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Abstract

Encrypted deduplication combines encryption and deduplication to simultaneously achieve both data
security and storage efficiency. State-of-the-art encrypted deduplication systems mainly build on deter-
ministic encryption to preserve deduplication effectiveness. However, such deterministic encryption
reveals the underlying frequency distribution of the original plaintext chunks. This allows an adversary
to launch frequency analysis against the ciphertext chunks and infer the content of the original plain-
text chunks. In this paper, we study how frequency analysis affects information leakage in encrypted
deduplication, from both attack and defense perspectives. Specifically, we target backup workloads, and
propose a new inference attack that exploits chunk locality to increase the coverage of inferred chunks.
We further combine the new inference attack with the knowledge of chunk sizes and show its attack
effectiveness against variable-size chunks. We conduct trace-driven evaluation on both real-world and
synthetic datasets and show that our proposed attacks infer a significant fraction of plaintext chunks
under backup workloads. To defend against frequency analysis, we present two defense approaches,
namely MinHash encryption and scrambling. Our trace-driven evaluation shows that our combined
MinHash encryption and scrambling scheme effectively mitigates the severity of the inference attacks,
while maintaining high storage efficiency and incurring limited metadata access overhead.

1 Introduction

To manage massive amounts of data in the wild, modern storage systems employ deduplication (see Sec-
tion to eliminate content duplicates and save storage space. The common deduplication approach is to
store only data copies, called chunks, that have unique content among all already stored chunks. Field stud-
ies have demonstrated that deduplication achieves significant storage savings in production, for example,
by 50% in primary storage [49] and up to 98% in backup storage [62]. Deduplication is also adopted by
commercial cloud storage services (e.g., Dropbox, Google Drive, Bitcasa, etc.) for cost-efficient outsourced
data management [43]].

In the security context, combining encryption and deduplication, referred to as encrypted deduplication
(see Section [2.2)), is essential for protecting against information leakage in deduplicated storage. Conven-
tional (symmetric) encryption requires that users encrypt data with their own distinct secret keys. As a result,
duplicate plaintext chunks will be encrypted into distinct ciphertext chunks, thereby prohibiting deduplica-
tion across different users. To preserve deduplication effectiveness, encrypted deduplication requires that
each chunk be encrypted with a secret key derived from the chunk content itself, so that identical plaintext

*An earlier conference version of this paper appeared at the 47th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2017) [42]. In this extended version, we propose new attack and defense schemes, include a new dataset in
our evaluation, and add new prototype experiments.
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Figure 1: Frequency distributions of chunks with duplicate content in the FSL and VM datasets (see Sec-
tion ﬁ] for dataset details).

chunks are always encrypted into identical ciphertext chunks for deduplication. Bellare et al. [[13]] propose
a cryptographic primitive called Message-locked encryption (MLE) to formalize the key derivation require-
ment of encrypted deduplication, in which an MLE scheme consists of a key generation algorithm that maps
the content of a message (or chunk in our case) into a secret key for symmetric encryption/decryption; in par-
ticular, convergent encryption [22] is one classical instantiation of MLE by deriving the secret key through
the hash of a chunk. On top of MLE, several storage systems address additional security issues, such as
brute-force attacks [12], key management failures [24]], side-channel attacks [31]], and access control [53]].

However, we argue that existing MLE schemes cannot fully protect against information leakage, mainly
because their encryption approaches are deterministic. That is, each ciphertext chunk is encrypted by a
key that is deterministically derived from the original plaintext chunk. Thus, an adversary, which can be
malicious users or storage system administrators, can analyze the frequency distribution of ciphertext chunks
and infer the original plaintext chunks based on frequency analysis. We observe that practical deduplicated
storage workloads often exhibit skewed frequency distributions in terms of the occurrences of chunks with
the same content. Figure [1] justifies our observation, by depicting the skewed frequency distributions of
chunks in the real-world FSL and VM datasets (see Section [5]for the dataset details). For example, the FSL
dataset has 99.8% of chunks occurring fewer than 100 times, while around 30 out of 41 million chunks
(or 0.00007% of chunks) occur over 10,000 times; the VM dataset has 97% of chunks occurring fewer
than 100 times, while around 15,000 out of 35 million chunks (or 0.04% of chunks) occur over 10,000
times. Such skewed frequency distributions allow the adversary to accurately differentiate chunks by their
frequencies via frequency analysis. On the other hand, while frequency analysis is a historically well-known
cryptanalysis attack [4], the practical implications of frequency analysis against encrypted deduplication
remain unexplored.

In this paper, we conduct an in-depth study of how frequency analysis practically affects information
leakage in encrypted deduplication. Our study spans both attack and defense perspectives, and is specifically
driven by the characteristics of storage workloads in deduplication systems.

On the attack side, we propose a new inference attack called the locality-based attack, which extends
classical frequency analysis to accurately infer ciphertext-plaintext chunk pairs in encrypted deduplication.
The main novelty of the locality-based attack is to exploit chunk locality, a common property in practical
backup workloads. Chunk locality states that chunks are likely to re-occur together with their neighboring
chunks across different versions of backups, mainly because in practice, changes to backups often appear
in few clustered regions of chunks, while the remaining regions of chunks will appear in the same order
in previous backups. Previous studies have exploited chunk locality to improve deduplication performance



and mitigate indexing overhead (e.g., [45,|65,/67]). Here, we adapt this idea from a security perspective
into frequency analysis: if a plaintext chunk M corresponds to a ciphertext chunk C, then the neighboring
plaintext chunks of M are likely to correspond to the neighboring ciphertext chunks of C'.

Our trace-driven evaluation, using both real-world and synthetic datasets, shows that the locality-based
attack can infer significantly more ciphertext-plaintext pairs than classical frequency analysis. For example,
for the real-world FSL dataset, the locality-based attack can infer up to 23.2% of the latest backup data,
while the basic attack that directly applies classical frequency analysis can only infer 0.0001% of data. If a
limited fraction (e.g., 0.2%) of plaintext information of the latest backup is leaked, the inference rate of the
locality-based attack can increase up to 27.5%.

We further combine the locality-based attack with the knowledge of chunk sizes, and propose an ad-
vanced locality-based attack against variable-size chunks. The advanced locality-based attack maps cipher-
text chunks to some plaintext chunks with similar sizes, and further increases the inference rate.

Our inference attacks are harmful in practice, even though the underlying symmetric encryption remains
secure. One security implication of our inference attacks is that they can identify critical chunks in an
encrypted backup snapshot. Given the plaintext chunks of some critical files (e.g., password files) in an
old backup, an adversary can infer the ciphertext chunks in the latest backup corresponding to those critical
plaintext chunks. It can then launch specific attacks against such identified ciphertext chunks; for example,
by dedicatedly corrupting (e.g., deleting or modifying) such ciphertext chunks, the adversary can make the
underlying critical plaintext information unrecoverable.

On the defense side, we present two defense approaches to combat the inference attacks. The first one
is MinHash encryption, which derives a common encryption key based on a set of adjacent chunks, such
that some identical plaintext chunks can be encrypted into multiple distinct ciphertext chunks. Note that
MinHash encryption has been shown to effectively reduce the overhead of server-aided MLE [53]; here
we show how it can also be used to break the deterministic nature of encrypted deduplication and disturb
the frequency ranking of ciphertext chunks. The second one is scrambling, which randomly shuffles the
original chunk ordering during the deduplication process in order to break chunk locality. Our trace-driven
evaluation shows that the combined MinHash encryption and scrambling scheme can suppress the inference
rate to only 0.23% for the FSL dataset.

We also evaluate the storage efficiency and deduplication performance of the combined MinHash en-
cryption and scrambling scheme. First, the combined scheme maintains the high storage saving achieved
by deduplication, and its storage saving is only up to 3.6% less than that of the original MLE, which uses
chunk-based deduplication. In addition, we build a realistic deduplication prototype based on DDFS [67]
and evaluate the on-disk metadata access overhead. We show that the combined scheme incurs up to 1.2%
additional metadata access overhead compared to the original MLE, and it incurs even less metadata access
overhead when there is sufficient memory for metadata caching. Our findings suggest that the combined
scheme adds limited overhead to both storage efficiency and deduplication performance in practical deploy-
ment, while effectively defending against frequency analysis.

The source code of our attack and defense implementations as well as the deduplication prototype is
available at: http://adslab.cse.cuhk.edu.hk/software/freqanalysis.

The remainder of the paper proceeds as follows. Section 2]reviews the basics of encrypted deduplication
and frequency analysis. Section[3|defines the threat model. Sectiond|presents our proposed inference attacks
based on frequency analysis. Section [5] presents the evaluation results of our proposed inference attacks.
Section [6] presents the defense schemes against the inference attacks. Section [7] presents the evaluation
results of our defense schemes. Section [§] reviews the related work, and finally, Section [9] concludes the

paper.
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2 Basics

2.1 Deduplication

Deduplication can be viewed as a coarse-grained compression technique to save storage space. We focus on
chunk-based deduplication that operates at the granularities of chunks. Specifically, a deduplication system
partitions input data into variable-size chunks through content-defined chunking (e.g., Rabin fingerprinting
[54])), which identifies chunk boundaries that match specific content patterns so as to remain robust against
content shifts [25]. We can configure the minimum, average, and maximum chunk sizes in content-defined
chunking for different granularities. After chunking, each chunk is identified by a fingerprint, which is
computed from the cryptographic hash of the content of the chunk. Any two chunks are said to be identical
if they have the same fingerprint, and the collision probability that two non-identical chunks have the same
fingerprint is practically negligible [16]. Deduplication requires that only one physical copy of identical
chunks is kept in the storage system, while any identical chunk refers to the physical chunk via a small-size
reference.

To check if any identical chunk exists, the deduplication system maintains a fingerprint index, a key-
value store that holds the mappings of all fingerprints to the addresses of physical chunks that are currently
stored. For each file, the storage system also stores a file recipe that lists the references to all chunks of the
file for future reconstruction.

2.2 Encrypted Deduplication

Encrypted deduplication ensures that all physical chunks are encrypted for confidentiality (i.e., data remains
secret from unauthorized users and even storage system administrators), while the ciphertext chunks that
are originated from identical plaintext chunks can still be deduplicated for storage savings. As stated in
Section [T} message-locked encryption (MLE) [13]] is a formal cryptographic primitive for encrypted dedu-
plication, in which each chunk is encrypted/decrypted by a secret key that is derived from the chunk content
itself through some key generation algorithm. For example, convergent encryption [22] is one popular MLE
instantiation, and uses the cryptographic hash of a chunk as the corresponding symmetric key. This ensures
that identical plaintext chunks must be encrypted into the identical ciphertext chunks, thereby preserving
deduplication effectiveness. Note that the encrypted deduplication system needs to maintain a key recipe for
each user to track the per-chunk keys for future decryption. Each key recipe is encrypted by the user’s own
secret key via conventional encryption for protection (see Section [3).

