
�

�

�

�

�

�

�

�

14

STAIR Codes: A General Family of Erasure Codes
for Tolerating Device and Sector Failures

MINGQIANG LI and PATRICK P. C. LEE, The Chinese University of Hong Kong

Practical storage systems often adopt erasure codes to tolerate device failures and sector failures, both of
which are prevalent in the field. However, traditional erasure codes employ device-level redundancy to pro-
tect against sector failures, and hence incur significant space overhead. Recent sector-disk (SD) codes are
available only for limited configurations. By making a relaxed but practical assumption, we construct a
general family of erasure codes called STAIR codes, which efficiently and provably tolerate both device and
sector failures without any restriction on the size of a storage array and the numbers of tolerable device
failures and sector failures. We propose the upstairs encoding and downstairs encoding methods, which
provide complementary performance advantages for different configurations. We conduct extensive experi-
ments on STAIR codes in terms of space saving, encoding/decoding speed, and update cost. We demonstrate
that STAIR codes not only improve space efficiency over traditional erasure codes, but also provide better
computational efficiency than SD codes based on our special code construction. Finally, we present analyt-
ical models that characterize the reliability of STAIR codes, and show that the support of a wider range of
configurations by STAIR codes is critical for tolerating sector failure bursts discovered in the field.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Mass storage (e.g.,
magnetic, optical, RAID); B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-Tolerance;
C.4 [Computer Systems Organization]: Performance of Systems—Fault tolerance; D.4.2 [Operating
Systems]: Storage Management—Secondary storage; E.4 [Data]: Coding and Information Theory—Error
control codes

General Terms: Algorithms, Performance, Reliability, Theory

Additional Key Words and Phrases: Erasure codes, device failures, sector failures, reliability analysis

ACM Reference Format:
Li, M. and Lee, P. P. C. 2014. STAIR codes: A general family of erasure codes for tolerating device and sector
failures. ACM Trans. Storage 10, 4, Article 14 (October 2014), 30 pages.
DOI:http://dx.doi.org/10.1145/2658991

1. INTRODUCTION

Mainstream disk drives are known to be susceptible to both device failures [Pinheiro
et al. 2007; Schroeder and Gibson 2007] and sector failures [Bairavasundaram et al.
2007; Schroeder et al. 2010]: a device failure implies the loss of all data in the failed
device, while a sector failure implies the data loss in a particular disk sector. In par-
ticular, sector failures are of practical concern not only in disk drives, but also in
emerging solid-state drives (SSDs), as they often appear as worn-out blocks after fre-
quent program/erase cycles [Boboila and Desnoyers 2010; Grupp et al. 2009, 2012;

An earlier version of this work was presented at the 12th USENIX Conference on File and Storage Tech-
nologies (FAST’14) [Li and Lee 2014].
This work was supported in part by grants from the University Grants Committee of Hong Kong (project
numbers AoE/E-02/08 and ECS CUHK419212).
Authors’ addresses: M. Li and P. P. C. Lee (corresponding author), Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; emails:
mingqiangli.cn@gmail.com; pclee@cse.cuhk.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 1553-3077/2014/10-ART14 $15.00
DOI:http://dx.doi.org/10.1145/2658991

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:2 M. Li and P. P. C. Lee

Zheng et al. 2013]. In the face of device and sector failures, practical storage sys-
tems often adopt erasure codes to provide data redundancy [Plank and Huang 2013].
However, existing erasure codes often build on tolerating device failures and provide
device-level redundancy only. To tolerate additional sector failures, an erasure code
must be constructed with extra parity disks. A representative example is RAID-6,
which uses two parity disks to tolerate one device failure together with one sector
failure in another non-failed device [Intel 2005; White and Lueth 2010]. If the sector
failures can span a number of devices, the same number of parity disks must be pro-
visioned. Clearly, dedicating an entire parity disk for tolerating a sector failure is too
extravagant.

