sizes in AliCloud are less
than 37.0 KiB and 26.8 KiB, respectively, while 75% of the average read and write sizes in TencentCloud are
less than 49.8 KiB and 19.0 KiB, respectively. For MSRC, 75% of the average read and write sizes are less
than 48.4 KiB and 16.4 KiB, respectively. Small I/Os are also commonly found in enterprise and desktop file
system workloads [1, 34].

To ensure that our observations are not biased by outliers, we further measure the cumulative distributions
of the medians and 75th percentiles of request sizes across all volumes, as shown in Figures 2(c) and 2(d),
respectively. In Figure 2(c), we see that the median read and write sizes in 75% of volumes in all three traces
are no more than 64 KiB and 4 KiB, respectively. Similarly, in Figure 2(d), we see that the 75th percentiles of
read and write sizes in 75% of volumes in all three traces are no more than 64 KiB and 12 KiB, respectively.
The results indicate that small-size I/O requests dominate even if we consider medians and 75th percentiles
of (instead of average) request sizes.

Finding A.3: A non-negligible fraction of volumes in AliCloud are active in short time periods, but it is not
the case in TencentCloud and MSRC.

We study the activeness of individual volumes. Here, we measure the number of active days for each
volume, in which a volume is said to be active in a day if it receives at least one I/O request (i.e., up to 31,
9, and 7 active days in AliCloud, TencentCloud, and MSRC, respectively). Figure 3 depicts the cumulative
distributions of numbers of active days across all volumes in all three traces. In AliCloud, 15.7% of volumes
(i.e., 157 volumes) are active for only one day. We find that 147 out of the 157 volumes are active in only
four hours, and the total WSS and I/O traffic of the 157 volumes account for only 1.4% and 0.07% of all
1,000 volumes, respectively. One possible reason for the short active periods in such volumes in AliCloud is
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Figure 5: Finding A.4: Cumulative distributions of WSSs (figures (a)-(c)) and I/O traffic sizes (figures (d)-(f))
across all volumes.

the presence of short-lived tasks in cloud applications [32]. On the other hand, in TencentCloud, only 1.7%
of volumes are active for only one day, while 90.1% of volumes are active for all nine days in the entire trace
duration. Also, all volumes in MSRC are active for all seven days in the entire trace duration.

Finding A.4: Most volumes in AliCloud and TencentCloud are write-dominant.
Referring to Table 1, the overall write-to-read ratio (i.e., the ratio between the number of writes and

the number of reads) in AliCloud is 3:1, and that in TencentCloud is 2.35:1. However, the write-to-read
ratio in MSRC is 0.42:1 only. We further analyze the write-to-read ratios on a per-volume basis. Figure 4
shows the cumulative distributions of write-to-read ratios across all volumes in all three traces. In AliCloud
and TencentCloud, 91.5% (i.e., 915 out of 1,000) and 92.3% (i.e., 4,608 out of 4,995) of the volumes are
write-dominant (i.e., the write-to-read ratios are larger than 1). Also, 42.4% and 36.5% of the volumes in
AliCloud and TencentCloud even have very high write-to-read ratios that are larger than 100, respectively.
On the other hand, MSRC has an opposite pattern, in which only 52.8% (19 out of 36) of volumes are
write-dominant. Note that prior work [37] also shows the existence of write-dominant workloads in MSRC,
especially in files such as mail boxes, search indexes, registry files, and file system metadata files.

Figure 5 further analyzes the cumulative distributions of WSSs and I/O traffic sizes across all volumes in
all three traces. Figures 5(a)-5(c) show the cumulative distributions of the total WSSs, read WSSs, and write
WSSs across all volumes. The write WSSs of both AliCloud and TencentCloud are significantly larger than
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the read WSSs and are close to the total WSSs (Figures 5(a) and 5(b)). This implies that the total WSSs of
both traces are mainly determined by writes. In contrast, the read WSSs of MSRC are close to the total WSSs
(Figure 5(c)). We also make similar observations in the I/O traffic sizes, in which AliCloud and TencentCloud
are write-dominant (Figures 5(d)-5(f)). One possible reason of the write dominance in both AliCloud and
TencentCloud is the wide use of application-level read caches in cloud storage, in which reads are mostly
absorbed in the application layer without being issued to the storage layer [46].

Finding A.5: In AliCloud, larger volumes tend to have larger percentages of the total WSS over the raw
capacity.

We examine the relationship between the total WSS and the raw capacity of a volume. Our analysis here
focuses on the AliCloud traces, which provide the capacity information of individual volumes. Specifically,
we divide the 1,000 volumes in AliCloud into four groups by volume capacities, including 40-49 GiB,
50-99 GiB, 100-199 GiB, and 200-5,000 GiB (note that each volume capacity is represented as an integer
GiB). They account for 444, 179, 170, and 207 volumes, respectively. For each volume, we calculate the
WSS-to-capacity percentage (i.e., the percentage of the total WSS over the raw capacity of the volume). We
then plot the cumulative distributions of the WSS-to-capacity percentages for the four groups.

Figure 6 shows the results. For small volumes, the WSS-to-capacity percentages tend to be low (i.e., the
usage of disk space is low). Specifically, 80% of the volumes in the 40-49 GiB, 50-99 GiB, and 100-199 GiB
groups have WSS-to-capacity percentages of less than 7.3%, 16.1%, and 9.7%, respectively. On the other
hand, in the 200-5,000 GiB group, half of the volumes have a WSS-to-capacity percentage of more than
16.7%, and 35.7% of the volumes have WSS-to-capacity percentages of more than 50%. In particular, the
largest volume (i.e., with a raw capacity of 5,000 GiB) has a WSS-to-capacity percentage of 66.9%.

Finding A.6: In AliCloud, larger volumes tend to have larger write request sizes, but have similar read
request sizes compared to smaller volumes.

We examine the average request sizes of individual volumes with respect to their raw capacities. We
again divide the volumes by raw capacities into four groups (i.e., 40-49 GiB, 50-99 GiB, 100-199 GiB, and
200-5,000 GiB) as above.

Figure 7 shows the results. Overall, the average request sizes in the 200-5,000 GiB group are larger than
in the other three groups with smaller raw capacities. Specifically, the median of average request sizes in the
200-5,000 GiB group is 36.2 KiB, while the medians of average request sizes in the 40-49 GiB, 50-99 GiB,
and 100-199 GiB groups are 11.9 KiB, 8.1 KiB, and 9.5 KiB, respectively. A possible reason is that larger
volumes are often related to the workloads with the larger-size sequential data accesses.

We further examine the average read and write request sizes of individual volumes to understand where the
larger requests in larger volumes come from. Figure 8 shows the results. We find that the average read sizes
are close in four groups; the medians of average read request sizes in the 40-49 GiB, 50-99 GiB, 100-199 GiB,
and 200-5,000 GiB groups are 29.3 KiB, 23.0 KiB, 24.9 KiB, and 24.4 KiB, respectively (Figure 8(a)). In
contrast, the median of average write request sizes in the 200-5000 GiB group is 36.5 KiB, while the medians
of average write request sizes in the 40-49 GiB, 50-99 GiB, and 100-199 GiB groups are 9.1 KiB, 7.0 KiB,
and 9.2 KiB, respectively (Figure 8(b)).

Summary. AliCloud, TencentCloud, and MSRC have some common aspects, such as the dominance of small-
size I/O requests, yet they also have many differences. In particular, both AliCloud and TencentCloud are
write-dominant, while MSRC is read-dominant. A unique aspect for AliCloud, as opposed to TencentCloud
and MSRC, is that it has a non-negligible fraction of volumes with short active periods. Also, large volumes
in AliCloud tend to have larger WSS-to-capacity percentages and larger request sizes.

4 Detailed Analysis
In this section, we conduct an in-depth comparative analysis on AliCloud, TencentCloud, and MSRC in three
aspects: load intensities, spatial patterns, and temporal patterns. We report 16 findings from our analysis.
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Figure 8: Finding A.6: Cumulative distributions of average read and write request sizes across all volumes of
different groups of raw capacities in AliCloud.