MLE is inherently vulnerable to the offline brute-force attack [13]], which allows an adversary to deter-
mine which plaintext chunk is encrypted into an input ciphertext chunk. The brute-force attack works as
follows. Suppose that the adversary knows the set of chunks from which the underlying plaintext chunk is
drawn. Then for each chunk from the set, the adversary finds the chunk-derived key (whose key derivation
algorithm is supposed to be publicly available), encrypts the chunk with the chunk-derived key, and finally
checks if the output ciphertext chunk is identical to the input ciphertext chunk. If so, the plaintext chunk is
the answer. Thus, MLE can only achieve security for unpredictable chunks [13]], meaning that the size of
the set of chunks is sufficiently large, such that the brute-force attack becomes infeasible.

To protect against the brute-force attack, DupLESS [12] realizes server-aided MLE, which outsources
MLE key management to a dedicated key manager that is only accessible by authenticated clients. Each
authenticated client needs to first query the key manager for the chunk-derived key. Then the key manager
computes and returns the key via a deterministic key derivation algorithm that takes the inputs of both the
chunk fingerprint and a system-wide secret maintained by the key manager itself. This makes the resulting
ciphertext chunks appear to be encrypted by random keys from the adversary’s point of view. In addition,
the key manager limits the rate of key generation to slow down any online brute-force attack for querying
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Figure 2: Architecture of encrypted deduplication.

the encryption keys. If the key manager is secure against adversaries, server-aided MLE ensures security
even for predictable chunks; otherwise, it still maintains security for unpredictable chunks as in original
MLE [13]].

Most existing MLE implementations, either based on convergent encryption or server-aided MLE,
follow deterministic encryption to ensure that identical plaintext chunks always form identical ciphertext
chunks to make deduplication possible. Thus, they are inherently vulnerable to frequency analysis as shown
in this paper. Some encrypted deduplication designs are based on non-deterministic encryption [|3}{11}/13,46],
yet they still keep deterministic components [|13[], incur high performance overhead [46]], or require crypto-
graphic primitives that are not readily implemented [3}[11]. We elaborate the details in Section [§]

3 Threat Model

3.1 Overview

We focus on backup workloads, which have substantial content redundancy and are proven to be effective for
deduplication in practice [62,[67]]. Backups are copies of primary data (e.g., application states, file systems,
and virtual disk images) over time. They are typically represented as weekly full backups (i.e., complete
copies of data) followed by daily incremental backups (i.e., changes of data since the last full backup),
while the recent trend shows that full backups are now more frequently performed (e.g., every few days) in
production [6]]. Our threat model focuses on comparing different versions of full backups from the same
primary data source at different times. In the following discussion, we simply refer to “full backups” as
“backups”.

Figure [2] shows the encrypted deduplication architecture considered in the paper. Suppose that multiple
clients connect to a shared deduplicated storage system for data backups. Given an input file, a client
divides file data into plaintext chunks that will be encrypted via MLE. It then uploads the ciphertext chunks
to deduplicated storage. An adversary can eavesdrop the ciphertext chunks before deduplication and launch
frequency analysis. We assume that the adversary is honest-but-curious, meaning that it does not change the
prescribed storage system protocols or modify any stored data.

3.2 Auxiliary Information

To launch frequency analysis, the adversary should have access to the auxiliary information that provides
ground truths about the backups being stored. Prior studies have proposed different approaches to obtain the
auxiliary information to launch inference attacks. We briefly discuss several representative ones that inspire
our work.



o Naveed et al. [50] examine inference attacks against the encrypted databases for electronic medical
records, some of which are protected by deterministic encryption. To evaluate the feasibility of launching
inference attacks, the authors obtain the auxiliary information from a public user dataset released by the
government health services.

o Grubbs et al. [28] infer the plaintexts of the attributes of customer records (e.g., first name, last name, ZIP
codes, birth dates, etc.) stored in an encrypted database. They obtain the auxiliary information regarding
the plaintext distribution via the public census and survey datasets.

e Bindschaedler er al. [[15] also infer the plaintexts of the attributes of encrypted customer records like
Grubbs et al. [28]], but use the public and purchased U.S. voter registration lists as the auxiliary informa-
tion. The authors also use the older versions of purchased hospital-discharge data and public censor data
to infer the newer versions of respective data.

o Grubbs et al. [27] focus on Ubuntu Internet Relay Chat (IRC) logs [2,|61]] and extract the log keywords.
They generate the keyword query distribution from one year’s Ubuntu IRC logs as the auxiliary informa-
tion to infer the encrypted keywords in the logs of a later year.

e Pouliot ef al. [[52]] consider the inference attacks against the keywords in the Enron email dataset [37].
They first partition each user’s emails into two non-overlapping sets (i.e., training and testing sets). They
then generate the necessary auxiliary information from the training set, and infer the content of the testing
set that is encrypted.

e Other studies [[19}[33}|66]] also leverage the Enron email dataset. They create a Zipfian synthetic keyword
query distribution from the keyword list of the whole Enron dataset as the auxiliary information, and use
it to infer the keywords in the original dataset that is encrypted.

We observe that previous studies mainly obtain the auxiliary information from private [15/,19,27,33},52,
66| or public [15}28],50] sources. By private, we mean that the auxiliary information is originally protected
but is obtained through unintended data releases [10], data breaches [29]], or stolen storage devices [32]. By
public, we mean that the auxiliary information can be legitimately accessed by the adversary.

In this work, we mainly focus on the private auxiliary information, which we model as the plaintext
chunks of a prior (non-latest) backup. Nevertheless, in our evaluation (see Section [3)), we also address the
public auxiliary information, in which we choose a virtual disk image that is publicly accessible.

We note that the success of frequency analysis heavily depends on how accurate the available auxiliary
information describes the backups. Our focus is not to address how to obtain accurate auxiliary information,
which we pose as future work; instead, given the available auxiliary information, we study how an adversary
can design severe attacks based on frequency analysis and how we can defend against the attacks.

3.3 Attack Modes

Based on the available auxiliary information (which describes a prior backup), the primary goal of the
adversary is to infer the content of the plaintext chunks that are mapped to the ciphertext chunks of the latest
backup. The attack can be based on two modes:

e Ciphertext-only mode: It models a typical case in which the adversary can access the ciphertext chunks
of the latest backup (as well as the auxiliary information about a prior backup).

o Known-plaintext mode: It models a more severe case in which a powerful adversary not only can ac-
cess the ciphertext chunks of the latest backup and the auxiliary information about a prior backup as in
ciphertext-only mode, but also knows a small fraction of the ciphertext-plaintext chunk pairs about the
latest backup (e.g., from stolen devices [21]).



In both attack modes, we make the following assumptions on the capabilities of an adversary.

e The adversary can monitor the processing sequence of the storage system and access the logical order of
ciphertext chunks of the latest backup before deduplication. Our rationale is that existing deduplicated
storage systems [65],67] often process chunks in logical order, so as to effectively cache metadata for
efficient deduplication.

e The adversary cannot access any metadata information (e.g., the fingerprint index, file recipes, key recipes
of all files). In practice, we do not apply deduplication to the metadata, which can be protected by
conventional encryption. For example, the file recipes and key recipes can be encrypted by user-specific
secret keys.

e The adversary cannot identify which prior backup to which a stored ciphertext chunk belongs by analyzing
the physical storage space, as the storage system can store ciphertext chunks in randomized physical
addresses or in commercial public clouds (the latter is more difficult to access directly).

3.4 Other Attacks

While this work focuses on frequency analysis, another inference attack based on combinatorial optimiza-
tion, called /,-optimization, has been proposed to attack deterministic encryption [50]. Nevertheless, fre-
quency analysis is shown to be as effective as the [,,-optimization attack [50], and later studies [40,52] also
state that both frequency analysis and [,-optimization may have equivalent severity.

We do not consider other threats against encrypted deduplication, as they can be addressed independently
by existing approaches. For example, the side-channel attack against encrypted deduplication [30,31] can
be addressed by server-side deduplication [31,/43]] and proof of ownership [30]; the leakage of access pattern
[33]] can be addressed by oblivious RAM [57]] and blind storage [51].

4 Attacks

We present inference attacks based on frequency analysis against encrypted deduplication. We first present
a basic attack, which builds on classical frequency analysis to infer plaintext content in encrypted dedupli-
cation. We next propose a more severe locality-based attack, which enhances the basic attack by exploiting
chunk locality. Furthermore, we combine the locality-based attack with the chunk size information, and
propose an advanced locality-based attack against variable-size chunks.

Table 1| summarizes the major notation used in this paper. We first formalize the adversarial goal of our
proposed attacks based on the threat model in Section[3] Let C = (C', Cs, . . .) be the sequence of ciphertext
chunks in logical order for the latest backup, and M = (M, Mo, . ..) be the sequence of plaintext chunks
in logical order for a prior backup (i.e., M is the auxiliary information). Both C and M show the logical
orders of chunks before deduplication as perceived by the adversary (i.e., identical chunks may repeat), and
each of them can have multiple identical chunks that have the same content. Note that both C and M do not
necessarily have the same number of chunks. Furthermore, the ¢-th plaintext chunk M; in M (where ¢ > 1)
is not necessarily mapped to the ¢-th ciphertext chunk in C; in fact, M; may not be mapped to any ciphertext
chunk in C, for example, when M; has been updated before the latest backup is generated. Given C and
M, the goal of an adversary is to infer the content of the original plaintext chunks in C.

We quantify the severity of an attack using the inference rate, defined as the ratio of the number of
unique ciphertext chunks whose plaintext chunks are successfully inferred over the total number of unique
ciphertext chunks in the latest backup; a higher inference rate implies that the attack is more severe.



Table 1: Major notation used in this paper.

Notation | Description

Defined in Section H

C sequence of ciphertext chunks (C, .. .) in logical order for the latest backup

M sequence of plaintext chunks (M, . ..) in logical order for a prior backup

Fc associative array that maps each ciphertext chunk in C to its frequency

Fum associative array that maps each plaintext chunk in M to its frequency

T set of inferred ciphertext-plaintext chunk pairs

Lc set of left neighbors of ciphertext chunk C'

Lr set of left neighbors of plaintext chunk M

Re set of right neighbors of ciphertext chunk C

Rm set of right neighbors of plaintext chunk M

G set of currently inferred ciphertext-plaintext chunk pairs

U number of ciphertext-plaintext chunk pairs returned from frequency analysis dur-
ing the initialization of G

v number of ciphertext-plaintext chunk pairs returned from frequency analysis in
each iteration of locality-based attack

w maximum size of G

Lc associative array that maps each ciphertext chunk in C to its left neighbor and
co-occurrence frequency

Ln associative array that maps each plaintext chunk in M to its left neighbor and
co-occurrence frequency

Rc associative array that maps each ciphertext chunk in C to its right neighbor and
co-occurrence frequency

Rm associative array that maps each plaintext chunk in M to its right neighbor and
co-occurrence frequency

Defined in Section ﬂ
Kg segment-based key of segment .S
h minimum fingerprint of chunks in a segment

4.1 Basic Attack

We first demonstrate how we can apply frequency analysis to infer the original plaintext chunks of the
latest backup in encrypted deduplication. We call this attack the basic attack. Note that the basic attack is
ineffective in inference (see below and the evaluation in Section [5), yet we use it to guide our design of the
locality-based attack in Section4.2

Overview: In the basic attack, we identify each chunk by its fingerprint, and count the frequency of each
chunk by the number of fingerprints that appear in a backup. Thus, a chunk (or a fingerprint) has a high
frequency if there exist many identical chunks with the same content. We sort the chunks of both C and M
by their frequencies, and infer that the ¢-th frequent plaintext chunk in M is the original plaintext chunk of
the -th frequent ciphertext chunk in C. Our rationale is that the frequency of a plaintext chunk is correlated
to that of the corresponding ciphertext chunk due to deterministic encryption.