To tolerate both device and sector failures in a space-efficient manner, sector-disk
(SD) codes [Plank et al. 2013a; Plank and Blaum 2014] and the earlier PMDS codes
[Blaum et al. 2013] (which are a subset of SD codes) have recently been proposed. Their
idea is to introduce parity sectors, instead of entire parity disks, to tolerate a given
number of sector failures. However, the constructions of SD codes are known only for
limited configurations (e.g., the number of tolerable sector failures is no more than
three), and some of the known constructions rely on exhaustive searches [Blaum and
Plank 2013; Plank et al. 2013a; Plank and Blaum 2014]. An open issue is to provide
a general construction of erasure codes that can efficiently tolerate both device and
sector failures without any restriction on the size of a storage array, the number of
tolerable device failures, or the number of tolerable sector failures.

In this article, we make the first attempt to develop such a generalization, which
we believe is of great theoretical and practical interest to provide space-efficient fault
tolerance for today’s storage systems. After carefully examining the assumption of SD
codes on failure coverage, we find that although SD codes have relaxed the assumption
of the earlier PMDS codes to comply with how most storage systems really fail, the
assumption remains too strict. By reasonably relaxing the assumption of SD codes on
sector failure coverage, we construct a general family of erasure codes called STAIR
codes, which efficiently tolerate both device and sector failures.

Specifically, SD codes devote s sectors per stripe to coding, and tolerate the fail-
ure of any s sectors per stripe. We relax this assumption in STAIR codes by limiting
the number of devices that may simultaneously contain sector failures and by limit-
ing the number of simultaneous sector failures per device. Consequently, as shown in
Section 2, STAIR codes are constructed to protect the sector failure coverage defined
by a vector e, rather than all combinations of s sector failures.

With the relaxed assumption, the construction of STAIR codes can be based on
existing erasure codes. For example, STAIR codes can build on Reed-Solomon codes
(including standard Reed-Solomon codes [Plank 1997; Plank and Ding 2005; Reed and
Solomon 1960] and Cauchy Reed-Solomon codes [Blomer et al. 1995; Plank and Xu
2006]), which have no restriction on code length and fault tolerance.

We first define some basic concepts and elaborate how the sector failure coverage
is formulated for STAIR codes in Section 2. Then the article makes the following
contributions.

— We present a baseline construction of STAIR codes. Its idea is to run two orthogonal
encoding phases based on Reed-Solomon codes. See Section 3.

— We propose an upstairs decoding method, which systematically reconstructs the lost
data due to both device and sector failures. The proof of fault tolerance of STAIR
codes follows immediately from the decoding method. See Section 4.

— Inspired by upstairs decoding, we extend the construction of STAIR codes to regu-
larize the code structure. We propose two encoding methods: upstairs encoding and
downstairs encoding, both of which reuse computed parity results in subsequent

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:3

Table I. Major Notation Used for the STAIR Code Construction

Notation Description
Defined in Section 2:
n Number of chunks per stripe (i.e., number of devices per storage array)
r Number of sectors (i.e., symbols) per chunk
m Maximum number of entirely failed chunks (due to device failures) per stripe
m′ Maximum number of partially failed chunks (due to sector failures) per stripe
e Sector failure coverage, defined as e = (e0, e1, · · · , em′−1) (where 0 < e0 ≤ e1 ≤ · · · ≤

em′−1 ≤ r)

s Maximum number of sector failures per stripe, defined as s = ∑m′−1
i=0 ei

Defined in Section 3:
di,j Data symbol (where 0 ≤ i ≤ r − 1, and 0 ≤ j ≤ n − m − 1)
pi,k Row parity symbol (where 0 ≤ i ≤ r − 1, and 0 ≤ k ≤ m − 1)
p′

i,l Intermediate parity symbol (where 0 ≤ i ≤ r − 1, and 0 ≤ l ≤ m′ − 1)

gh,l Outside global parity symbol (where 0 ≤ l ≤ m′ − 1, and 0 ≤ h ≤ el − 1)
Crow Systematic MDS code for encoding in row direction
Ccol Systematic MDS code for encoding in column direction

Defined in Section 4:
d∗

h,j Virtual parity symbol encoded from a data chunk (where 0 ≤ h ≤ el − 1, and 0 ≤ j ≤
n − m − 1)

p∗
h,k Virtual parity symbol encoded from a row parity chunk (where 0 ≤ h ≤ el − 1, and

0 ≤ k ≤ m − 1)

Defined in Section 5:
ĝh,l Inside global parity symbol (where 0 ≤ l ≤ m′ − 1, and 0 ≤ h ≤ el − 1)

encoding. The two encoding methods provide complementary performance advan-
tages for different configuration parameters. See Section 5.