Table 3 summarizes and compares the key properties of all three traces observed in our detailed analysis.

4.1 Load Intensities
We study the characteristics of load intensities in the volumes of AliCloud, TencentCloud, and MSRC through
a number of metrics. Specifically, we examine the average and peak load intensities [33] and the distribution
of inter-arrival times of requests [42]. We also examine the activeness of volumes through the number of
active volumes [33] and the active period of each volume.

Finding B.1: AliCloud, TencentCloud, and MSRC have similar average load intensities of volumes, while
the peak load intensities of AliCloud and TencentCloud are generally lower than that of MSRC.

We measure the load intensities of individual volumes, in terms of the number of requests per second
(req/s), in two aspects. We first measure the average intensity of a volume, defined as the total number
of requests divided by the time elapsed between the first and last requests of the volume. Note that for
TencentCloud, if the missing hour of requests lies between the first and last requests (§3.1), we subtract the
elapsed time by one hour. We also measure the peak intensity of a volume, in which we divide the whole
duration of requests of the volume into one-minute intervals and find the peak intensity as the maximum
number of requests (per second) across all intervals; we use one-minute intervals instead of one-second
intervals since one-minute intervals are long enough to accumulate sufficient bursty requests.

Figure 9 shows the average and peak intensities of volumes in AliCloud, TencentCloud, and MSRC, sorted
by the average intensities of volumes in descending order. We observe similar trends of average intensities
in all three traces, but different patterns of peak intensities in TencentCloud. In AliCloud, TencentCloud,
and MSRC, only 1.90%, 1.16%, and 2.78% of volumes have average intensities above 100 req/s, and the
percentages of volumes with average intensities lower than 10 req/s are 81.6%, 85.7%, and 72.2%, respectively.
Furthermore, their medians of average intensities are 2.55 req/s, 3.27 req/s, and 3.36 req/s, respectively. A
possible reason of having similar average intensities in all three traces is that more applications are moving to
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Property AliCloud TencentCloud MSRC

Load
intensity

Average intensities (B.1) Similar
Peak intensities (B.1) Low Low High

Burstiness in volumes (B.2) Yes Yes Yes
Diversity of burstiness (B.3) High High Low

Inter-arrival times of requests (B.4) Short - Short
Activeness (B.5) High Highest Low

Activeness dominated by writes (B.6) Yes Yes Yes
Activeness of reads (B.7) Low Highest High

I/O traffic in daytime (B.8) 52.0% 49.6% 23.3%

Spatial
patterns

Fractions of random I/Os (B.9) High Highest Low
Spatial aggregations of reads (B.10 and B.11) High Highest High
Spatial aggregations of writes (B.10 and B.11) High High Low

Update coverages (B.12) High High Low

Temporal
patterns

Read-after-write (RAW) times (B.13) Large Small Large
Write-after-write (WAW) times (B.13) Large Small Small

More WAW requests than RAW requests (B.13) Yes Yes No
Read-after-read (RAR) times (B.14) Large Small Large
Write-after-read (WAR) times (B.14) Large Small Large

More RAR requests than WAR requests (B.14) Yes Yes Yes
Varying update intervals (B.15) Yes Yes Yes

Miss ratios (B.16) High Low High

Table 3: Summary of the key properties of AliCloud, TencentCloud, and MSRC in Findings B.1-B.16.
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Figure 9: Finding B.1: Average and peak intensities of volumes. Note that we sort the average and peak
intensities of volumes in descending order in their respective curves to make the distribution of each type of
intensities clearly shown, so the curves are different from the ones in our conference version [22].

the cloud [21], so the average intensities are similar in both cloud and traditional data center environments.
However, as for the peak intensities, their 90th percentiles of peak intensities are 578.7 req/s, 498.9 req/s,
and 1,612.1 req/s, respectively, in which the peak intensity of MSRC is much higher than those of other two
traces.

Finding B.2: AliCloud, TencentCloud, and MSRC have high burstiness in a non-negligible fraction of
volumes, but their overall burstiness is mild.

We examine the burstiness of all three traces by measuring the burstiness ratio of a volume, defined as
the ratio between the peak intensity and the average intensity of the volume. Figure 10 shows the cumulative
distributions of burstiness ratios across all volumes in AliCloud, TencentCloud, and MSRC. We see that
a non-negligible fraction of volumes (20.7%, 10.9%, and 38.9% in AliCloud, TencentCloud, and MSRC,
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Figure 10: Findings B.2-B.3: Cumulative
distribution of burstiness ratios of volumes.

Traces AliCloud TencentCloud MSRC

Peak intensity (req/s) 15,965.8 70,910.1 5,296.8
Average intensity (req/s) 7,554.1 43,036.0 717.2

Burstiness ratio 2.11 1.65 7.39

Table 4: Finding B.2: Overall peak and average intensi-
ties as well as burstiness ratios.

respectively) have burstiness ratios higher than 100. Also, 74.2%, 63.0%, and 97.2% of the volumes in
AliCloud, TencentCloud, and MSRC have burstiness ratios higher than 10, respectively. This implies that
burstiness is common, and such bursty volumes can observe load imbalance at some time. Note that prior
work [34] also shows that burstiness exists across various types of applications, such as enterprise systems,
desktops, consumer electronics, web servers, and file systems. On the other hand, if we examine overall
burstiness level by aggregating all volumes of the whole traces, the burstiness ratios are mild, with 2.11
in AliCloud, 1.65 in TencentCloud, and 7.39 in MSRC (see Table 4). Compared with both AliCloud and
MSRC, TencentCloud has a lower percentage of volumes with high burstiness ratios, as well as a lower
overall burstiness. This shows that the burstiness level is mild from the whole-system’s perspective, but is
significant for some of the volumes.
Finding B.3: AliCloud and TencentCloud have more diverse burstiness across volumes than MSRC.

The volumes in both AliCloud and TencentCloud span a wider range of burstiness than those in MSRC.
Referring to Figure 10, for the volumes with low burstiness, 25.8% and 37.0% of volumes in AliCloud
and TencentCloud have burstiness ratios less than 10, while the corresponding percentage is only 2.78% in
MSRC. On the other hand, for the volumes with high burstiness, 2.60% and 0.80% of volumes in AliCloud
and TencentCloud have burstiness ratios larger than 1,000, respectively, while there are no such volumes
in MSRC. The higher diversities of burstiness in AliCloud and TencentCloud suggest larger variations in
workload characteristics among different volumes in cloud block storage.
Finding B.4: Both AliCloud and MSRC have high short-term burstiness from the perspective of inter-arrival
times of requests.

We measure the inter-arrival times of I/O requests (i.e., the elapsed time between two adjacent requests)
for each volume. We first examine the cumulative distributions of inter-arrival times across all volumes.
Figure 11(a) shows the results. Note that we do not consider TencentCloud, as its timestamps are in units of
seconds and we cannot accurately measure the inter-arrival times at finer-grained granularities (e.g., at the
microsecond level). We find that most of the inter-arrival times are smaller than one second. For example, in
AliCloud and MSRC, 50% of the inter-arrival times are smaller than 351µs and 142µs, respectively, and
99% of the inter-arrival times are smaller than 3,140 ms and 484 ms, respectively. The results indicate that
short inter-arrival times are common in both traces.

We also consider five groups of percentiles of inter-arrival times for each volume, including the 25th, 50th,
75th, 90th, and 95th percentiles. We represent each group of percentile values of all volumes by boxplots.
Figures 11(b) and 11(c) show the results of both AliCloud and MSRC, respectively. Both AliCloud and
MSRC traces have a high number of bursty requests, as indicated by large fractions of short inter-arrival
times in the volumes. In particular, the medians of the groups of 25th, 50th, and 75th percentiles are lower
than 1.3 ms, or equivalently over 700 req/s (i.e., 31µs, 145µs, and 735µs in AliCloud, and 3.5µs, 30.5µs,
and 1.3 ms in MSRC, respectively). Also, the volumes in AliCloud have much higher inter-arrival times of
requests than those in MSRC. For example, half of the volumes in AliCloud have 25th percentiles higher
than 31µs (Figure 11(a)), while half of the volumes in MSRC have 25th percentiles higher than 3.5µs
(Figure 11(b)). Note that prior work [19] also identifies the existence of short inter-arrival times (e.g., a few
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Figure 11: Finding B.4: Inter-arrival times of requests. Figure (a) shows the cumulative distributions of
inter-arrival times across all volumes. In figures (b) and (c), each boxplot represents the distribution of all the
values collected in each volume according to the corresponding percentile.

milliseconds) in server workloads.