Algorithm details: Algorithm I|shows the pseudo-code of the basic attack. It takes C and M as input, and
returns the result set 7 of all inferred ciphertext-plaintext chunk pairs. It first calls the function COUNT to
obtain the frequencies of all ciphertext and plaintext chunks, identified by fingerprints, in associative arrays
Fc and Fy, respectively (Lines 2-3). It then calls the function FREQ-ANALYSIS to infer the set 7 of
ciphertext-plaintext chunk pairs (Line 4), and returns 7 (Line 5).

The function COUNT constructs an associative array Fx (where X can be either C and M) that holds



Algorithm 1 Basic Attack

1: procedure BASIC ATTACK(C, M)

2 Fc < CouNT(C)

3 Fn <+ CouNT(M)

4: T <FREQ-ANALYSIS(F¢c,Fnm)
5 return 7

6: end procedure

7: function COUNT(X)
8: Initialize Fx
9: for each X in X do
10: if X does not exist in Fx then
11: Initialize Fx [X] < 0
12: end if
13: Fx[X]+ Fx[X]+1
14: end for
15: return Fx

16: end function

17: function FREQ-ANALYSIS(F¢c, Fn)
18: Sort F ¢ by frequency
19: Sort Fg by frequency

20: min + min{|Fc|, |FMm|}

21: for ¢ =1 to min do

22: C < i-th frequent ciphertext chunk
23: M < i-th frequent plaintext chunk
24: Add (C,M)to T’

25: end for

26: return 7'
27: end function

the frequencies of all chunks. If a chunk X does not exist in Fx (i.e., its fingerprint is not found), then the
function adds X to Fx and initializes Fx [X] as zero (Lines 10-12). The function then increments Fx [X]
by one (Line 13).

The function FREQ-ANALYSIS performs frequency analysis based on F ¢ and Fy. It first sorts each of
F ¢ and Fy\ by frequency (Lines 18-19). Since F ¢ and Fys may not have the same number of elements, it
finds the minimum number of elements in F ¢ and Fyt (Line 20). Finally, it returns the ciphertext-plaintext
chunk pairs, in which both the ciphertext and plaintext chunks of each pair have the same rank (Lines 21-26).

Discussion: The basic attack demonstrates how frequency analysis can be applied to encrypted deduplica-
tion. However, it only achieves a small inference rate, as shown in our trace-driven evaluation (see Sec-
tion [5). One reason is that the basic attack is sensitive to data updates that occur across different versions
of backups over time. An update to a chunk can change the frequency ranks of multiple chunks, including
the chunk itself and other chunks with similar frequencies. Specifically, an update to a ciphertext chunk C'
in the latest backup can lower the frequency rank of C, which now has fewer copies of identical ciphertext
chunks with the same content, while promoting the ranks of other ciphertext chunks whose ranks are just
below C. Another reason is that there exist many ties, in which chunks have the same frequency. How to
break a tie during sorting also affects the frequency rank and hence the inference results of the tied chunks.
In the following, we extend the basic attack to improve its inference rate.



4.2 Locality-based Attack

The locality-based attack exploits chunk locality to make frequency analysis more effective.

Overview: We first define the notation that captures the notion of chunk locality. Consider two ordered
pairs (C;, C;+1) and (M;, M; 1) of neighboring ciphertext and plaintext chunks in C and M, respectively.
We say that C; is the left neighbor of C;1, while ;1 is the right neighbor of C}; similar definitions apply
to M; and M; . Note that a ciphertext chunk in C or a plaintext chunk in M may repeat many times (i.e.,
there are many duplicate copies), so if we identify each chunk by its fingerprint, it can be associated with
more than one left or right neighbor. Let £ and R¢ be the sets of left neighbors and right neighbors of a
ciphertext chunk C, respectively, and £, and R s be the left and right neighbors of a plaintext chunk M,
respectively.

Our insight is that if a plaintext chunk M of a prior backup has been identified as the original plaintext
chunk of a ciphertext chunk C' of the latest backup, then the left and right neighbors of M are also likely to
be original plaintext chunks of the left and right neighbors of C', mainly because chunk locality implies that
the ordering of chunks is likely to be preserved across backups. In other words, for any inferred ciphertext-
plaintext chunk pair (C, M), we further infer more ciphertext-plaintext chunk pairs through the left and
right neighboring chunks of C' and M, and repeat the same inference on those newly inferred chunk pairs.
Thus, we can significantly increase the attack severity.

The locality-based attack operates on an inferred set G, which stores the currently inferred set of
ciphertext-plaintext chunks pairs. How to initialize G depends on the attack modes (see Section [3). In
ciphertext-only mode, in which an adversary only knows C and M, we apply frequency analysis to find the
most frequent ciphertext-plaintext chunk pairs and add them to G. Here, we configure a parameter u (e.g.,
u = 1 by default in our implementation) to indicate the number of most frequent chunk pairs to be returned.
Our rationale is that the top-frequent chunks have significantly higher frequencies (see Figure [1)) than the
other chunks, and their frequency ranks are stable across different backups. This ensures the correctness of
the ciphertext-plaintext chunk pairs in G with a high probability throughout the attack. On the other hand,
in known-plaintext mode, in which the adversary knows some leaked ciphertext-plaintext chunk pairs about
C for the latest backup, we initialize G with the set of leaked chunk pairs that are also in M.

The locality-based attack proceeds as follows. In each iteration, it picks one ciphertext-plaintext chunk
pair (C, M) from G. It collects the corresponding sets of neighboring chunks L¢, Ly, R, and Rps. We
apply frequency analysis to find the most frequent ciphertext-plaintext chunk pairs from each of L and £/,
and similarly from R and R ;. In other words, we find the left and right neighboring chunks of C' and M
that have the most co-occurrences with C and M themselves, respectively. We configure a parameter v (e.g.,
v = 15 by default in our implementation) to indicate the number of most frequent chunk pairs returned from
the frequent analysis algorithm being called in each iteration. A larger v increases the number of inferred
ciphertext-plaintext chunk pairs, but it also potentially compromises the inference accuracy. The attack adds
all inferred chunk pairs into G, and iterates until all inferred chunk pairs in G have been processed.

Note that G may grow very large as the backup size increases. A very large G can exhaust memory space.
We configure a parameter w (e.g., w = 200,000 by default in our implementation) to bound the maximum
size of G.

In our evaluation (see Section [3)), we carefully examine the impact of the configurable parameters u, v,
and w.

Algorithm details: Algorithm [2[ shows the pseudo-code of the locality-based attack. It takes C, M, u, v,
and w as input, and returns the result set 7 of all inferred ciphertext-plaintext chunk pairs. It first calls
the function COUNT to obtain the following associative arrays: F ¢, which stores the frequencies of all
ciphertext chunks, as well as Lc and R, which store the co-occurrence frequencies of the left and right
neighbors of all ciphertext chunks, respectively (Line 2); similarly, it obtains the associative arrays Fyg, Ly,
and Ry for the plaintext chunks (Line 3). It then initializes the inferred set G, either by obtaining » most
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Algorithm 2 Locality-based Attack

1: procedure LOCALITY ATTACK(C, M, u, v, w) 29: Initialize Fx[X] + 0
2: (Fc,Lc,Re) < Count(C) 30: end if
3: (FM7LM, RM) — COUNT(M) 31: Fx[X] — Fx[X} +1
4: if ciphertext-only mode then 32: if X has a left neighbor X; then
5 G < FREQ-ANALYSIS(F¢, Fp, u) 33: if X; does not exist in Lx [X] then
6 else if known-plaintext mode then 34: Initialize Lx [X][X;] < 0
7: G < set of leaked ciphertext-plaintext chunk 35: end if
pairs that appear in both C and M 36: Lx [X][Xi] « Lx[X][Xi] +1
8: end if 37: end if
9: T<+G 38: if X has a right neighbor X, then
10: while G is non-empty do 39: if X, does not exist in Rx[X] then
11: Remove (C, M) from G 40: Initialize Rx [X][X,] < 0
12: Ti < FREQ-ANALYSIS(L¢[C], Lm[M],v) 41 end if
13: T < FREQ-ANALYSIS(Rc[C], Rm[M],v) 42 Rx[X][X,] «+ Rx[X][X,] +1
14: for each (C, M) in T, U 7 do 43: end if
15: if (C, %) isnotin 7 then 44: end for
16: Add (C,M)to T 45: return (Fx,Lx,Rx)
17: if |G| < w (i.e., G is not full) then 46: end function
18: Add (C,M)to G
19: end if 47: function FREQ-ANALYSIS(Y ¢, Y, )
20: end if 48: Sort Y ¢ by frequency
21: end for 49: Sort Y by frequency
22: end while 50: for i = 1 to min{z, |Y¢|,|Ym|} do
23: return 7 51: C < i-th frequent ciphertext chunk
24: end procedure 52: M < i-th frequent plaintext chunk
53: Add (C, M) to T’
25: function COUNT(X) 54: end for
26: Initialize Fx, Lx, and Rx 55: return 7’
27: for each X in X do 56: end function
28: if X does not exist in Fx then

frequent ciphertext-plaintext chunk pairs from frequency analysis in ciphertext-only mode, or by adding the
set of leaked ciphertext-plaintext chunk pairs that appear in both the latest and prior backups (i.e., C and
M, respectively) in known-plaintext mode (Lines 4-8). It also initializes 7 with G (Line 9).

In the main loop (Lines 10-22), the algorithm removes a pair (C, M) from G (Line 11) and uses it to infer
additional ciphertext-plaintext chunk pairs from the neighboring chunks of C' and M. It first examines all
left neighbors by running the function FREQ-ANALYSIS on L¢[C] and Lyg[M], and stores v most frequent
ciphertext-plaintext chunk pairs in 7; (Line 12). Similarly, it examines all right neighbors and stores the
results in 7, (Line 13). For each (C, M) in 7; U T, if (C,*) is not in T (i.e., the original plaintext chunk
of C has not been inferred yet), we add (C, M) to T and also to G if G is not full (Lines 14-21). The main
loop iterates until G becomes empty. Finally, 7 is returned.