— We extensively evaluate STAIR codes in terms of space saving, encoding/decoding
speed, and update cost. We show that STAIR codes achieve significantly higher
encoding/decoding speed than SD codes through parity reuse. Most importantly, we
show the versatility of STAIR codes in supporting any size of a storage array, any
number of tolerable device failures, and any number of tolerable sector failures. See
Section 6.

— We develop analytical models to characterize the reliability of STAIR codes and dis-
cuss how the sector failure coverage of STAIR codes should be configured. We exam-
ine both independent and correlated sector failure models and show that it is critical
for STAIR codes to support a wider range of configurations in the presence of sector
failure bursts discovered in the field [Bairavasundaram et al. 2007; Schroeder et al.
2010]. See Section 7.

We review related work in Section 8, and conclude in Section 9.

2. PRELIMINARIES

This section presents the definitions and the problem of simultaneous device and sector
failures in storage arrays. Table I summarizes the major notation used for the STAIR
code construction.

We consider a storage array with n devices, each of which has its storage space
logically segmented into a sequence of continuous chunks (also called strips) of the
same size. We group each of the n chunks at the same position of each device into a

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:4 M. Li and P. P. C. Lee

Fig. 1. A stripe for n = 8 and r = 4.

stripe, as depicted in Figure 1. Each chunk is composed of r sectors. Thus, we can view
the stripe as a r × n array of sectors. Using coding theory terminology, we refer to each
sector as a symbol. Each stripe is independently protected by an erasure code for fault
tolerance, so our discussion focuses on a single stripe.

Storage arrays are subject to both device and sector failures. A device failure can
be mapped to the failure of an entire chunk of a stripe. We assume that the stripe
can tolerate at most m (< n) chunk failures, in which all symbols are lost. In addition
to device failures, we assume that sector failures can occur in the remaining n − m
devices. Each sector failure is mapped to a lost symbol in the stripe. Suppose that be-
sides the m failed chunks, the stripe can tolerate sector failures in at most m′ (≤ n−m)
remaining chunks, each of which has a maximum number of sector failures defined by
a vector e = (e0, e1, · · · , em′−1). Without loss of generality, we arrange the elements of
e in monotonically increasing order (i.e., e0 ≤ e1 ≤ · · · ≤ em′−1). For example, sup-
pose that sector failures can only simultaneously appear in at most three chunks (i.e.,
m′ = 3), among which at most one chunk has two sector failures and the remaining
have one sector failure each. Then, we can express e = (1, 1, 2). Also, let s = ∑m′−1

i=0 ei
be the total number of sector failures defined by e. Our study assumes that the con-
figuration parameters n, r, m, and e (which then determines m′ and s) are the inputs
selected by system practitioners for the erasure code construction.

Erasure codes have been used by practical storage systems to protect against data
loss [Plank and Huang 2013]. We focus on a class of erasure codes with optimal storage
efficiency called maximum distance separable (MDS) codes, which are defined by two
parameters η and κ (< η). We define an (η, κ)-code as an MDS code that transforms κ
symbols into η symbols collectively called a codeword (this operation is called encod-
ing), such that any κ of the η symbols can be used to recover the original κ uncoded
symbols (this operation is called decoding). Each codeword is encoded from κ uncoded
symbols by multiplying a row vector of the κ uncoded symbols with a κ × η generator
matrix of coefficients based on Galois Field arithmetic. We assume that the (η, κ)-code
is systematic, meaning that the κ uncoded symbols are kept in the codeword. We refer
to the κ uncoded symbols as data symbols, and the η − κ coded symbols as parity sym-
bols. We use systematic MDS codes as the building blocks of STAIR codes. Examples
of such codes are standard Reed-Solomon codes [Plank 1997; Plank and Ding 2005;

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:5

Reed and Solomon 1960] and Cauchy Reed-Solomon codes [Blomer et al. 1995; Plank
and Xu 2006].