Finding B.5: Most of the volumes in AliCloud, TencentCloud, and MSRC are active throughout the trace
periods, while AliCloud and TencentCloud are more active than MSRC. TencentCloud has the highest
activeness among all three traces, from both the perspectives of active volumes and active time periods.

Recall from Section 3.2 that we examine the activeness of volumes of all three traces on a per-day basis.
We now revisit the activeness of volumes of all three traces in a more fine-grained manner. Specifically, we
divide the traces into 10-minute intervals. We say that a volume is active in an interval if it has at least one
request in the interval. We also say that a volume is read-active and write-active in an interval if it has at least
one read request and one write request in the interval, respectively.

Figure 12 depicts the numbers of active, read-active, and write-active volumes throughout the trace periods
in AliCloud, TencentCloud, and MSRC (recall that they have 1,000, 4,995, and 36 volumes, respectively).
We find that the percentages of active volumes throughout the trace duration are always larger than 73.1%,
88.2%, and 59.4% in AliCloud, TencentCloud, and MSRC, respectively. In particular, TencentCloud has
the highest fraction of active volumes throughout the trace periods. Also, the numbers of active volumes in
AliCloud and TencentCloud have more stable trends compared with that in MSRC. Furthermore, the number
of read-active volumes in AliCloud shows diurnal patterns by often having less than 200 read-active volumes
at night and more than 300 read-active volumes at daytime, which is similar to the patterns found in object
storage systems [8], enterprise virtual desktops [20], and key-value stores [7, 11, 51].

We also measure the active time period of each volume, based on the number of 10-minute intervals in
which the volume is active. Figure 13 depicts the cumulative percentages of active time periods across all
volumes in all three traces. More than 72.2%, 88.2%, and 55.6% of the volumes are active during 95% of
the whole trace periods in AliCloud, TencentCloud, and MSRC, respectively. This indicates that most of
the volumes in all three traces have high activeness throughout the whole trace periods, and AliCloud and
TencentCloud have higher activeness in general than MSRC. Also, in terms of the active time in each volume,
the activeness is the highest in the TencentCloud volumes.

Finding B.6: Writes are the dominant factor in determining the activeness in AliCloud, TencentCloud, and
MSRC.

Referring to both Figures 12 and 13, the curves of “Active” and “Write-active” nearly overlap with each
other in all three traces. It suggests that the activeness of all three traces (in terms of the number of active
volumes and the active time period of a volume) is mainly determined by the presence of writes. Thus, load
balancing on writes is important for the volumes in cloud block storage.

Finding B.7: Removing write requests shows drastic decreases in activeness in AliCloud, TencentCloud, and
MSRC. AliCloud is less read-active than MSRC, and TencentCloud is the most read-active among all three
traces.

If we remove write requests and consider only the read-active volumes, Figure 12 shows that the
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Figure 12: Findings B.5-B.7: Numbers of active, read-active, and write-active volumes. Note that the “Active”
and “Write-active” curves almost overlap with each other.
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Figure 13: Findings B.5-B.7: Cumulative distributions of active time periods measured in 10-minute intervals
across all volumes. Note that the “Active” and “Write-active” curves almost overlap with each other.
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Figure 14: Finding B.8: Average number of requests in 10-minute intervals each day from 12:00 AM to
11:59 PM.

number of active volumes decreases drastically. In particular, the number of active volumes reduces by
58.6-74.2% in AliCloud (Figure 12(a)), 32.7-37.5% in TencentCloud (Figure 12(b)), and 24.6-65.8% in
MSRC (Figure 12(c)).

Figure 13 further shows that the volumes in all three traces have low read-active time, which is consistent
with results of prior work [33]. In AliCloud, TencentCloud, and MSRC, half of the volumes have less than
2.83 days, 5.92 days, and 2.61 days of read-active time after removing writes, corresponding to 9.1%, 65.4%,
and 37.3% of their whole trace durations, respectively (Figures 13(a)-13(c)). In terms of the percentage of
volumes that have long read-active time, we find that 7.6%, 38.4%, 16.7% of the volumes can reach more
than 30 days, 8 days, and 6 days of read-active time in AliCloud, TencentCloud, and MSRC, respectively
(recall that their trace durations are 31, 9.04, and 7 days, respectively). This suggests that AliCloud is less
read-active than MSRC, while TencentCloud is the most read-active among all three traces.

Finding B.8: I/O traffic in both AliCloud and TencentCloud is almost evenly spread across daytime and
nighttime. AliCloud and MSRC have large amounts of read traffic near midnight.
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Figure 15: Finding B.8: Average amount of traffic in 10-minute intervals each day from 12:00 AM to
11:59 PM.

We calculate the average number of requests and the average amount of traffic in 10-minute intervals
each day from 12:00 AM to 11:59 PM. We divide one day into 144 10-minute timeslots. We collect the total
number of requests and the total traffic size in each timeslot, and divide them by the number of days to obtain
the averages for each timeslot. We align the timestamps of all three traces to their respective time zones: for
AliCloud and TencentCloud, we align the timestamps of the requests to GMT+8, while for MSRC, we align
them to GMT+0. Recall that the TencentCloud traces end at 1:00 AM on the tenth day and have a missing
hour of requests at 1:00 AM-2:00 AM (§3.1). The average numbers of requests per day in the timeslots of
12:00 AM-1:00 AM and 1:00 AM-2:00 AM are obtained by the total number of requests in the timeslots
divided by ten and eight, respectively; the average amounts of traffic are handled similarly.

Figures 14 and 15 show the distributions of the average numbers of requests and the average amounts
of traffic across different timeslots for all three traces, respectively. We see that in both AliCloud and
TencentCloud, their average numbers of requests and sizes of traffic are almost evenly spread across daytime
(6:00 AM to 6:00 PM) and nighttime (6:00 PM to 6:00 AM). In AliCloud, the daytime has 52.6% of the total
average number of I/O requests (Figure 14(a)) and 52.0% of total average traffic in all timeslots (Figure 15(a)),
while in TencentCloud, the daytime has 50.3% of average I/O requests (Figure 14(b)) and 49.6% of average
traffic (Figure 15(b)). However, in MSRC, the daytime only has 33.7% of average I/O requests and 23.3% of
average traffic, and the I/O requests and traffic mainly dominate in nighttime (Figures 14(c) and 15(c)).

We also find that from Figures 15(a) and 15(c), AliCloud and MSRC volumes have spikes for reads at
0:00 AM-0:20 AM and 1:00 AM-2:30 AM, respectively, accounting for 13.1% and 18.8% of all read traffic,
respectively; in contrast, TencentCloud does not have such spikes. For AliCloud, the reason of the spikes
is that 12 out of the 1,000 volumes only have read requests during 0:00 AM-0:20 AM, and they contain
significant numbers of large read requests. Each of these 12 volumes has a total of more than 50.2 GiB of
average read traffic at 0:00 AM-0:20 AM per day. Their average read request sizes are larger than 360 KiB
(note that most of the read requests are smaller than 100 KiB; see Finding A.2 in §3.2). We suspect that there
exist scheduled scan activities in these 12 volumes at midnight, although we cannot identify their specific
applications (§3.1). If we exclude these 12 volumes, the overall intensities of read traffic for AliCloud at
midnight will be comparable to other time intervals. For MSRC, the reason of the spikes near midnight is that
a volume called src1_1 has an extremely large amount of read traffic at 1:00 AM-2:30 AM, accounting for
56.8-82.9% of the read traffic of all volumes in MSRC in the corresponding 10-minute time intervals. Note
that the average read request sizes of src1_1 are smaller than 43.1 KiB during the spike period, as opposed to
the large requests in AliCloud. Read spikes near midnight are common in production; for example, in prior
work [19], massive read spikes are observed at about 3:30 AM in a production server due to the scheduled
replication tasks in early mornings.
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Figure 16: Finding B.9: Cumulative distributions of randomness ratios of volumes (figure (a)) and the
relationship between the randomness ratios and total traffic sizes in top-10 traffic-intensive volumes.