Both the functions COUNT and FREQ-ANALYSIS are similar to those in the basic attack (see Algo-
rithm [I), with the following extensions. For COUNT, in addition to constructing the associative array Fx
(where X can be either C and M) that holds the frequencies of all chunks, it also constructs the associative
arrays Lx and Rx that hold the co-occurrence frequencies of the left and right neighbors of each chunk X,
respectively. For FREQ-ANALYSIS, it now performs frequency analysis on the associative arrays Y ¢ and
Y, in which Y (resp. Ya) refers to either F ¢ (resp. Fag) that holds the frequency counts of all chunks,
or Lc[C] and R¢[C] (resp. Lavi[M] and Ryg[M]) that hold the frequency counts of all ordered pairs of
chunks associated with ciphertext chunk C' (resp. plaintext chunk M). Also, FREQ-ANALYSIS only returns
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Figure 3: Example of the locality-based attack.

x (where x can be either u or v) most frequent ciphertext-plaintext chunk pairs.

Example: Figure[3|shows an example of how the locality-based attack works. Here, we consider ciphertext-
only mode. Suppose that we have obtained the auxiliary information M = (M, My, My, My, Ms, My, M,
M3, My) of some prior backup, and use it to infer the original plaintext chunks of C = (C1, Cs, C5, Ca, Cy,
Cy,C3, Cy, Cy, C3,Cy, Cy) of the latest backup. We set w = v = 1, and w — oo (i.e., the inferred set G
is unbounded). We assume that the ground truth is that the original plaintext chunk of the ciphertext chunk
C; is M; for i = 1,2, 3,4, while that of C'5 is some new plaintext chunk not in M (note that in reality, an
adversary does not know the ground truth).

We first apply frequency analysis and find that (Cq, M) is the most frequent ciphertext-plaintext chunk
pair, so we initialize G = {(Cs, M>)} and add it into 7. We then remove and operate on (C3, M2) from
G, and find that £02 = {Cl, Cy, C5}, ‘CMQ = {Ml,M4}, RC2 = {01, Cs, 05}, and RM2 = {Ml, Mg}.
From L¢, and Ly, we find that (C7, M) is the most frequent ciphertext-plaintext chunk pair, while from
Re¢, and Rz, we find (Cs, M3). Thus, we add both (C1, M;) and (C3, M3) into G and 7. We repeat the
processing on (C7, M) and (Cs, M3), and we can infer another pair (Cy, My4) from the right neighbors of
(Cs, Ms).

To summarize, the locality-based attack can successfully infer the original plaintext chunks of all four
ciphertext chunks C4, Cy, Cs, and Cy. It cannot infer the original plaintext chunk of C5, as it does not
appear in M.

4.3 Advanced Locality-based Attack

Based on the framework of the locality-based attack, we propose an advanced locality-based attack that
specifically targets variable-size chunks generated from content-defined chunking (see Section [2.1]). Specif-
ically, if the generated chunks have varying sizes, the adversary can observe the size of each ciphertext
chunk before deduplication and leverage the size information to increase the severity of the locality-based
attack.

Overview: The advanced locality-based attack builds on the observation that if a ciphertext chunk C' cor-
responds to a plaintext chunk M, then the actual size of C' approximates that of M. Suppose that the
symmetric encryption algorithm used by the encrypted deduplication system is based on block ciphers (e.g.,
AES), then both C' and M should have the same number of blocks (i.e., the basic units of block ciphers).
We exploit this additional information in frequency analysis. Specifically, we first classify the sets of ci-
phertext chunks (i.e., C, Lo, R¢) and plaintext chunks (i.e., M, £, and R ) by their sizes, measured
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Algorithm 3 Frequency Analysis in the Advanced Locality-based Attack

1: function FREQ-ANALYSIS(Y ¢, Y, @)

2 Bc < CLASSIFY(Y )

3 By <+ CLASSIFY(Y M)

4: for each available size s do

5 Sort B¢[s] by frequency

6 Sort Byg[s] by frequency

7 fori =1tox do

8 C' < i-th frequent ciphertext chunk in B¢|s]

9: M <+ i-th frequent plaintext chunk in By |s]
10: Add (C,M)to T’
11: end for

12: end for
13: return 7'’
14: end function

15: function CLASSIFY(Yx)

16: Initialize Bx

17: for each X in Yx do

18: 5 ¢ [92X)]

19: if s does not exist in Bx then
20: Initialize Bx[s] < 0

21: end if

22: Bx[s][X] + Yx[X]

23: end for

24: return Bx

25: end function

in terms of the number of blocks. For each available chunk size, we relate top-frequent ciphertext chunks
with the top-frequent plaintext chunks that have the same size. This improves the accuracy of each inferred
ciphertext-plaintext pair, and hence the inferred neighbors in the iterated inference of the locality-based
attack.

Algorithm details: The advanced locality-based attack extends the original locality-based attack in Algo-
rithm [2] and modifies the function FREQ-ANALYSIS (called in Line 5 and Lines 12-13 in Algorithm [2) to
augment frequency analysis with the knowledge of chunk sizes.

Algorithm [3] shows the pseudo-code of frequency analysis in the advanced locality-based attack. As
in Algorithm 2| the function FREQ-ANALYSIS takes the associative arrays Y ¢ and Yy, as well as the
parameter x, as input. It calls the function CLASSIFY to classify the ciphertext and plaintext chunks in
Y c and Yy into Be and By, respectively (Lines 2-3), where B¢ (resp. Byp) maps the ciphertext (resp.
plaintext) chunks that have the same sizes to corresponding frequencies. It infers x top-frequent ciphertext-
plaintext pairs for each available s (Lines 4-12), and finally returns the inference results (Line 13).

The function CLASSIFY groups the chunks in Yx (where X can be either C or M) by their sizes. In this
work, we assume that AES encryption is used and the block size is 16 bytes. Thus, CLASSIFY derives the
number of blocks s of each ciphertext or plaintext chunk (denoted by X) (Line 18), and stores the frequency
of X in Bx[s]|[X] (Line 22).
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5 Attack Evaluation

We present trace-driven evaluation results on the severity of frequency analysis against encrypted dedupli-
cation.

5.1 Datasets

We consider three datasets in our evaluation.

FSL: This dataset is collected by the File systems and Storage Lab (FSL) at Stony Brook University [/1}59,
60] and describes real-world storage patterns. We focus on the Fslhomes dataset, which contains the daily
snapshots of users’ home directories on a shared file system. Each snapshot is represented by a collection
of 48-bit chunk fingerprints produced by variable-size chunking of different average sizes. We pick the
snapshots from January 22 to May 21 in 2013, and fix the average size as 8 KB for our evaluation. We
select six users (User4, User7, User12, Userl3, Userl5, and User28) that have the complete daily snapshots
over the whole duration. We aggregate each user’s snapshots on a monthly basis (on January 22, February
22, March 22, April 21, and May 21), and hence form five monthly full backups for all users. Our post-
processed dataset covers a total of 2.7 TB of logical data before deduplication, and the overall deduplication
ratio (i.e., the ratio of the logical data size to the physical data size after deduplication) is 7.6 x.

Synthetic: This dataset contains a sequence of synthetic backup snapshots that are generated based on
Lillibridge et al.’s approach [44]. Specifically, we create an initial snapshot from a Ubuntu 14.04 virtual
disk image (originally with 1.1 GB of data) with a total of 4.3 GB space. We create a sequence of snapshots
starting from the initial snapshot, such that each snapshot is created from the previous one by randomly
picking 2% of files and modifying 2.5% of their content, and also adding 10 MB of new data. Finally,
we generate a sequence of ten snapshots, each of which is treated as a backup. Based on our choices of
parameters, the resulting storage saving of deduplication is around 90% (or equivalently, the deduplication
ratio is around 10x, which is typical in real-life backup workloads [62]). Note that the initial snapshot is
publicly available. Later in our evaluation, we study the effectiveness of the attacks by using initial snapshot
as the public auxiliary information.

VM: This dataset is collected by ourselves in a real-world scenario. It comprises 156 virtual machine (VM)
image snapshots for the students enrolled in a university programming course in Spring 2014. Each snapshot
is represented by the SHA-1 fingerprints of 4 KB fixed-size chunks. We treat the VM image snapshot as a
weekly backup of a user, and extract 13 weeks of backups of all users. We remove all zero-filled chunks
that dominate in VM images [34], and obtain a reduced dataset covering 9.11TB of data. The overall
deduplication ratio of the VM dataset is 47.6x. Our prior studies [43,/53] have also used the variants of
the dataset for evaluation. Here, we include this dataset for cross-validation of other datasets in our attack
evaluation.

5.2 Methodology

We implement all three inference attacks by processing and comparing the chunk fingerprints in our datasets.
We benchmark our current implementation on a Ubuntu 16.04 Linux machine with an AMD Athlon II X4
640 quad-core 3.0 GHz CPU and 16 GB RAM. In general, both the memory usage and the processing time of
the locality-based attack increase with the total number of unique chunks in a backup (the actual performance
overhead of the locality-based attack depends on the number of inferred chunk pairs being processed in each
iteration). Specifically, the locality-based attack takes around 1.8 GB memory and 15 hours to process an
FSL backup that includes around 30 million unique chunks, and takes around 600 MB memory and 10 hours
to process a VM backup that includes around 6 million unique chunks. In the following, we highlight the
implementation details of some data structures used by the attacks.
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Figure 4: Attack evaluation: Impact of parameters on locality-based attack.

Associative arrays: Recall that there are three types of associative arrays: (i) Fc and Fy, (ii) Lo and Ly,
and (iii) R¢ and Ry (the latter two are only used by the locality-based attack). We implement them as key-
value stores using LevelDB [26]. Each key-value store is keyed by the fingerprint of the ciphertext/plaintext
chunk. For F ¢ and Fyg, each entry stores a frequency count; for L, Ly, R, and Ry, each entry stores
a sequential list of the fingerprints of all the left/right neighbors of the keyed chunk and the co-occurrence
frequency counts. For the latter, keeping neighboring chunks sequentially simplifies our implementation,
but also increases the search time of a particular neighbor (which dominates the overall running time); we
pose the optimization as future work.

Inferred set: We implement the inferred set G in the locality-based attack as a first-in-first-out queue, whose
maximum size is bounded by w (see Section[4.2). Each time we remove the first ciphertext-plaintext chunk
pair from the queue for inferring more chunk pairs from the neighbors.

5.3 Results

We now present the evaluation results and show the inference rate (defined in Sectiond) of each attack under
different settings.

5.3.1 Impact of Parameters

We first evaluate the impact of parameters on the locality-based attack, in order to justify our choices of
parameters. Recall that the locality-based attack is configured with three parameters: u, v, and w, where u
and v are the numbers of ciphertext-plaintext pairs returned by frequency analysis during the initialization
of G and each iteration of the locality-based attack, respectively, and w is the maximum size of G. Here, we
focus on the FSL and VM datasets, and evaluate the attack in ciphertext-only mode. For the FSL dataset, we
use the backup on March 22 as the auxiliary information in order to infer the plaintext chunks of the latest
backup on May 21; for the VM dataset, we use the 12th weekly backup to infer the plaintext chunks of the
latest 13th weekly backup.