Given parameters n, r, m, and e (and hence m′ and s), our goal is to construct a
STAIR code that tolerates both m failed chunks and s sector failures in the remaining
n−m chunks defined by e. Note that some special cases of e have the following physical
meanings.

— If e = (1), the corresponding STAIR code is equivalent to a PMDS/SD code with
s = 1 [Blaum et al. 2013; Plank et al. 2013a; Plank and Blaum 2014]. In fact, the
STAIR code is a new construction of such a PMDS/SD code.

— If e = (r), the corresponding STAIR code has the same function as a systematic
(n, n − m − 1)-code.

— If e = (ε, ε, · · · , ε) with m′ = n−m and some constant ε < r, the corresponding STAIR
code has the same function as an intra-device redundancy (IDR) scheme [Dholakia
et al. 2008, 2011; Schroeder et al. 2010] that adopts a systematic (r, r − ε)-code.

We show via examples how we can define the sector failure coverage vector e in
STAIR codes in practice. We provide more formal analysis on the configurations of e
in Section 7.

We argue that STAIR codes can be configured to provide more general protection
than SD codes [Blaum and Plank 2013; Plank et al. 2013a; Plank and Blaum 2014].
One major use case of STAIR codes is to protect against bursts of contiguous sector
failures [Bairavasundaram et al. 2007; Schroeder et al. 2010]. Let β be the maximum
length of a tolerable sector failure burst in a chunk. Then we should set e with its
largest element em′−1 = β. For example, when β = 2, we may set e as our previous
example e = (1, 1, 2), or a weaker and lower-cost e = (1, 2). In some extreme cases,
some disk models may have longer sector failure bursts (e.g., with β > 3) [Schroeder
et al. 2010]. Take β = 4 for example. Then we can define e = (1, 4), so that the corre-
sponding STAIR code can tolerate a burst of four sector failures in one chunk together
with an additional sector failure in another chunk. In contrast, such an extreme case
cannot be handled by SD codes, whose current construction can only tolerate at most
three sector failures in a stripe [Blaum and Plank 2013; Plank et al. 2013a; Plank and
Blaum 2014]. Thus, although the numbers of device and sector failures (i.e., m and s,
respectively) are often small in practice, STAIR codes support a more general coverage
of device and sector failures, especially for extreme cases.

STAIR codes also provide more space-efficient protection than the IDR scheme
[Dholakia et al. 2008, 2011; Schroeder et al. 2010]. To protect against a burst of β
sector failures in any data chunk of a stripe, the IDR scheme requires β additional
redundant sectors in each of the n − m data chunks. This is equivalent to setting
e = (β, β, · · · , β) with m′ = n−m in STAIR codes. In contrast, the general construction
of STAIR codes allows a more flexible definition of e, where m′ can be less than n − m,
and all elements of e except the largest element em′−1 can be less than β. For example,
to protect against a burst of β = 4 sector failures for n = 8 and m = 2 (i.e., a RAID-6
system with eight devices), the IDR scheme introduces a total of 4 × 6 = 24 redun-
dant sectors per stripe; if we define e = (1, 4) in STAIR codes as previously, then we
only introduce five redundant sectors per stripe. Thus, STAIR codes introduce fewer
redundant sectors than the IDR scheme in general.

3. BASELINE ENCODING

For general configuration parameters n, r, m, and e, the main idea of STAIR encoding
is to run two orthogonal encoding phases using two systematic MDS codes. First, we
encode the data symbols using one code and obtain two types of parity symbols: row
parity symbols, which protect against device failures, and intermediate parity symbols,

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:6 M. Li and P. P. C. Lee

Fig. 2. Exemplary configuration: a STAIR code stripe for n = 8, r = 4, m = 2, and e = (1, 1, 2) (i.e., m′ = 3
and s = 4). Throughout this article, we use this configuration to explain the operations of STAIR codes.

which will then be encoded using another code to obtain global parity symbols, which
protect against sector failures. In the following, we elaborate the encoding of STAIR
codes and justify our naming convention.