4.2 Spatial Patterns
We study the spatial characteristics of volumes in AliCloud, TencentCloud, and MSRC through the following
metrics. First, we study the randomness of I/O requests by examining the offset differences of recent
requests [1, 39], as random I/Os can compromise the performance and endurance of flash-based storage [31].
Second, we examine the aggregations of reads and writes in working sets, so as to provide guidelines for
resource allocation in caching [21, 23, 37]. Finally, we examine the patterns of update coverage (i.e., the
percentage of WSS for updates), which is important for optimizing update performance in storage cluster
management [12].

Finding B.9: Random I/Os are common in AliCloud, TencentCloud, and MSRC. The volumes in AliCloud
and TencentCloud see higher percentages of random I/Os than those in MSRC.

We study the randomness of I/O requests by examining the spatial relationships among adjacent requests.
To quantify the randomness of a request, we measure the minimum distance between the current offset of the
request and the offsets of the previous 32 requests [1, 39]. If the minimum distance exceeds a threshold (e.g.,
128 KiB, which is the read-ahead length of the surveyed drives in [39]), we regard the request as a random
request. We measure the randomness ratio of a volume, defined as the percentage of random requests over all
requests.

Figure 16(a) shows the cumulative distributions of randomness ratios of volumes in AliCloud, Tencent-
Cloud, and MSRC. We find that random I/Os are common in all three traces. Half of the volumes have at
least 33.5%, 42.1%, and 29.4% of random I/Os in AliCloud, TencentCloud, and MSRC, respectively. Also,
AliCloud and TencentCloud in general show higher randomness ratios than MSRC. In particular, all volumes
in MSRC have less than 46% of random requests, while 20.4% and 35.8% of volumes in AliCloud and
TencentCloud have more than 50% of random requests, respectively. The existence of randomness may come
from file system workloads as witnessed in [17].

We further examine the randomness ratios of the top-10 volumes that have the most I/O traffic in each
trace. Figure 16(b) shows the relationships between the randomness ratios and the total I/O traffic sizes
of the top-10 volumes. We see that the volumes with large amounts of I/O traffic have high randomness
ratios in general. The randomness ratios of the top-10 volumes in AliCloud, TencentCloud, and MSRC
are 14.0-83.4%, 54.0-91.7%, and 11.4-40.8%, respectively, and their I/O traffic sizes are 20.0-52.8 TiB,
11.7-36.8 TiB, and 0.17-2.26 TiB, respectively. We also examine the Spearman correlation coefficients [38]
between the I/O traffic sizes and the randomness ratios in the top-10 volumes of all three traces. We find that
the coefficients are 0.079, 0.164, and 0.333 in AliCloud, TencentCloud, and MSRC, respectively, implying
that there exist positive correlations between the two metrics in the top-10 volumes. The results indicate that
random I/Os are common in traffic-intensive volumes.

Combining with the observation that small-size I/O requests dominate in all three traces (§3.2), we see
that random and small I/Os are common in all three traces, especially in AliCloud and TencentCloud. Such
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Figure 17: Finding B.10: Boxplots of percentages of traffic sizes for the top-1% and top-10% read and write
blocks across all volumes.

access patterns can compromise the performance and endurance of flash-based storage [17, 31].

Finding B.10: Reads and writes are aggregated in small working sets in non-negligible fractions of volumes
in AliCloud, TencentCloud, and MSRC, while TencentCloud has the highest aggregation of reads among all
three traces. Writes are more aggregated than reads.

We study how reads and writes are aggregated in the working sets of each volume. Specifically, in the
read (or write) working sets, we focus on the top-1% and top-10% of unique blocks that receive the most read
(or write) traffic. We examine the percentage of the read (or write) traffic size of each such block over the
total read (or write) traffic size; a higher percentage implies that the I/O traffic is more aggregated in a block.

Figure 17 shows the boxplots of percentages of traffic sizes for the top-1% and top-10% blocks across
all volumes in AliCloud, TencentCloud, and MSRC. We first focus on read traffic. We see that read traffic
is aggregated in the top-1% and top-10% blocks in non-negligible fractions of volumes. In AliCloud,
75% of volumes have at least 2.5% and 13.6% of read traffic in the top-1% and top-10% read blocks,
respectively (Figure 17(a)). In TencentCloud, the corresponding percentages are 7.2% and 28.8%, respectively
(Figure 17(b)), and in MSRC, the corresponding percentages are 3.1% and 19.6%, respectively (Figure 17(c)).
In particular, the aggregation for reads is the highest in TencentCloud among all three traces.

In AliCloud, the boxplots indicate 147 volumes as outliers in the top-1% read blocks (Figure 17(a)). Such
outlier volumes have more than 21.3% of read traffic in their top-1% read blocks. It implies that a small read
cache can absorb a substantial amount of read traffic for such volumes.

Compared with reads, writes are more aggregated. In AliCloud, the 25th percentiles of read traffic in the
top-1% and top-10% read blocks are 2.5% and 13.6%, respectively, while the 25th percentiles of write traffic
in the top-1% and top-10% written blocks increase to 13.0% and 31.2%, respectively (Figure 17(a)). Similar
observations hold in TencentCloud and MSRC. For example, in TencentCloud, the 25th percentiles of read
and write traffic in the top-10% read and written blocks are 28.8% and 53.5%, respectively (Figure 17(b)),
and in MSRC, the corresponding 25th percentiles are 19.6% and 44.0%, respectively (Figure 17(c)). Note
that the spatial clustering of writes is common in desktop applications and is related to files such as mail
boxes, search indexes, and file system metadata [37].

Finding B.11: Reads and writes tend to be aggregated in read-mostly and write-mostly blocks, respectively,
in AliCloud and TencentCloud.

We further classify the blocks into different types as in [23] and examine the aggregation of reads and
writes. Specifically, we classify a block as read-mostly (or write-mostly) if its read (or write) traffic occupies
more than 95% of its total I/O traffic. We examine the percentage of all read (or write) traffic in the whole
trace duration that goes to read-mostly (or write-mostly) blocks.

Table 5 shows the overall percentages of all read and write traffic that goes to read-mostly and write-
mostly blocks in AliCloud, TencentCloud, and MSRC. In AliCloud and TencentCloud, the majority of read
traffic (59.1% and 78.5%, respectively) and write traffic (80.7% and 90.8%, respectively) goes to read-mostly
blocks and write-mostly blocks, respectively. In MSRC, 72.1% of read traffic goes to read-mostly blocks;
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Traces AliCloud TencentCloud MSRC

Reads to read-mostly blocks (%) 59.2 78.5 75.9
Writes to write-mostly blocks (%) 80.7 90.8 33.5

Table 5: Finding B.11: Percentages of all read and write traffic going to read-mostly and write-mostly blocks,
respectively.
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Figure 18: Finding B.11: Cumulative distributions of all percentages of read and write traffic going to
read-mostly and write-mostly blocks, respectively, across all volumes.

however, only 32.4% of write traffic goes to write-mostly blocks. Overall, both AliCloud and TencentCloud
show prominent aggregations of reads and writes in read-mostly and write-mostly blocks, respectively, but
it is not the case in MSRC. Note that the limited aggregation of writes in write-mostly blocks in MSRC is
inconsistent with the prior finding in [23]. The reason is that the study in [23] considers only 12 out of 36
volumes in MSRC, while we consider all 36 volumes.