Figure [4(a)] first shows the impact of w, in which we fix v = 20 and w = 100,000. The inference rate
gradually decreases with u. For example, when u increases from 1 to 20, the inference rate decreases from
13.3% to 7.4% and from 13.0% to 12.3% for the FSL and VM datasets, respectively. A larger u implies
that incorrect ciphertext-plaintext chunk pairs are more likely to be included into the inferred set during
initialization, thereby compromising the inference accuracy. In addition, the decrease of the inference rate
in the VM dataset is slower than that in the FSL dataset. The reason is that we use a more recent VM backup
as the auxiliary information and its frequency ranking is similar to that of the latest backup.

Figure 4(b)| next shows the impact of v, in which we fix © = 10 and w = 100,000. Initially, the inference
rate increases with v, as the underlying frequency analysis infers more ciphertext-plaintext chunk pairs in
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Figure 5: Attack evaluation: Inference rate in ciphertext-only mode (varying auxiliary backups, fixed target
backup). Note that the locality-based attack and the advanced locality-based attack are equivalent for the
VM dataset.

each iteration. It hits the maximum value at about 11.2% (for the FSL dataset) and 13.8% (for the VM
dataset) when v = 15. When v increases to 40, the inference rate drops slightly to about 9.5% and 11.8%
for the FSL and VM datasets, respectively. The reason is that some incorrectly inferred ciphertext-plaintext
chunk pairs are also included into G, which compromises the inference rate.

Figure finally shows the impact of w, in which we fix © = 10 and v = 20. A larger w increases
the inference rate, since G can hold more ciphertext-plaintext chunk pairs across iterations. We observe that
when w increases beyond 200,000, the inference rate becomes steady at about 10.2% and 13.8% for the FSL
and VM datasets, respectively.

5.3.2 Inference Rate in Ciphertext-only Mode

We now evaluate the attacks in ciphertext-only mode. We select u = 1, v = 15, and w = 200,000 as default
parameters to achieve the highest possible inference rate.

Varying auxiliary backups: First, we choose each of the prior backups as the auxiliary information (we
call them auxiliary backups), and infer the original plaintext chunks in the latest backup (i.e., the backup on
May 21 in the FSL dataset, the 10th backup in the synthetic dataset, and the 13th backup in the VM dataset).

Figure[5]|shows the inference rates of the attacks versus different auxiliary backups for different datasets
(note that the zeroth auxiliary backup in the synthetic dataset is the publicly available image snapshot).
As expected, the inference rates of all attacks increase as we use more recent auxiliary backups, which
generally have higher content redundancy with the target latest backup. The basic attack is ineffective in all
cases, as the inference rate is no more than 0.0001% for the FSL dataset, 0.02% for the synthetic dataset,
and 0.005% for the VM dataset. In contrast, both the locality-based attack and the advanced locality-based
attack achieve significantly high inference rates. For example, if we use the most recent prior backup (e.g,
the FSL backup on April 21 and the 9th synthetic backup) as the auxiliary information, the inference rates
of the locality-based attack and the advanced locality-based attack reach as high as 23.2% and 33.6% for the
FSL dataset, as well as 9.4% and 16.6% for the synthetic dataset, respectively.

For the VM dataset, the locality-based attack and the advanced locality-based attack are equivalent,
since all chunks have the same size. We observe that when we use the first eight VM backups as the
auxiliary information, the inference rate of the locality-based attack is low (less than 0.005%). The possible
reason is that users have heavy activities during these weeks, such that these prior backups have low content
redundancy with the target latest backup. After the 8th backup, the inference rate of the locality-based attack
increases and finally achieves 14.5%.

Varying target backups: We next fix the backup on January 22 in the FSL dataset, the initial Ubuntu image
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Figure 6: Attack evaluation: Inference rate in ciphertext-only mode (fixed auxiliary backup, varying target
backups).

snapshot in the synthetic dataset, and the first backup in the VM dataset as the auxiliary information, and
infer the original plaintext chunks in each of the following backups (we call them target backups).

Figure [6] shows the inference rates of the attacks versus different target backups for different datasets.
Both the locality-based attack and the advanced locality-based attack are again more severe than the basic
attack, whose inference rate is less than 0.03%. For example, the locality-based attack and the advanced
locality-based attack can reach the inference rates of 26.4% and 30.0% for the backup on February 22 in the
FSL dataset, as well as 13.1% and 18.8% for the first backup in the synthetic dataset, respectively. Since
more chunks have been updated after a number of backups (e.g., four backups for the FSL dataset and ten
backups for the synthetic dataset), the inference rates of the locality-based attack and the advanced locality-
based attack drop to 7.7% and 22.1% for the FSL dataset, as well as 6.0% and 12.7% for the synthetic
dataset, respectively.

For the VM dataset, the inference rate of the locality-based attack becomes low (e.g., around 0.1%)
after using the 8th weekly backup as the target backup, since heavy updates appear during this period.
Nevertheless, the locality-based attack still achieves a higher inference rate than the basic attack, whose
inference rate is below 0.001%.

Attacks over a sliding window: Finally, we consider the launch of inference attacks based on a sliding
window approach. Specifically, we choose the ¢-th backup as the auxiliary information, and infer the original
plaintext chunks in the (¢ + s)-th backup, while we vary s and ¢ in our evaluation. We mainly focus on the
locality-based attack and the advanced locality-based attack, since the basic attack has low severity.

Figure [/| shows the inference rates for different s, where the x-axis represents different values of ¢.
The advanced locality-based attack is more severe than the locality-based attack. For example, in the FSL
dataset, the average inference rates of the locality-based attack are 24.3% and 17.3% for s = 1 and s = 2,
while the corresponding inference rates of the advanced locality-based attack increase to 30.4% and 26.4%,
respectively; in the synthetic dataset, the average inference rates of the locality-based attack are 12.0% and
11.3% for s = 1 and s = 2, while the corresponding inference rates of the advanced locality-based attack
increase to 18.3% and 17.6%, respectively.

In addition, the inference rates of the VM dataset fluctuate significantly. For example, when we use the
3rd weekly backup as the auxiliary information, the inference rates hit the highest at 23.5%, 14.3%, and
14.4% for s = 1, 2, and 3, respectively. On the other hand, the inference rates drop down to less than 0.6%
when we use the 5th to 8th weekly backups as the auxiliary information. Even with such non-preferable
cases, the locality-based attack still achieves moderate severity in general, with an average inference rate of
12.5%, 7.3%, and 4.8% for s = 1, 2, and 3, respectively.
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Figure 7: Attack evaluation: Inference rate in ciphertext-only mode (over a sliding window).
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Figure 8: Attack evaluation: Inference rate in known-plaintext mode (varying leakage rates).

5.3.3 Inference Rate in Known-Plaintext Mode

We further evaluate the severity of the locality-based attack and the advanced locality-based attack in known-
plaintext mode. To quantify the amount of leakage about the latest backup (see Section [3]), we define the
leakage rate as the ratio of the number of ciphertext-plaintext chunk pairs known by the adversary to the
total number of ciphertext chunks in a target backup. We configure v = 1, v = 15, and w = 500,000. Note
that we increase w to 500,000 (as opposed to w = 200,000 in Section[5.3.2)), as the attack in known-plaintext

mode can infer much more ciphertext-plaintext chunk pairs across iterations. Thus, we choose a larger w to
include them into the inferred set.

Varying leakage rates: We fix both the auxiliary and target backups, and evaluate the inference rates of the
attacks for different leakage rates. For the FSL dataset, we choose the backup on March 22 as the auxiliary
information to infer the latest backup on May 21; for the synthetic dataset, we use the initial snapshot as the
auxiliary information to infer the 5th backup snapshot; for the VM dataset, we use the 9th weekly backup
as the auxiliary information to infer the 13th weekly backup.

Figure [ shows the inference rates of the attacks (which also include the chunks that are already leaked
in known-plaintext mode) for different leakage rates (varied from O to 0.2%) about the target backup being
inferred. The slight increase in the leakage rate can lead to a significant increase in the inference rate. For
example, when the leakage rate increases to 0.2%, the inference rates of the locality-based attack and the
advanced locality-based attack reach 27.5% and 38.2% for the FSL dataset, and 28.3% and 29.9% for the

synthetic dataset, respectively. Since the VM dataset includes fixed-size chunks, both attacks incur the same
inference rate of 12.5% in this case.

Varying auxiliary backups: Based on the above setting, we consider different prior backups as the auxiliary
information, while we fix the target backup as in the above experiment. We also fix the leakage rate as 0.05%.

Figure [9] shows the inference rates of the attacks for different auxiliary backups. We observe a similar
tendency as in Figure[5] Specifically, in the FSL dataset, when using the FSL backup on April 21 as the
auxiliary information, the inference rates of the locality-based attack and the advanced locality-based attack
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Figure 9: Attack evaluation: Inference rate in known-plaintext mode (varying auxiliary backups).

achieve 29.1% and 37.9%, respectively; in the synthetic dataset, when using the 4th synthetic backup as the
auxiliary information, the corresponding inference rates achieve 20.3% and 21.6%, respectively; in the VM
dataset, when using the 12th VM backup as the auxiliary information, the inference rate achieves 17.6%
(same in both the locality-based attack and the advanced locality-based attack).

6 Defenses

The deterministic nature of encrypted deduplication discloses the frequency distribution of the underlying
plaintext chunks, thereby making frequency analysis feasible. To defend against frequency analysis, we
consider two defense approaches, namely MinHash encryption and scrambling.

6.1 MinHash Encryption

MinHash encryption builds on Broder’s theorem [18]], which states that if two sets share a large fraction of
common elements (i.e., they are highly similar), then the probability that both sets share the same minimum
hash element is also high. Since two backups from the same data source are expected to be highly similar
and share a large number of identical chunks [62]], MinHash encryption leverages this property to perform
encrypted deduplication in a different way from the original MLE [12,|13]. We emphasize that previous
deduplication approaches also leverage Broder’s theorem to minimize the memory usage of the fingerprint
index in plaintext deduplication [[14,65]] or key generation overhead in server-aided MLE [53]]. Also, security
analysis shows that MinHash encryption preserves data confidentiality as in server-aided MLE [53]]. Thus,
we do not claim the novelty of the design of MinHash encryption. Instead, our contribution is to study its
effectiveness in defending against frequency analysis.

Algorithm [ shows the pseudo-code of MinHash encryption, while we elaborate the implementation
details in Section [7.1] MinHash encryption takes a sequence of plaintext chunks M as input, and returns a
sequence of ciphertext chunks C as output. It partitions the plaintext chunks into segments (Line 3), each
of which is a non-overlapped sub-sequence of adjacent plaintext chunks. For each segment S, MinHash
encryption computes the minimum fingerprint h of all chunks in S, using the fingerprint value as the hash
value of each chunk. It derives the segment-based key K g based on h (Line 6), for example, by querying the
key manager as in DupLESS [[12] (see Section[2.2). It then encrypts each chunk in S using Kg and adds the
resulting ciphertext chunk to C (Lines 7-10). Finally, it returns C (Line 12). Note that MinHash encryption
only requests keys on a per-segment basis rather than on a per-chunk basis. As the number of segments is
much less than that of chunks, the key generation overhead is greatly mitigated [53].