We label different types of symbols for STAIR codes as follows. Figure 2 shows the
layout of an exemplary stripe of a STAIR code for n = 8, r = 4, m = 2, and e = (1, 1, 2)
(i.e., m′ = 3 and s = 4). A stripe is composed of n − m data chunks and m row parity
chunks. We also assume that there are m′ intermediate parity chunks and s global
parity symbols outside the stripe. Let di,j, pi,k, p′

i,l, and gh,l denote a data symbol, a row
parity symbol, an intermediate parity symbol, and a global parity symbol, respectively,
where 0 ≤ i ≤ r − 1, 0 ≤ j ≤ n − m − 1, 0 ≤ k ≤ m − 1, 0 ≤ l ≤ m′ − 1, and 0 ≤ h ≤ el − 1.

Figure 2 depicts the steps of the two orthogonal encoding phases of STAIR codes. In
the first encoding phase, we use an (n + m′, n − m)-code denoted by Crow (which is an
(11,6)-code in Figure 2). We encode via Crow each row of n − m data symbols to obtain
m row parity symbols and m′ intermediate parity symbols in the same row.

Phase 1. For i = 0, 1, · · · , r − 1,

di,0, di,1, · · · , di,n−m−1
Crow=⇒ pi,0, pi,1, · · · , pi,m−1, p′

i,0, p′
i,1, · · · , p′

i,m′−1, (1)

where C=⇒ describes that the input symbols on the left are used to generate the output
symbols on the right using some code C.

We call each pi,k a “row” parity symbol since it is only encoded from the same row of
data symbols in the stripe, and we call each p′

i,l an “intermediate” parity symbol since
it is not actually stored but is used in the second encoding phase only.

In the second encoding phase, we use a (r + em′−1, r)-code denoted by Ccol (which is a
(6,4)-code in Figure 2). We encode via Ccol each chunk of r intermediate parity symbols
to obtain at most em′−1 global parity symbols.

Phase 2. For l = 0, 1, · · · , m′ − 1,

p′
0,l, p′

1,l, · · · , p′
r−1,l

Ccol=⇒
em′−1︷ ︸︸ ︷

g0,l, g1,l, · · · , gel−1,l, ∗, · · · , ∗, (2)

where “∗” represents a “dummy” global parity symbol that will not be generated
when el < em′−1, and we only need to compute the “real” global parity symbols
g0,l, g1,l, · · · , gel−1,l. The intermediate parity symbols will be discarded after this en-
coding phase. Note that each gh,l is in essence encoded from all the data symbols in the
stripe, and thus we call it a “global” parity symbol.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:7

Fig. 3. A canonical stripe augmented from the stripe in Figure 2. The rows and columns are labeled from 0
to 5 and 0 to 10, respectively, for ease of presentation.

We point out that Crow and Ccol can be any systematic MDS codes. In this work, we
implement both Crow and Ccol using Cauchy Reed-Solomon codes [Blomer et al. 1995;
Plank and Xu 2006], which have no restriction on code length and fault tolerance.

From Figure 2, we see that the logical layout of global parity symbols looks like a
stair. This is why we name this family of erasure codes STAIR codes.

In the following discussion, we use the exemplary configuration in Figure 2 to ex-
plain the detailed operations of STAIR codes. To simplify our discussion, we first as-
sume that the global parity symbols are kept outside a stripe and are always available
for ensuring fault tolerance. In Section 5, we will extend the encoding of STAIR codes
when the global parity symbols are kept inside the stripe and are subject to both device
and sector failures.

4. UPSTAIRS DECODING

In this section, we justify the fault tolerance of STAIR codes defined by m and e. We
introduce an upstairs decoding method that systematically recovers the lost symbols
when both device and sector failures occur.

4.1. Homomorphic Property

The proof of fault tolerance of STAIR codes builds on the concept of a canonical stripe,
which is constructed by augmenting the existing stripe with additional virtual parity
symbols. To illustrate, Figure 3 depicts how we augment the stripe of Figure 2 into a
canonical stripe. Let d∗

h,j and p∗
h,k denote the virtual parity symbols encoded with Ccol

from a data chunk and a row parity chunk, respectively, where 0 ≤ j ≤ n − m − 1,
0 ≤ k ≤ m−1, and 0 ≤ h ≤ em′−1 −1. Specifically, we use Ccol to generate virtual parity
symbols from the data and row parity chunks as follows.