Figure 18 shows the cumulative distributions of percentages of read and write traffic that goes to read-
mostly and write-mostly blocks, respectively, across all volumes in AliCloud, TencentCloud, and MSRC.
Most of the volumes in all three traces have high percentages of all read and write traffic aggregated in
read-mostly and write-mostly blocks, respectively. In AliCloud, half of the volumes have more than 82.6% of
reads going to read-mostly blocks and more than 99.2% writes going to write-mostly blocks (Figure 18(a));
in TencentCloud, the corresponding percentages are 73.4% and 98.0%, respectively (Figure 18(b)); in MSRC,
the corresponding percentages are 89.4% and 78.3%, respectively (Figure 18(c)).

Finding B.12: AliCloud and TencentCloud generally have higher update coverages and higher percentages
of update traffic than MSRC. The update coverage also varies across volumes.

Recall that Table 1 (Section 3.2) shows the overall WSSs (working set sizes) for reads, writes, and updates.
We now examine the spatial characteristics of updates. We focus on the update working set, which covers the
blocks that are written more than once. We measure the update coverage of a volume, defined as the ratio
between the update WSS and the total WSS of the volume [12]. In addition, we measure the percentages of
update traffic over the total amount of traffic across all volumes.

Table 6 shows the averages, medians, and 90th percentiles of update coverages of all volumes in all
three traces. In general, AliCloud and TencentCloud have higher update coverages than MSRC. In AliCloud
and TencentCloud, half of the volumes have update coverages of more than 61.2% and 56.7%, respectively,
while in MSRC, the corresponding percentage is 9.4% only. In addition, Table 7 shows that AliCloud and
TencentCloud have higher percentages of update traffic than MSRC in terms of the averages, medians, and
90th percentiles. This suggests that AliCloud and TencentCloud are more update-intensive than MSRC.

Figure 19(a) shows the cumulative distributions of update coverages across all volumes in AliCloud,
TencentCloud, and MSRC. In AliCloud and TencentCloud, 45.2% and 37.2% of volumes have update
coverages larger than 65%, respectively, and their update coverages are more diverse than MSRC. On the
other hand, in MSRC, 33 out of 36 volumes have update coverages below 65%. Figure 19(b) shows the
cumulative distributions of percentages of update traffic. AliCloud and TencentCloud show higher percentages
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Traces AliCloud TencentCloud MSRC

Mean (%) 52.7 56.2 24.1
Median (%) 61.2 56.7 9.4

90th PCTL (%) 92.1 91.9 63.0

Table 6: Finding B.12: Means, medians and 90th
percentiles of update coverages of all volumes.

Traces AliCloud TencentCloud MSRC

Mean (%) 62.5 72.5 38.7
Median (%) 76.0 81.9 32.7

90th PCTL (%) 96.4 96.1 84.2

Table 7: Finding B.12: Means, medians, and 90th
percentiles of the percentages of update traffic of
all volumes.
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Figure 19: Finding B.12: Cumulative distributions of update coverages and percentages of update traffic
across all volumes.

of update traffic than MSRC, and TencentCloud generally has a higher percentage than AliCloud.

4.3 Temporal Patterns
We study the temporal characteristics of volumes in AliCloud, TencentCloud, and MSRC by examining the
temporal relationships of adjacent I/O requests. We first examine the time elapsed between adjacent requests
to the same block with respect to different combinations of read and write requests for workload-aware
caching designs [37]. We also study the update interval (i.e., the time interval between two consecutive writes
to the same block), which facilitates flash-based storage management [10, 24]. Finally, we study the miss
ratios under least recently used (LRU) caching, which reflects the temporal aggregation of traffic for caching
efficiency [43, 47].

Recall that the TencentCloud traces have a missing hour of requests at 1:00 AM-2:00 AM on the eighth
day (§3.1). Thus, in our following analysis for TencentCloud, we discard the adjacent requests that span
across the missing hour.

Finding B.13: The read-after-write (RAW) times in AliCloud, TencentCloud, and MSRC are generally larger
than the write-after-write (WAW) times. Also, TencentCloud generally has smaller RAW times than AliCloud
and MSRC, while AliCloud generally has larger WAW times than TencentCloud and MSRC. Furthermore,
AliCloud and TencentCloud have significantly more WAW requests than RAW requests.

We first examine two types of adjacent requests [37]: (i) a read-after-write (RAW) request, which refers
to the read following immediately the write to the same block; and (ii) a write-after-write (WAW) request,
which refers to the write following immediately the write to the same block. We measure the time of a RAW
(resp. WAW) request as the elapsed time between the adjacent read and write (resp. the two adjacent writes)
to the same block.

Figures 20(a)-20(c) show the cumulative distributions of RAW and WAW times across all RAW and WAW
requests, respectively, in all three traces. All three traces generally have larger RAW times than WAW times.
Specifically, the 50th percentiles of the RAW time in AliCloud, TencentCloud, and MSRC are 3.0 hours,
4.9 minutes, and 16.1 hours, respectively, while the 50th percentiles of the WAW time are only 1.3 hours,
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Figure 20: Findings B.13-B.14: Cumulative distributions of RAW, WAW, RAR, and WAR times across all
RAW, WAW, RAR, and WAR requests, respectively.

0.7 minutes, and 1.0 minute, respectively. Such findings are consistent with those in prior studies [18, 37]. As
for the possible reasons, the smaller WAW times are likely to appear in desktop workloads [37], while the
larger RAW times are possibly related to the large OS-level buffer caches [37].

Also, all three traces have different percentages of large and small RAW and WAW times. To aid
our analysis, we treat the times smaller than 1.0 minute and larger than 15.0 minutes as small and large,
respectively, as also used in [37]. For RAW times, TencentCloud has the largest percentage of RAW times
smaller than 1.0 minute among all three traces, while most of the RAW times in AliCloud and MSRC are
larger than 15.0 minutes. Specifically, 1.4%, 29.8%, and 10.9% of the RAW times are smaller than 1.0 minute
in AliCloud, TencentCloud, and MSRC, respectively, while 87.8%, 42.5%, and 67.8% of the RAW times
are larger than 15.0 minutes in the three traces, respectively. On the other hand, most of the WAW times
are smaller than 1.0 minute in TencentCloud and MSRC, while most of the WAW times are larger than
15.0 minutes in AliCloud. Specifically, 22.7%, 57.7%, and 51.5% of WAW times are smaller than 1.0 minute
in AliCloud, TencentCloud, and MSRC, respectively, while 58.5%, 16.4%, and 24.3% of WAW times are
larger than 15.0 minutes in the three traces, respectively.

Table 8 shows the numbers of RAW and WAW requests in AliCloud, TencentCloud, and MSRC. We
observe a large difference in the numbers of RAW and WAW requests in both AliCloud and TencentCloud,
but a small difference in MSRC. Specifically, in AliCloud, the numbers of RAW and WAW requests are
12.4 billion and 103.7 billion, respectively; the number of WAW requests is 8.3× that of RAW requests. In
TencentCloud, the numbers of RAW and WAW requests are 8.8 billion and 204.9 billion, respectively, and the
number of WAW requests is even 23.3× that of RAW requests. In MSRC, those numbers are 297.2 million
and 289.2 million, respectively, and are close to each other. We suspect that the larger number of WAW
requests in AliCloud and TencentCloud may be related to the metadata and log files in the workloads; for
example, the fraction of WAW requests drops significantly after the metadata and log files are excluded [18].

Finding B.14: TencentCloud has the highest fractions of small RAR and WAR times and the smallest
fractions of large RAR and WAR times in all three traces. There exist extremely small RAR and WAR times in
MSRC. In all three traces, the WAR time is much larger than the RAR time, and there are much more RAR
requests than WAR requests.