MinHash encryption is robust against the locality-based attack, by (slightly) breaking the deterministic
nature of encrypted deduplication. Its rationale is that segments are highly similar as they share many

19



Algorithm 4 MinHash Encryption

1: procedure MINHASH ENCRYPTION(M)

2 Initialize C

3 Partition M into segments

4 for each segment S do

5: h <— minimum fingerprint of all chunks in S
6 K < segment-based key derived from h

7 for each chunk M € S do

8: C +ENCRYPT(Kg, M)

9: Add C'into C

10: end for
11: end for
12: return C

13: end procedure

identical plaintext chunks in backups [14,65]]. Thus, their minimum fingerprints, and hence the secret keys
derived for segments, are likely to be the same as well due to Broder’s theorem [18]]. This implies that most
identical plaintext chunks across segments are still encrypted by the same secret keys into identical ciphertext
chunks, thereby preserving deduplication effectiveness. However, some identical plaintext chunks may still
reside in different segments with different minimum fingerprints and hence different secret keys, so their
resulting ciphertext chunks will be different and cannot be deduplicated, leading to a slight degradation of
storage efficiency. Nevertheless, such “approximate” deduplication sufficiently alters the overall frequency
ranking of ciphertext chunks by encrypting a small fraction of duplicate chunks using different keys, thereby
making frequency analysis ineffective.

6.2 Scrambling

Scrambling augments MinHash encryption by disturbing the processing sequence of chunks, so as to prevent
an adversary from correctly identifying the neighbors of each chunk in the locality-based attack. It is applied
before the chunks are encrypted and stored, and its idea is to scramble the original plaintext chunk sequence
M into a new sequence M. To be compatible with MinHash encryption, scrambling works on a per-segment
basis by shuffling the ordering of chunks within each segment. Each plaintext chunk is still encrypted via
MinHash encryption and stored as a ciphertext chunk, while the original file can still be reconstructed based
on its file recipe and key recipe (see Section [2). Specifically, the file recipe contains a list of fingerprints
that are stored in the original order of the plaintext chunks before scrambling. If a client wants to restore the
original file, it first retrieves the file recipe and the key recipe (which are encrypted by the client’s own secret
key), followed by decrypting the ciphertext chunks (based on the key recipe) and restoring the original order
of the plaintext chunks and hence the original file (based on the file recipe).

Note that scrambling does not change the storage efficiency of MinHash encryption, since it only
changes the order of plaintext chunks. Also, we apply scrambling on a per-segment basis, while a dedupli-
cated storage system typically organizes unique chunks in containers [44] that serve as the basic read/write
units. In our prototype (see Section [7.4)), we configure the container size larger than the segment size (e.g.,
we set the container size as 4 MB, while setting the maximum segment size as 2 MB). Thus, the scrambling
approach has limited impact on the chunk layout across containers, so it does not add substantial overhead
to the overall read/write performance. In Section[7.4] we will study how the scrambling approach affects the
performance of a deduplicated storage system.

Algorithm [5] elaborates the pseudo-code of scrambling. It first partitions the original plaintext chunk
sequence M into segments as in MinHash encryption (Line 2). Then for each chunk of a segment S, the
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Algorithm 5 Scrambling

1: procedure SCRAMBLING(M)

2 Initialize M’

3 Partition M into segments

4 for each segment S do

5: Initialize S’

6 for each chunk M € S do

7 Generate a random number
8: if r is odd then

9: Add M as first chunk of S’

10: else

11: Add M as last chunk of S’
12: end if

13: end for

14: Add S’ into M/

15: end for

16: return M’
17: end procedure

algorithm randomly adds the chunk to either the front of S’ or the end of S’, where S’ is the scrambled
version of S (Lines 6-13). Finally, it returns the scrambled sequence M’ that includes all the scrambled
segments (Line 16).

7 Defense Evaluation

We conduct trace-driven evaluation on MinHash encryption and scrambling in three aspects: defense effec-
tiveness, storage efficiency, and metadata access overhead.

7.1 Methodology

Since both FSL and VM datasets do not contain actual contents, we simulate our defense approaches by
directly operating on chunk fingerprints. First, we identify segment boundaries based on chunk fingerprints,
by following the variable-size segmentation scheme in [45]]. Specifically, the segmentation scheme is con-
figured by the minimum, average, and maximum segment sizes. It places a segment boundary at the end of
a chunk fingerprint if (i) the size of each segment is at least the minimum segment size, and (ii) the chunk
fingerprint modulo a pre-defined divisor (which determines the average segment size) is equal to some con-
stant (e.g., —1), or the inclusion of the chunk makes the segment size larger than the maximum segment
size. In our evaluation, we set the minimum, average, and maximum segment sizes as 512 KB, 1 MB, and
2 MB, respectively.

After scrambling the orders of chunks (a.k.a. fingerprints) in each segment, we mimic MinHash encryp-
tion as follows. We first calculate the minimum chunk fingerprint & of each segment. We then concatenate
h with each chunk fingerprint in the segment and compute the SHA-256 hash of the concatenation. We
also truncate the hash result to be consistent with the fingerprint sizes in the original FSL and VM datasets,
respectively. The truncated hash result can be viewed as the fingerprint of the ciphertext chunk. We can
easily check that identical plaintext chunks under the same h will lead to identical ciphertext chunks that
can be deduplicated.
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Figure 10: Defense effectiveness: Inference rate in known-plaintext mode under MinHash encryption only
and the combined MinHash encryption and scrambling scheme.
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Figure 11: Storage efficiency of the combined MinHash encryption and scrambling scheme.

7.2 Defense Effectiveness

We evaluate our defense schemes, including (i) MinHash encryption only and (ii) the combined MinHash
encryption and scrambling scheme, against the advanced locality-based attack in known-plaintext mode
under the same parameter setting as in Section [5.3] Note that the advanced locality-based attack reduces to
the locality-based attack in the VM dataset, which uses fixed-size chunking.

Figure |10| shows the inference rate versus the leakage rate. When the leakage rate is 0.2%, MinHash
encryption suppresses the inference rate to 7.3%, 3.8%, and 3.4% for the FSL, synthetic, and VM datasets,
respectively, under the advanced locality-based attack. In addition, the combined MinHash encryption and
scrambling scheme further suppresses the inference rate to 0.2-0.24% only for all datasets. This shows that
scrambling effectively enhances the protection of MinHash encryption, and the combined scheme effectively
defends against the advanced locality-based attack.

7.3 Storage Efficiency

We evaluate the storage efficiency of the combined MinHash encryption and scrambling scheme. Specifi-
cally, we add the encrypted backups to storage in the order of their creation times, and measure the storage
saving as the percentage of the total size of all ciphertext chunks reduced by deduplication. We compare the
storage saving with that of the original MLE, which performs chunk-based deduplication that operates at the
more fine-grained chunk level and eliminates all duplicate chunks. Here, we do not consider the metadata
overhead.

Figure[T1(a)] shows the storage saving after storing each FSL backup. After storing all five backups, the
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combined scheme achieves a storage saving of 83.2% (which corresponds to a deduplication ratio of 6.0x),
which is 3.6% less than that of MLE.

Figure shows the storage saving after storing each synthetic snapshot. After 11 backups, the
combined scheme achieves a storage saving of 86.2% (which corresponds to the deduplication ratio of
7.2x). The drop of the storage saving is about 3% compared to MLE, which achieves a storage saving of
89.2% (which corresponds to a deduplication ratio of 9.3 x).

Figure[TT(c)|shows the storage saving for the VM dataset. Overall, the storage saving for the first backup
reaches 97.4% (which corresponds to a deduplication ratio of 38.5x), mainly because the VM images are
initially installed with the same operating system. The storage saving drops after the 7th backup, since
the students make big changes and add unique chunks into the VM images. After 13 backups, the storage
saving of the combined scheme achieves 97.9% (which corresponds to a deduplication ratio of 47.6 %), with
a reduction of 0.7% compared to that of MLE.

Overall, the combined scheme maintains high storage efficiency achieved by deduplication for all datasets.

7.4 Metadata Access Overhead

We evaluate the performance of the combined MinHash encryption and scrambling scheme via a case study
of its deployment. We implement a deduplication prototype based on the Data Domain File System (DDFS)
[67] to simulate the processing of encrypted deduplication workload. DDFS has been used in production
backup management for over 15 years [5,[23]]. Its chunk locality design also lays the foundation of various
follow-up deduplicated storage systems (e.g., [45,147,65[]). Thus, we believe that DDFS is representative
and our study results for DDFS can also be applied to other locality-based deduplicated storage systems.

Suppose that the chunks have been encrypted, by either the original MLE-based deterministic encryption
or our combined MinHash encryption and scrambling scheme. We focus on the metadata access overhead
under our DDFS-like prototype, since metadata access plays an important role in deduplication performance
[67].

7.4.1 Prototype Design

We design and implement our deduplication prototype based on DDFS. Specifically, our prototype organizes
the unique (ciphertext) chunks on disk in units of containers [44]]. Each container size is typically of several
megabytes (e.g., 4 MB) to mitigate the disk seek overhead, as opposed to the chunk size that is often of
several kilobytes (e.g., 4 KB or 8 KB). In addition, our prototype maintains a fingerprint index to hold the
metadata (e.g., the mappings of fingerprints to chunk locations) and detect if any identical chunk has been
stored. Since the size of the fingerprint index increases with the amount of unique chunks being stored, the
fingerprint index is stored on disk, while our prototype maintains two in-memory data structures, namely a
fingerprint cache and a Bloom filter, to mitigate the disk I/O overhead during deduplication (see below).

Our prototype follows the deduplication workflow of DDFS [67]]. In particular, it stores unique chunks
in logical order and further exploits chunk locality to accelerate deduplication. Given an incoming ciphertext
chunk C, our prototype performs deduplication as follows.

e Step S1: Our prototype checks by fingerprint if C' is in the fingerprint cache. If so, it is identical and does
not need to be stored.

e Step S2: If C is not in the fingerprint cache, our prototype checks the Bloom filter. If C' is not in the
Bloom filter, it must be unique. Then our prototype updates the Bloom filter, and also inserts C' and
its fingerprint into an in-memory fixed-size buffer in logical order. If the in-memory buffer is full, our
prototype flushes it to disk as a new container and updates the fingerprint index on disk.
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Figure 12: Metadata flow of our deduplication prototype.

e Step S3: Even if C' is in the Bloom filter, it may be a false positive. Our prototype queries the fingerprint
index to ensure that it is a duplicate. If C'is not in the fingerprint index, our prototype follows Step S2 to
store C' as a unique chunk.

e Step S4: If C is in the fingerprint index, our prototype identifies the container that keeps the physical copy
of C, and loads the fingerprints of all chunks in the container into the fingerprint cache. The rationale
is that the logically nearby chunks of C' are likely to be accessed together due to chunk locality. If the
fingerprint cache is full, our prototype removes the least-recently-used fingerprints.

Our prototype mainly implements the metadata flow during deduplication, as shown in Figure We
focus on the evaluation of the metadata access overhead. We do not evaluate the performance of writing or
reading containers and that of encrypting or decrypting chunks.