For j = 0, 1, · · · , n − m − 1,

d0,j, d1,j, · · · , dr−1,j
Ccol=⇒ d∗

0,j, d∗
1,j, · · · , d∗

em′−1−1,j; (3)

and for k = 0, 1, · · · , m − 1,

p0,k, p1,k, · · · , pr−1,k
Ccol=⇒ p∗

0,k, p∗
1,k, · · · , p∗

em′−1−1,k. (4)

The virtual parity symbols d∗
h,j’s and p∗

h,k’s, along with the real and dummy global
parity symbols, form em′−1 augmented rows of n + m′ symbols. In fact, the resulting
canonical stripe in Figure 3 is a codeword of the product code [Elias 1954] of Crow and
Ccol. To make our discussion simpler, we number the rows and columns of the canonical
stripe from 0 to r+em′−1 −1 and from 0 to n+m′−1, respectively, as shown in Figure 3.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:8 M. Li and P. P. C. Lee

Fig. 4. Upstairs decoding based on the canonical stripe in Figure 3.

Referring to Figure 3, we know that the upper r rows of n+m′ symbols are codewords
of Crow. We argue that each of the lower em′−1 augmented rows is in fact also a codeword
of Crow. We call this the homomorphic property, since the encoding of each chunk in
the column direction preserves the coding structure in the row direction. We formally
prove the homomorphic property in Appendix A. We use this property to prove the
fault tolerance of STAIR codes.

4.2. Proof of Fault Tolerance

We prove that for a STAIR code with configuration parameters n, r, m, and e, as long as
the failure pattern is within the failure coverage defined by m and e, the corresponding
lost symbols can always be recovered (or decoded). In addition, we present an upstairs
decoding method, which systematically recovers the lost symbols for STAIR codes.

For a stripe of the STAIR code, we consider the worst-case recoverable failure sce-
nario where there are m failed chunks (due to device failures) and m′ additional chunks
that have e0, e1, · · · , em′−1 lost symbols (due to sector failures), where 0 < e0 ≤
e1 ≤ · · · ≤ em′−1. We prove that all the m′ chunks with sector failures can be recov-
ered with global parity symbols. In particular, we show that these m′ chunks can be
recovered in the order of e0, e1, · · · , em′−1. Finally, the m failed chunks due to device
failures can be recovered with row parity chunks.

4.2.1. Example. We demonstrate via our exemplary configuration how we recover the
lost data due to both device and sector failures. Figure 4 shows the sequence of our de-
coding steps. Without loss of generality, we logically assign the column identities such
that the m′ chunks with sector failures are in Columns n − m − m′ to n − m − 1,
with e0, e1, · · · , em′−1 lost symbols, respectively, and the m failed chunks are in
Columns n − m to n − 1. Also, the sector failures all occur in the bottom of the data
chunks. Thus, the lost symbols form a stair, as shown in Figure 4.

The main idea of upstairs decoding is to recover the lost symbols from left to right
and bottom to top. First, we see that there are n − m − m′ = 3 good chunks (i.e.,
Columns 0–2) without any sector failure. We encode via Ccol (which is a (6,4)-code)
each such good chunk to obtain em′−1 = 2 virtual parity symbols (Steps 1–3). In Row 4,
there are now six available symbols. Thus, all the unavailable symbols in this row
can be recovered using Crow (which is a (11,6)-code) due to the homomorphic property
(Step 4). Note that we only need to recover the m′ = 3 symbols that will later be used
to recover sector failures. Column 3 (with e0 = 1 sector failure) now has four available
symbols. Thus, we can recover one lost symbol and one virtual parity symbol using Ccol
(Step 5). Similarly, we repeat the decoding for Column 4 (with e1 = 1 sector failure)
(Step 6). We see that Row 5 now contains six available symbols, so we can recover one
unavailable virtual parity symbol (Step 7). Then Column 5 (with e2 = 2 sector failures)
now has four available symbols, so we can recover two lost symbols (Step 8). Now all