We further examine two types of adjacent requests: (i) a read-after-read (RAR) request, which refers to
the read following immediately the read to the same block; and (ii) a write-after-read (WAR) request, which
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Traces RAW (M) WAW (M) RAR (M) WAR (M)

AliCloud 12,432.7 103,708.4 29,845.0 11,760.6
TencentCloud 8,796.0 204,856.2 63,990.4 7,930.3

MSRC 297.2 289.2 1,382.4 330.0

Table 8: Findings B.13-B.14: Numbers of RAW, WAW, RAR, and WAR requests (in millions).

refers to the write following immediately the read to the same block.
Figures 20(d)-20(f) show the cumulative distributions of RAR and WAR times across all RAR and

WAR requests, respectively, in all three traces. We again treat the times smaller than 1.0 minute and larger
than 15.0 minutes as small and large, respectively, as above. TencentCloud has the highest fractions of
RAR and WAR times smaller than 1.0 minute, and the lowest fractions of RAR and WAR times larger than
15.0 minutes. Specifically, 28.5%, 53.4%, and 35.6% of the RAR times are smaller than 1.0 minute in
AliCloud, TencentCloud, and MSRC, respectively, while 30.0%, 21.2%, and 35.2% of the RAR times are
larger than 15.0 minutes, respectively. On the other hand, 2.8%, 47.6%, and 29.2% of the WAR times are
smaller than 1 minute in AliCloud, TencentCloud, and MSRC, respectively, while 93.8%, 31.1%, and 69.7%
of the WAR times are larger than 15 minutes, respectively. In particular, in MSRC, there exist non-negligible
fractions of extremely small RAR and WAR times (18.5% and 25.4%, respectively) that are smaller than
1 second, which is not the case for AliCloud and TencentCloud.

Overall, in all three traces, the WAR time is much larger than the RAR time. In AliCloud, the 50th
percentiles of RAR and WAR times are 2.0 minutes and 18.2 hours, respectively, and 21.0% and 88.8%
of RAR and WAR times are larger than 1 hour, respectively (Figure 20(d)). In TencentCloud, the 50th
percentiles of RAR and WAR time are 49 seconds and 78 seconds, respectively, and 11.1% and 25.2% of
RAR and WAR times are larger than 1 hour, respectively (Figure 20(e)). In MSRC, the 50th percentiles of
RAR and WAR times are 5.2 minutes and 5.4 hours, respectively, and 33.6% and 66.7% of RAR and WAR
times are larger than 1 hour, respectively (Figure 20(f)). The results indicate that a block being read is likely
read again soon.

We also examine the numbers of RAR and WAR requests in AliCloud, TencentCloud, and MSRC, as
shown in Table 8. In AliCloud, TencentCloud, and MSRC, the numbers of RAR requests are 2.54×, 8.07×,
and 4.19× those of WAR requests, respectively.

Finding B.15: Written blocks have varying update intervals.
We measure the update interval of a block, defined as the elapsed time between two consecutive writes to

the same block. Note that the update interval differs from the WAW time, as the former allows reads between
two writes. Each block may be written more than once, so it may be associated with multiple update intervals
(e.g., a block that is written M times has M − 1 update intervals). The update interval of a block describes
the lifetime of the block data.

Table 9 shows different percentiles of update intervals across all volumes in all three traces. In AliCloud,
the update intervals generally have long durations, while in TencentCloud and MSRC, the update intervals
are generally small, especially in TencentCloud. In AliCloud, 50% of update intervals are larger than
95.2 minutes (1.6 hours), and the 90th percentile is 3,017.4 minutes (50.3 hours). In TencentCloud, the 25th,
50th, and 75th percentiles are only several seconds or minutes (0.23 minutes, 0.67 minutes, and 5.4 minutes,
respectively), implying that the majority of updated blocks have extremely high update frequencies. However,
some updated blocks still have high update intervals, as the 90th and 95th percentiles are 120.0 minutes
(2.0 hours) and 973.1 minutes (16.2 hours), respectively. In MSRC, the update intervals have a bimodal
pattern, in which 50% of update intervals are smaller than 1.25 minutes, while 25% of update intervals are
larger than 1,438.9 minutes (24.0 hours). The reason of such a bimodal pattern in MSRC is that a volume is
responsible for source control (i.e., src1_0) and updates data blocks daily. If we exclude the daily updates,
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Percentiles (minutes) 25th 50th 75th 90th 95th

AliCloud 1.86 95.2 926.3 3,017.4 7,200.5
TencentCloud 0.23 0.67 5.4 120.0 973.1

MSRC 0.73 1.25 1,438.9 1,440.5 1,444.1

Table 9: Finding B.15: Overall percentiles of update intervals across all volumes.
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Figure 21: Finding B.15: Boxplots of percentiles of update intervals across all volumes.
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Figure 22: Finding B.15: Boxplots of proportions for the four groups of update intervals across all volumes.

most of the written blocks in MSRC have very short update intervals.
Figure 21 shows the boxplots of update intervals of different groups of percentiles across all volumes in

AliCloud, TencentCloud, and MSRC. We see that the distributions of update intervals have high variations
across volumes in all three traces. For example, in AliCloud, the 50th percentiles of update intervals of all
volumes range from 1 second to 17.8 days (Figure 21(a)); in TencentCloud, the 50th percentiles vary between
1 second and 4.14 days (Figure 21(b)); in MSRC, the 50th percentiles of update intervals of all volumes range
from 1 second to 24 hours.

Many volumes have non-negligible proportions of short update intervals in their update requests. To
further examine the distributions of update intervals in individual volumes, we divide the update intervals into
four groups: (i) less than 5 minutes, (ii) 5-30 minutes, (iii) 30-240 minutes, and (iv) more than 240 minutes.
We calculate the proportions for the four groups of update intervals for each volume, and represent the
proportions across all volumes by boxplots.

Figure 22 shows the boxplots of proportions for the four groups of update intervals across all volumes in
all three traces. All three traces have large proportions of either very small or very large update intervals. In
AliCloud, half of the volumes have more than 35.2% and 38.2% of update intervals in less than 5 minutes
and in more than 240 minutes, respectively (Figure 22(a)). In TencentCloud, the corresponding percentages
are 50.8% and 17.0%, respectively (Figure 22(b)), while in MSRC, the corresponding percentages are 47.2%
and 18.9%, respectively (Figure 22(c)). Thus, a substantial amount of data is either updated frequently or not
updated for long.

Finding B.16. Many volumes in TencentCloud have low miss ratios even under a small cache size, while
there are fewer such volumes with low miss ratios in AliCloud and MSRC. Also, when the cache size increases,
AliCloud and TencentCloud show the highest absolute reductions in read and write miss ratios, respectively,
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Figure 23: Finding B.16: Boxplots of miss ratios for reads and writes across all volumes, under the cache
sizes of 1% and 10% of the WSS of a volume.

in all three traces.
Finally, we study the impact of caching with respect to the temporal patterns of the volumes. For each

volume, we simulate a fixed-size cache for both reads and writes using the LRU policy, and evaluate the
corresponding cache miss ratios for reads and writes. Here, we select 1% and 10% of the WSS of a volume
as the cache size.

Figure 23 shows the boxplots of miss ratios across all volumes in all three traces. Some volumes show low
miss ratios (i.e., LRU-based caching is effective). For the cache size of 10% of WSS, the 25th percentiles of
the miss ratios for reads and writes are 59.4% and 30.7% in AliCloud, respectively (Figure 23(a)), while the
corresponding miss ratios are 17.0% and 17.9% in TencentCloud, respectively (Figure 23(b)), and 64.1% and
32.0% in MSRC, respectively (Figure 23(c)). Also, some volumes in TencentCloud can have very low miss
ratios when the cache size is only 1% of WSS, implying that the access patterns of such volumes have high
temporal locality, while AliCloud and MSRC have fewer such volumes. The low miss ratios in TencentCloud
suggest that we can potentially improve the read and write performance using a small-size cache. Such
findings are also consistent with those in [52], which shows low miss ratios of some selected volumes with
small-size cache.