7.4.2 Evaluation Results

Our evaluation uses the following configurations. Here, we only focus on the FSL dataset. We set the
metadata size of each fingerprint as 32 bytes. We consider two sizes of the fingerprint cache: 512 MB and
4 GB. We set the Bloom filter with a false positive rate of 0.01 [67], and the Bloom filter size depends
on the number of fingerprints that are tracked. For example, our FSL dataset contains around 65 million
fingerprints (i.e., the total size is around 2 GB), so we use 7 hash functions and the corresponding Bloom
filter size is around 74 MB. We also set the container size as 4 MB. For the combined scheme, we configure
its minimum, average and maximum segment sizes as 512 KB, 1 MB and 2 MB, respectively.

We categorize the on-disk metadata access into three types: (i) update access, which updates the meta-
data of unique chunks in the fingerprint index (in Steps S2 and S3); (ii) index access, which looks up the
on-disk fingerprint index for the detection of duplicate chunks (in Step S3); and (iii) loading access, which
loads the fingerprints of stored chunks into the cache (in Step S4). We measure the metadata access overhead
in terms of the size of metadata being accessed.

In the following, we compare the metadata access overhead of our combined MinHash encryption and
scrambling scheme with MLE, in which we encrypt the chunks by the original MLE-based deterministic
encryption.

Figure 13| first presents the results when the fingerprint cache size is 512 MB, in which case the size is
insufficient to hold all fingerprints in the FSL dataset (whose total metadata size for all fingerprints is around
2 GB). Figure shows the overall metadata access overhead. In the first backup, the combined scheme
even incurs less metadata access overhead than MLE, mainly because it generates more unique chunks at the
beginning and reduces the frequency of loading fingerprints from disk into the fingerprint cache (in Step S4).
In the subsequent backups, the combined scheme has slightly higher overhead than MLE (at most 1.2%),
since it generates more unique chunks and needs to load fingerprints more often from disk to the fingerprint
cache. Figures [13(b)] and [T3(c)] show the breakdown of the metadata access overhead for MLE and the
combined scheme, respectively. The update access size for both schemes is less than 0.3 GB after the first
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Figure 13: Performance evaluation: Metadata access overhead when the fingerprint cache size is 512 MB.
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Figure 14: Performance evaluation: Metadata access overhead when the fingerprint cache size is 4 GB.

backup (in which MLE and the combined scheme incur 1.0 GB and 1.3 GB of metadata access, respectively),
as only a small portion of new or modified chunks are stored. The index access size is also small, with less
than 0.1 GB for both schemes in all backups, since a significant portion of duplicate and unique chunks can
be detected by the fingerprint cache and the Bloom filter, respectively. Finally, we observe that the loading
access size contributes the most overhead, with more than 74.2% of the total metadata access size for both
schemes.

Figure [I4] presents the results when the fingerprint cache size is increased to 4 GB, in which the fin-
gerprint cache is sufficiently large to hold the fingerprints of all unique chunks. As shown in Figure [I4(a)]
the combined scheme incurs much less metadata access overhead than MLE by 6.4-20.0% as it generates
more unique chunks while all fingerprints can be stored in the fingerprint cache. Figures and
show the corresponding breakdown for MLE and the combined scheme, respectively. Both update access
size and index access size are similar to those in Figure [I3] while the loading access size for both schemes
is significantly reduced by around 22% and 29% for MLE and the combined schemes, respectively, mainly
due to a high probability of cache hits.

8 Related Work

Optimizing deduplication: Existing deduplication studies (see a complete survey [64] on deduplication)
exploit workload characteristics (e.g., chunk locality [38.,[45]/65./67] and file similarity [[14}/65]]) to mitigate
indexing overhead. For example, DDFS [67]] prefetches the fingerprints of nearby chunks that are likely to be
accessed together. Sparse Indexing [45]] and Extreme Binning [[14] exploit chunk locality and file similarity,
respectively, to mitigate the memory storage for indexing, while SiL.o [|65]] combines both chunk locality and
file similarity for general backup workloads. Bimodel [38]] builds on chunk locality and adaptively varies
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the expected chunk sizes to mitigate metadata overhead. All the above works do not consider security.

Encrypted deduplication: Traditional encrypted deduplication systems (e.g., [7,20,22}35//58}/63]) mainly
build on convergent encryption [22]], in which the encryption key is directly derived from the cryptographic
hash of the content to be encrypted. CDStore [43] integrates convergent encryption with secret sharing to
support fault-tolerant storage. Metadedup [41] extends CDStore with space-efficient metadata management.
However, convergent encryption is vulnerable to brute-force attacks (see Section [2.2). Server-aided MLE
protects against brute-force attacks by maintaining content-to-key mappings in a dedicated key manager,
and has been implemented in various storage system prototypes [[8,/12,/53,/56]. Given that the dedicated
key manager is a single-point-of-failure, Duan [24] proposes to maintain a quorum of key managers via
threshold signature for fault-tolerant key management. Note that all the above systems build on deterministic
encryption to preserve the deduplication capability of ciphertext chunks, and hence are vulnerable to the
inference attacks studied in this paper.

Instead of using deterministic encryption, Bellare et al. [13]] propose an MLE variant called random
convergent encryption (RCE), which uses random keys for chunk encryption. However, RCE needs to add
deterministic tags into ciphertext chunks for checking any duplicates, so that the adversary can count the
deterministic tags to obtain the frequency distribution. Liu et al. [46] propose to encrypt each plaintext
chunk with a random key, while the key is shared among users via password-based key exchange. However,
the proposed approach incurs significant key exchange overhead, especially when the number of chunks is
huge.

From the theoretic perspective, several studies propose to enhance the security of encrypted dedupli-
cation and protect the frequency distribution of original chunks. Abadi et al. 3] propose two encrypted
deduplication schemes for the chunks that depend on public parameters, yet either of them builds on com-
putationally expensive non-interactive zero knowledge (NIZK) proofs or produces deterministic ciphertext
components. Interactive MLE [11]] addresses chunk correlation and parameter dependence, yet it is imprac-
tical for the use of fully homomorphic encryption (FHE). This paper differs from the above works by using
lightweight primitives for practical encrypted deduplication.

Inference attacks: Frequency analysis [48] is the classical inference attack and has been historically used
to recover plaintexts from substitution-based ciphertexts. It is also used as a building block in recently pro-
posed attacks. Kumar et al. [39]] use frequency-based analysis to de-anonymize query logs. Islam ef al. [|33]]
compromise keyword privacy based on the leakage of the access patterns in keyword search. Naveed et
al. [50] propose to conduct frequency analysis via combinatorial optimization and present attacks against
CryptDB. Kellaris et al. [|36] propose reconstruction attacks against any system that leaks access pattern
or communication volume. Pouliot ef al. [52] present the graph matching attacks on searchable encryp-
tion. Grubbs et al. [28] build attacks on order-preserving encryption based on the frequency and ordering
information.

In encrypted deduplication, Ritzdorf et al. [55]] exploit the size information of deduplicated content and
build an inference attack that determines if a file has been stored. Armknecht ef al. [9] present formal
analysis on the side-channel attack that just works in client-side deduplication. Our work is different as we
focus on inferring the content of data chunks via frequency analysis. In particular, we exploit workload
characteristics to construct attack and defense approaches.

Some inference attacks exploit the active adversarial capability. Brekne et al. [|17] construct bogus
packets to de-anonymize IP addresses. Cash et al. [[19] and Zhang et al. [66] propose file-injection attacks
against searchable encryption. Our proposed attacks do not rely on the active adversarial capability.
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9 Conclusion

Encrypted deduplication has been deployed in commercial cloud environments and extensively studied in
the literature to simultaneously achieve both data confidentiality and storage efficiency, yet we argue that its
data confidentiality remains not fully guaranteed. We demonstrate how the deterministic nature of encrypted
deduplication makes it susceptible to information leakage caused by frequency analysis. We propose the
locality-based attack, which exploits the chunk locality property of backup workloads to infer the content
of a large fraction of plaintext chunks from the ciphertext chunks of the latest backup. We also propose the
advanced locality-based attack, which extends the locality-based attack with the knowledge of chunk sizes
to launch frequency analysis specifically against variable-size chunks. We show how the inference attacks
can be practically implemented, and demonstrate their severities through trace-driven evaluation on both
real-world and synthetic datasets. To defend against information leakage, we consider MinHash encryption
and scrambling to disturb frequency rank and break chunk locality. Our trace-driven evaluation shows that
our combined MinHash encryption and scrambling effectively defends against the locality-based attack,
while maintaining high storage efficiency and incurring limited metadata access overhead.

References

[1] FSL traces and snapshots public archive. http://tracer.filesystems.org/, 2014.
[2] Ubuntu irc logs. http://irclogs.ubuntu.com, 2019.

[3] Martin Abadi, Dan Boneh, Ilya Mironov, Ananth Raghunathan, and Gil Segev. Message-locked en-
cryption for lock-dependent messages. In Advances in Cryptology — CRYPTO 2013, pages 374-391,
2013.

[4] Ibrahim A. Al-Kadit. Origins of Cryptology: The Arab Contributions. Cryptologia, 16(2):97-126,
1992.

[5] Yamini Allu, Fred Douglis, Mahesh Kamat, Philip Shilane, Hugo Patterson, and Ben Zhu. Backup to
the future: How workload and hardware changes continually redefine data domain file systems. /IEEE
Trans. Comput., 50(7):64-72, 2017.

[6] George Amvrosiadis and Medha Bhadkamkar. Identifying trends in enterprise data protection systems.
In Proceedings of USENIX Annual Technical Conference (USENIX ATC’15), 2015.

[7] Paul Anderson and Le Zhang. Fast and secure laptop backups with encrypted de-duplication. In Pro-
ceedings of the 24th International Conference on Large Installation System Administration (LISA’10),
pages 1-8, 2010.

[8] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, and Franck Youssef. Transparent data
deduplication in the cloud. In Proceedings of the 22nd ACM Conference on Computer and Communi-
cations Security (CCS’15), pages 886900, 2015.

[9] Frederik Armknecht, Colin Boyd, Gareth T. Davies, Kristian Gjgsteen, and Mohsen Toorani. Side
channels in deduplication: Trade-offs between leakage and efficiency. In Proceedings of ACM Asia
Conference on Computer and Communications Security (ASIACCS’17), pages 266-274, 2017.

[10] Michael Arrington. AOL: “this was a screw up”. https://techcrunch.com/2006/08/07/
aol-this-was—a-screw—up/}, 2006.

27


https://techcrunch.com/2006/08/07/aol-this-was-a-screw-up/
https://techcrunch.com/2006/08/07/aol-this-was-a-screw-up/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Mihir Bellare and Sriram Keelveedhi. Interactive message-locked encryption and secure deduplication.
In Public-Key Cryptography — PKC 2015, pages 516-538, 2015.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. DupLESS: Server-aided encryption for
deduplicated storage. In Proceeding of the 22nd USENIX Security Symposium (USENIX Security’13),
pages 179-194, 2013.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure
deduplication. In Advances in Cryptology — EUROCRYPT 2013, pages 296-312, 2013.

Deepavali Bhagwat, Kave Eshghi, Darrell D.E. Long, and Mark Lillibridge. Extreme binning: Scal-
able, parallel deduplication for chunk-based file backup. In Proceeding of IEEE International Sym-
posium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MAS-
COTS’09), pages 1-9, 2009.

Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly Shmatikov. The
tao of inference in privacy-protected databases. In Proceedings of the VLDB Endowment, volume 11,
pages 1715-1728, 2018.

John Black. Compare-by-hash: a reasoned analysis. In Proceeding of USENIX Annual Technical
Conference (USENIX ATC’06), pages 85-90, 2006.

Tgnnes Brekne, André Arnes, and Arne @slebg. Anonymization of IP traffic monitoring data: Attacks
on two prefix-preserving anonymization schemes and some proposed remedies. In Proceeding of
International Workshop on Privacy Enhancing Technologies (PET’05), pages 179-196, 2005.

Andrei Z. Broder. On the resemblance and containment of documents. In Proceeding of the Compres-
sion and Complexity of Sequences (SEQUENCES’97), pages 21-29, 1997.

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against search-
able encryption. In Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS’15), pages 668—679, 2015.

Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making backup cheap and easy.
In Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI’02),
pages 285-298, 2002.

Barb Darrow. Harvard-affiliate McLean hospital loses patient data. |http://fortune.com/
2015/07/29/mclean-hospital-loses—-patient—-data/, 2015.

John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In Proceeding of 22nd International
Conference on Distributed Computing Systems (ICDCS’02), pages 617-624, 2002.

Fred Douglis, Abhinav Duggal, Philip Shilane, Tony Wong, Shiqin Yan, and Fabiano Botelho. The
logic of physical garbage collection in deduplicating storage. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST ’17), pages 2943, 2017.

Yitao Duan. Distributed key generation for encrypted deduplication: Achieving the strongest privacy.
In Proceedings of the 6th edition of the ACM Workshop on Cloud Computing Security (CCSW’14),
pages 57-68, 2014.

28


http://fortune.com/2015/07/29/mclean-hospital-loses-patient-data/
http://fortune.com/2015/07/29/mclean-hospital-loses-patient-data/

[25] Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improving content-based chunk-
ing algorithms. HPL-2005-30R1, 2005.

[26] Sanjay Ghemawat and Jeff Dean. LevelDB: A fast key/value storage library by Google.
https://github.com/google/leveldb, 2014.

[27] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly Shmatikov.
Breaking web applications built on top of encrypted data. In Proceedings of ACM Conference on
Computer and Communications Security (CCS’16), pages 1353-1364, 2016.

[28] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In Proceeding of IEEE Symposium on Se-
curity and Privacy (SP’17), pages 655-672, 2017.

[29] Robert Hackett. Linkedin lost 167 million account credentials in data breach. http://fortune.
com/2016/05/18/1linkedin-data-breach-email-password/, 2016.

[30] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of ownership in re-
mote storage systems. In Proceedings of the 18th ACM conference on Computer and Communications
Security (CCS’11), pages 491-500, 2011.

[31] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side channels in cloud services: Dedu-
plication in cloud storage. IEEE Security & Privacy, 8(6):40-47, 2010.

[32] HIPAA Journal. Hard drive theft sees data of 1 million individuals exposed.
https://www.hipaajournal.com/hard-drive-theft-sees-data-1-million-individuals-exposed-8859/,
2017.

[33] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In Proceeding of Network and Distributed System
Security Symposium (NDSS’12), pages 1-15, 2012.

[34] Keren Jin and Ethan L. Miller. The effectiveness of deduplication on virtual machine disk images. In
Proceeding of the Israeli Experimental Systems Conference (SYSTOR’09), pages 7:1-7:12, 2009.

[35] Mahesh Kallahall, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus: Scalable se-
cure file sharing on untrusted storage. In Proceedings of USENIX Conference on File and Stroage
Technologies (FAST’03), pages 2942, 2003.

[36] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure out-
sourced databases. In Proceedings of ACM Conference on Computer and Communications Security
(CCS’16), pages 1329-1340, 2016.

[37] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research. In
Proceeding of European Conference on Machine Learning, pages 217-226, 2004.

[38] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content defined chunking for backup
streams. In Proceeding of USENIX Conference on File and Storage Technologies (FAST’10), 2010.

[39] Ravi Kumar, Jasmine Novak, Bo Pang, and Andrew Tomkins. On anonymizing query logs via token-
based hashing. In Proceedings of the 16th international conference on World Wide Web (WWW’07),
pages 629638, 2007.

29


http://fortune.com/2016/05/18/linkedin-data-breach-email-password/
http://fortune.com/2016/05/18/linkedin-data-breach-email-password/

[40] Marie-Sarah Lacharité and Kenneth G. Paterson. A note on the optimality of frequency analysis vs.
l,-optimization. Cryptology ePrint Archive: Report 2015/1158 https://eprint.iacr.org/
2015/1158, 2015.

[41] Jingwei Li, Patrick P. C. Lee, Yanjing Ren, and Xiaosong Zhang. Metadedup: Deduplicating metadata
in encrypted deduplication via indirection. In Proceeding of the 35th International Conference on
Massive Storage Systems and Technology (MSST’19), pages 1-13, 2019.

[42] Jingwei Li, Chuan Qin, Patrick P. C. Lee, and Xiaosong Zhang. Information leakage in encrypted
deduplication via frequency analysis. In Proceeding of the 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’17), pages 1-12, 2017.

[43] Minggiang Li, Chuan Qin, and Patrick P. C. Lee. CDStore: Toward reliable, secure, and cost-efficient
cloud storage via convergent dispersal. In Proceedings of USENIX Annual Technical Conference
(USENIX ATC’15), pages 111-124, 2015.

[44] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. Improving restore speed for backup systems
that use inline chunk-based deduplication. In Proceeding of the 11th USENIX Conference on File and
Storage Technologies (FAST’13), pages 183-197, 2013.

[45] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezise, and Peter Cam-
ble. Sparse indexing: Large scale, inline deduplication using sampling and locality. In Proceeding of
USENIX Conference on File and Storage Technologies (FAST 09), pages 111-123, 2009.

[46] Jian Liu, N. Asokan, and Benny Pinkas. Secure deduplication of encrypted data without additional
independent servers. In Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS’15), pages 874—885, 2015.

[47] Jingwei Ma, Rebecca J. Stones, Yuxiang Ma, Jingui Wang, Junjie Ren, Gang Wang, and Xiaoguang
Liu. Lazy exact deduplication. In Proceeding of 32nd Symposium on Mass Storage Systems and
Technologies (MSST’16), pages 1-10, 2016.

[48] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 2001.

[49] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (FAST’11), pages 1-1, 2011.

[50] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-preserving
encrypted databases. In Proceeding of 22nd ACM Conference on Computer and Communications
Security (CCS’15), pages 644—655, 2015.

[51] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic searchable encryption via
blind storage. In Proceedings of IEEE Symposium on Security and Privacy (SP’14), pages 639-654,
May 2014.

[52] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on efficiently deployable,
efficiently searchable encryption. In Proceedings of the 23th ACM Conference on Computer and
Communications Security (CCS’16), pages 1341-1352, 2016.

[53] Chuan Qin, Jingwei Li, and Patrick P. C. Lee. The design and implementation of a rekeying-aware
encrypted deduplication storage system. ACM Trans. on Storage, 13(1):9:1-9:30, Mar 2017.

30


https://eprint.iacr.org/2015/1158
https://eprint.iacr.org/2015/1158

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Michael O. Rabin. Fingerprinting by random polynomials. Center for Research in Computing Tech-
nology, Harvard University. Tech. Report TR-CSE-03-01, 1981.

Hubert Ritzdorf, Ghassan Karame, Claudio Soriente, and Srdjan Capkun. On information leakage
in deduplicated storage systems. In Proceedings of ACM on Cloud Computing Security Workshop
(CCSW’16), pages 61-72, 2016.

Peter Shah and Won So. Lamassu: Storage-efficient host-side encryption. In Proceedings of USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC’15), pages 333-345, 2015.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with o((logn)?)
worst-case cost. In Advances in Cryptology — ASIACRYPT 2011, pages 197-214, 2011.

Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and Ethan L. Miller. Secure data deduplication.
In Proceedings of the 4th ACM International Workshop on Storage Security and Survivability (Stor-
ageSS’08), pages 1-10, 2008.

Zhu Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov, Nong Xiao, and Erez Zadok.
A long-term user-centric analysis of deduplication patterns. In Proceeding of the 32nd Symposium on
Mass Storage Systems and Technologies (MSST’16), 2016.

Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuenning, and Erez Zadok. Gen-
erating realistic datasets for deduplication analysis. In Proceedings of USENIX conference on Annual
Technical Conference (USENIX ATC’12), pages 24-24, 2012.

David C. Uthus and David W. Aha. The ubuntu chat corpus for multiparticipant chat analysis. In
Proceeding of AAAI Spring Symposium, pages 99-102, 2013.

Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and
Windsor Hsu. Characteristics of backup workloads in production systems. In Proceedings of the 10th
USENIX conference on File and Storage Technologies (FAST 12), pages 33-48, 2012.

Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: The least-authority filesystem. In Proceedings
of the 4th ACM International Workshop on Storage Security and Survivability (StorageSS’08), pages
21-26, 2008.

Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu, Yucheng Zhang, and
Yukun Zhou. A comprehensive study of the past, present, and future of data deduplication. Proceedings
of the IEEE, 104(9):1681-1710, 2016.

Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Silo: A similarity locality based near exact deduplica-
tion scheme with low ram overhead and high throughput. In Proceeding of USENIX Annual Technical
Conference (USENIX ATC’11), pages 285-298, 2011.

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In Proceeding of the 25th USENIX Security
Symposium (Security’16), pages 707-720, 2016.

Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding the disk bottleneck in the data domain dedu-
plication file system. In Proceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST’08), pages 269-282, 2008.

31



	1 Introduction
	2 Basics
	2.1 Deduplication
	2.2 Encrypted Deduplication

	3 Threat Model
	3.1 Overview
	3.2 Auxiliary Information
	3.3 Attack Modes
	3.4 Other Attacks

	4 Attacks
	4.1 Basic Attack
	4.2 Locality-based Attack
	4.3 Advanced Locality-based Attack

	5 Attack Evaluation
	5.1 Datasets
	5.2 Methodology
	5.3 Results
	5.3.1 Impact of Parameters
	5.3.2 Inference Rate in Ciphertext-only Mode
	5.3.3 Inference Rate in Known-Plaintext Mode


	6 Defenses
	6.1 MinHash Encryption
	6.2 Scrambling

	7 Defense Evaluation
	7.1 Methodology
	7.2 Defense Effectiveness
	7.3 Storage Efficiency
	7.4 Metadata Access Overhead
	7.4.1 Prototype Design
	7.4.2 Evaluation Results


	8 Related Work
	9 Conclusion