AliCloud has the highest absolute reductions in read miss ratios when the cache size increases from 1% to
10% of WSS among all three traces; for write miss ratios, TencentCloud shows the highest absolute reductions
for increased cache sizes. In AliCloud, the 25th percentiles of the miss ratios for reads and writes reduce
from 96.1% to 59.4% and from 52.8% to 30.7% (i.e., 36.7% and 22.1% of absolute reduction), respectively
(Figure 23(a)). In TencentCloud, the 25th percentiles of the miss ratios for reads and writes reduce from
39.4% to 17.0% and from 49.3% to 17.9% (i.e., 22.4% and 31.4% of absolute reduction, Figure 23(b)),
while in MSRC, the 25th percentiles of the miss ratios for reads and writes reduce from 86.9% to 64.1% and
from 46.2% to 32.1% (i.e., 22.8% and 14.1% of absolute reduction), respectively (Figure 23(c)). In short,
in all three traces, AliCloud and TencentCloud have the highest reductions in read and write miss ratios,
respectively, implying the significance of enlarging the cache size in cloud block storage workloads.

4.4 Similarities and Differences Between Two Cloud Block Storage Traces
We highlight the major similarities and differences between the two cloud block storage traces, AliCloud and
TencentCloud.

Load intensities. AliCloud and TencentCloud show similar intensities of volumes (Finding B.1), but
different observations in burstiness and activeness.
• In terms of burstiness, TencentCloud has lower overall burstiness than AliCloud, and also has a lower frac-

tion of volumes with high burstiness ratios (Finding B.2). Nevertheless, both AliCloud and TencentCloud
have more diverse burstiness across volumes than MSRC (Finding B.3).

• In terms of activeness, TencentCloud has higher activeness than AliCloud, in both the number of active
volumes and the active time in each volume (Finding B.5). While writes are the dominant factor in
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the activeness of both cloud block storage traces (Finding B.6), TencentCloud is more read-active than
AliCloud (Finding B.7).

• In terms of the distribution of traffic per day, unlike MSRC, the traffic of both AliCloud and TencentCloud
is almost evenly spread across daytime and nighttime. While AliCloud shows substantial read traffic at
midnight, TencentCloud does not (Finding B.8).

Spatial patterns. While AliCloud and TencentCloud show higher randomness than MSRC, TencentCloud
generally has higher randomness in I/O requests and higher levels of traffic aggregation in blocks than
AliCloud.
• In terms of the randomness in I/Os, the volumes in both AliCloud and TencentCloud have higher percentages

of random I/Os than those in MSRC. Compared with AliCloud, TencentCloud generally shows a higher
percentage of random I/Os. For example, TencentCloud has a higher fraction of random requests in half of
the volumes than AliCloud (42.1% versus 33.5%) (Finding B.9).

• In terms of the aggregation of traffic, TencentCloud shows more traffic in top-1% and top-10% of the
most access-intensive blocks than AliCloud, indicating that TencentCloud has a higher degree of traffic
aggregation in a small set of blocks (Finding B.10). Also, while both AliCloud and TencentCloud have
higher percentages of writes in write-mostly blocks than MSRC, TencentCloud has higher read and write
traffic aggregations than AliCloud in read-mostly and write-mostly blocks, respectively (Finding B.11).
Furthermore, while both AliCloud and TencentCloud have higher fractions of update-intensive volumes (i.e.,
the volumes with high percentages of update traffic) than MSRC, TencentCloud has a higher percentage of
update-intensive volumes than AliCloud (Finding B.12).

Temporal patterns. TencentCloud generally has lower access intervals on blocks in reads, writes, and
updates. It also has lower miss ratios than AliCloud under the same cache configurations.
• In terms of the time intervals in accessing the same blocks, both AliCloud and TencentCloud generally have

smaller WAW times than RAW times and smaller RAR times than WAR times. However, TencentCloud
generally has lower RAW, WAW, RAR, and WAR times than AliCloud (Findings B.13 and B.14). It
indicates that TencentCloud has more access-intensive workloads than AliCloud.

• In terms of the update intervals, TencentCloud has 90% of its update intervals smaller than 2.0 hours, and
its update intervals are generally smaller than AliCloud (Finding B.15).

• In terms of miss ratios, TencentCloud has lower miss ratios under the same cache configurations. It has
lower absolute reductions in read miss ratios than AliCloud when the cache size increases from 1% to 10%
of WSS. On the contrary, it has higher absolute reductions in write miss ratios than AliCloud when the
cache size increases from 1% to 10% of WSS (Finding B.16).

4.5 Summary of Findings
Finally, we discuss the implications of our findings of the trace analysis in AliCloud, TencentCloud, and
MSRC. We show how the findings address the design considerations for cloud block storage, including load
balancing, cache efficiency, and storage cluster management (§2.2).

Load balancing. We focus on the average and peak intensities as well as the activeness of volumes. From
Finding B.1, we observe that while many applications are hosted in the cloud, the volumes in cloud block
storage (i.e., AliCloud and TencentCloud) have similar average load intensities to those in traditional data
centers (i.e., MSRC) which were monitored more than a decade ago; however, the peak intensities are
generally smaller.

From Findings B.2-B.4, we observe the existence of burstiness in a non-negligible fraction of volumes.
While the overall burstiness remains low, the burstiness can be severe in individual volumes across many
types of applications [34], indicating that these volumes may be provisioned for high peak intensities but
most of the bandwidth resources remain unused [33]. The high burstiness may hence lead to performance
degradations if load balancing is not properly maintained. Furthermore, the higher diversity of workload

23



burstiness makes load balancing in cloud block storage more challenging than in traditional data centers.
Failing to deal with load imbalance and the diversity of workloads may cause problems to the physical
devices in cloud block storage, such as higher flash failure rates [48]. Applying shared logs or distributed
caches can ease the load imbalance among volumes [26, 48]. Also, the burstiness, as shown by the short
inter-arrival times, suggests that I/O requests tend to arrive in groups and can be further exploited to improve
I/O performance [18].

From Findings B.5-B.7, we observe that writes are the dominant factor of activeness in all three traces. In
particular, most volumes in cloud block storage (i.e., AliCloud and TencentCloud) are write-dominant (§3.2).
The differences of activeness in reads and writes indicate that removing writes can produce a high level of
idle periods, so it is possible to offload writes (e.g., by redirecting writes to other storage locations) to create
idle periods in cloud block storage workloads for power savings [33].

From Finding B.8, I/O traffic is evenly spread across both daytime and nighttime in AliCloud and
TencentCloud. This challenges background task scheduling (e.g., garbage collection, defragmentation, and
flushing caches [18, 34]) in cloud block storage. For example, performing background tasks only at nighttime
may be ineffective to reduce the interference with foreground I/Os. A careful design of I/O scheduling for
background and foreground activities becomes necessary for cloud block storage. In particular, we observe
large read spikes near midnight on a daily basis in some of the volumes in AliCloud. How to prevent such
I/O spikes from interfering with cloud block storage system as a whole needs careful attention.

Concerning the design of load balancing, the data placement strategies should be aware of the diversity of
workloads, the burstiness of individual volumes, and the traffic distribution over time. The log-structured
design [35] is proven useful for balancing the write traffic in cloud-scale flash-based storage [48].

Cache efficiency. We study the spatial and temporal characteristics of volumes, which provide guidelines for
motivating new caching designs for cloud block storage.

From Findings B.10 and B.16, we observe the patterns of both spatial and temporal traffic aggregations in
a small fraction of blocks, especially for writes. TencentCloud shows a stronger traffic aggregation compared
with AliCloud and MSRC. Many volumes in cloud block storage show high aggregations of reads and writes,
implying that it is viable to allocate limited cache resources for absorbing substantial amounts of reads and
writes.

From Finding B.11, we observe that many volumes in cloud block storage have reads and writes
aggregated in read-mostly and write-mostly blocks, respectively. Thus, one possible caching admission policy
is to identify the read-mostly and write-mostly blocks in workloads, as such blocks can absorb a substantial
amount of I/O traffic. Also, the read-mostly and write-mostly blocks can be put into different devices to
separately reduce the read and write latencies [23].

From Findings B.13 and B.14, the blocks that have been written tend to be rewritten again. In contrast,
the blocks that have been read tend to receive another write after a long period of time. Thus, if our goal is to
absorb writes with caching, a possible strategy is to favor the caching of the blocks that have been written
rather than those that have been read, as the latter may unlikely generate write hits. Also, cloud block storage
can benefit from disk-based write caching [37], due to the limited reads from the disk-based cache.

Storage cluster management. Characterizing the spatial and temporal characteristics of volumes is also
critical for storage cluster management. Here, we focus on flash-based storage (§2.1).

From Finding B.9, we observe that upper-layer applications in cloud block storage issue a high fraction
of small and random I/Os, which are known to hurt both the performance and endurance of flash-based
storage [31]. The log-structured storage design [35] and I/O clustering [31] can help mitigate the overhead of
small and random I/Os.

From Findings B.12 and B.15, updates are common and have high variations across volumes, both
spatially and temporally. The varying update coverage across different volumes requires the underlying
caches to use adaptive caching methods to absorb update traffic. Also, the varying update patterns can harm
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the effectiveness of garbage collection and wear leveling in flash [17]. Thus, cloud block storage systems
should take into account the varying patterns when optimizing update workloads for flash-based storage. A
possible direction is to maintain the flash-translation layer (FTL) at the system level [13] to flexibly coordinate
the I/Os issued to flash.

From Finding B.13, a larger number of WAW requests than RAW requests in AliCloud and TencentCloud
indicates that the next issued requests to newly written blocks tend to be writes instead of reads. If these
written blocks are replicated across different nodes, we may choose to update only one copy and invalidate
other copies, instead of updating all copies, in order to save the update overhead since the written data is
likely to be rewritten again [18].

Unexpected results. Finally, we highlight some unexpected results reported in our findings.
From Finding B.6, we observe that the activeness of MSRC is dominated by writes, yet the MSRC is

read-dominant (§3.2). The results indicate that MSRC is write-dominant from the perspective of activeness,
but is read-dominant from the perspective of the amount of I/O traffic.

From Finding B.8, we observe read spikes near midnight in both AliCloud and MSRC traces. In the
corresponding read requests of the spike period, the average read request size in AliCloud is larger than
360 KiB, while that in MSRC is smaller than 43.1 KiB. We suspect that there exist scheduled scan activities
in the corresponding volumes of AliCloud.

From Finding B.11, the limited aggregation of writes in write-mostly blocks in MSRC is inconsistent
with prior work [23], which emphasizes that most of the write requests access write-mostly blocks. The
reason is that the previous study [23] considers 12 volumes, while we consider all 36 volumes instead.

5 Related Work
We review related work on the field studies on storage workloads and how they inspire storage system designs.

Characterization of storage workloads. Several field studies characterize storage workloads using block-
level I/O traces in various architectures, such as consumer electronics [34], virtual machines [1], Windows
servers [19, 33], smartphone applications [54], containerized applications [16], and virtual desktop infrastruc-
tures [20]. Yadgar et al. [49] perform I/O workload analysis and study the performance implications (e.g.,
read/write amplifications and flash read costs) for SSD-based storage. In contrast, our field study focuses on
cloud block storage that supports a diverse set of cloud applications in large-scale production. In particular,
we provide findings and insights on performance optimizations for load balancing, caching efficiency, and
storage cluster management.

Table 10 summarizes the traces used in the existing block-level trace studies [1, 16, 19, 20, 33, 49, 52, 54]
in the literature, in terms of the number of traces (or volumes in our case), the trace durations, the number
of read and write requests, and the total data traffic of reads and writes. Our trace analysis has the largest
scale compared with the existing block-level trace studies at the time of the writing. Ahmad et al. [1] do not
show the overall statistics but mention that the total I/O size is at most 10 GiB. Harter et al. [16] only focus
on reads, and their analysis comprises of 57 docker images, each of which has the average read traffic of
27 MiB. Zhang et al. [52] collected the TencentCloud traces, but they mainly focus on the cache allocation
design based on trace-driven evaluation instead of providing detailed trace analysis.

Inspirations from load intensity. Some designs are inspired by the characteristics of load intensity in
storage workloads. Narayanan et al. [33] offload writes to reduce power consumptions with the observation
that some volumes are idle in reads, thereby removing writes in those volumes can increase the idle periods
for power saving. SRCMap [41] reduces power consumptions using sampling and replication, based on the
observation on the I/O size and intensity of active data sets. Ursa [21] adopts the log-structured design, based
on the observation that small writes dominate in real-world workloads.

Inspirations from spatial patterns. Some designs exploit the spatial characteristics of storage workloads.
BORG [9] organizes frequently written data in a small dedicated disk partition to reduce the I/O seek time.
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MSRC
[33]

MS-Prod
[19]

Zhou et
al. [54]

Lee et
al. [20]

Tencent
-Cloud [52]

SSDTrace
[49]

AliCloud

#Volumes 36 43 25 321 4,995 1 1,000
Duration (days) 7 0.003-1 < 0.34 28 9.04 0.40 31

#Reads (millions) 304.9 126.2 0.04 2455.4 10,030.2 342.9 5,058.6
#Writes (millions) 128.9 87.3 0.13 898.3 23,592.0 9.69 15,174.4
Read Traffic (TiB) 9.04 2.98 0.002 64.8 282.3 2.94 161.6
Write Traffic (TiB) 2.39 1.70 0.006 15.0 837.2 6.38 455.5

Table 10: Statistics of existing block-level trace studies [19, 20, 33, 49, 52, 54].

FlashTier [36] manages sparse address mappings in flash caching, as storage I/Os are often aggregated in a
small number of blocks. Desnoyers [14] proposes an analytical model for cleaning algorithms in flash devices
and analyzes the aggregation of written blocks in specific working sets. ACGR [23] regulates I/O accesses
for flash storage, based on the observation of read and write aggregations in read-only and write-only blocks,
respectively. To improve the update performance in erasure-coded storage, CodFS [12] proposes dynamic
reserved space management for parity updates to address the varying working sets of updates across storage
workloads, while PBS [53] exploits the large fractions of overwrites to mitigate parity update overhead.

Inspirations from temporal patterns. Some designs exploit the temporal characteristics of storage work-
loads. Griffin [37] leverages the large time intervals between writes and the subsequent reads to the same
block to build an HDD-based write cache for improving the SSD lifetime. Arteaga et al. [6] propose a
cache-optimized RAID technique to minimize the RAID overhead in cloud storage, based on the comparisons
between write-back caching and write-through caching on a set of block I/O traces from production servers in
the cloud. CloudCache [5] chooses the window size of the model based on the hit ratio analysis on two-week
traces in the cloud. Some studies leverage the characteristics of update intervals in storage workloads for
improving write performance [24], lifetime [10], garbage collection modeling, and data reduction [50] in
SSDs. Counter Stacks [47], SHARDS [43], and OSCA [52] consider the reuse distance (i.e., the number of
distinct items accessed between two accesses to the same item) to improve caching efficiency.

Cloud block storage systems. Several cloud block storage designs are proposed in the literature. Parallax
[28] provides storage virtualization for virtual machines atop shared block storage. Blizzard [29] manages
POSIX applications atop cloud block storage. Ursa [21] is a hybrid block storage system that combines HDDs
and SSDs for cloud-scale virtual disks. PBS [53] supports erasure-coded cloud block storage with efficient
updates. Our recent work SepBIT [45] is a data placement scheme that mitigates the write amplification
of garbage collection in log-structured cloud block storage, and its design and evaluation are based on
the AliCloud and TencentCloud traces. In this work, we conduct an in-depth trace analysis that provides
suggestions for improving the cloud block storage design.

6 Conclusion
We present an in-depth comparative trace analysis on the production block-level I/O traces at Alibaba Cloud
(AliCloud), Tencent Cloud Block Storage (TencentCloud), and Microsoft Research Cambridge (MSRC); the
AliCloud and TencentCloud traces are from cloud block storage systems, while the MSRC trace is collected
from enterprise data centers. We reveal the commonalities and differences of the three sources of traces.
We first identify 6 findings through the high-level analysis on the basic I/O statistics. We also identify 16
findings through the detailed analysis, based on which we further discuss the implications on three practical
design considerations for cloud block storage, including load balancing, cache efficiency, and storage cluster
management.
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