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:9

Table II. Upstairs Decoding: Detailed Steps for the Example in Figure 4

Step Detailed Description Coding Scheme

1 d0,0, d1,0, d2,0, d3,0 ⇒ d∗
0,0, d∗

1,0 Ccol

2 d0,1, d1,1, d2,1, d3,1 ⇒ d∗
0,1, d∗

1,1 Ccol

3 d0,2, d1,2, d2,2, d3,2 ⇒ d∗
0,2, d∗

1,2 Ccol

4 d∗
0,0, d∗

0,1, d∗
0,2, g0,0, g0,1, g0,2 ⇒ d∗

0,3, d∗
0,4, d∗

0,5 Crow

5 d0,3, d1,3, d2,3, d∗
0,3 ⇒ d3,3, d∗

1,3 Ccol

6 d0,4, d1,4, d2,4, d∗
0,4 ⇒ d3,4, d∗

1,4 Ccol

7 d∗
1,0, d∗

1,1, d∗
1,2, d∗

1,3, d∗
1,4, g1,2 ⇒ d∗

1,5 Crow

8 d0,5, d1,5, d∗
0,5, d∗

1,5 ⇒ d2,5, d3,5 Ccol

9 d0,0, d0,1, d0,2, d0,3, d0,4, d0,5 ⇒ p0,1, p0,2 Crow
10 d1,0, d1,1, d1,2, d1,3, d1,4, d1,5 ⇒ p1,1, p1,2 Crow
11 d2,0, d2,1, d2,2, d2,3, d2,4, d2,5 ⇒ p2,1, p2,2 Crow
12 d3,0, d3,1, d3,2, d3,3, d3,4, d3,5 ⇒ p3,1, p3,2 Crow

chunks with sector failures are recovered. Finally, we recover the m = 2 lost chunks
row by row using Crow (Steps 9–12). Table II lists the detailed decoding steps of our
example in Figure 4.

4.2.2. General Case. We now generalize the steps of upstairs decoding.

(1) Decoding of the chunk with e0 sector failures. It is clear that there are n − (m +
m′) good chunks without any sector failure in the stripe. We use Ccol to encode
each such good chunk to obtain em′−1 virtual parity symbols. Then each of the
first e0 augmented rows must now have n − m available symbols: n − (m + m′)
virtual parity symbols that have just been encoded and m′ global parity symbols.
Since an augmented row is a codeword of Crow due to the homomorphic property,
all the unavailable symbols in this row can be recovered using Crow. Then, for the
column with e0 sector failures, it now has r available symbols: r − e0 good symbols
and e0 virtual parity symbols that have just been recovered. Thus, we can recover
the e0 sector failures as well as the em′−1 − e0 unavailable virtual parity symbols
using Ccol.

(2) Decoding of the chunk with ei sector failures (1 ≤ i ≤ m′ − 1). If ei = ei−1, we
repeat the decoding for the chunk with ei−1 sector failures. Otherwise, if ei > ei−1,
each of the next ei − ei−1 augmented rows now has n − m available symbols: n −
(m + m′) virtual parity symbols that are first recovered from the good chunks, i
virtual parity symbols that are recovered while the sector failures are recovered,
and m′ − i global parity symbols. Thus, all the unavailable virtual parity symbols
in these ei − ei−1 augmented rows can be recovered. Then the column with ei sector
failures now has r available symbols: r − ei good symbols and ei virtual parity
symbols that have been recovered. This column can then be recovered using Ccol.
We repeat this process until all the m′ chunks with sector failures are recovered.

(3) Decoding of the m failed chunks. After all the m′ chunks with sector failures are
recovered, the m failed chunks can be recovered row by row using Crow.

4.3. Decoding in Practice

In Section 4.2, we describe an upstairs decoding method for the worst case. In practice,
we often have fewer lost symbols than the worst case defined by m and e. To achieve
efficient decoding, our idea is to recover as many lost symbols as possible via row parity
symbols. The reason being that such decoding is local and involves only the symbols
of the same row, while decoding via global parity symbols involves almost all data

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:10 M. Li and P. P. C. Lee

Fig. 5. Upstairs encoding: we set outside global parity symbols to be zero and reconstruct the inside global
parity symbols using upstairs decoding (see Section 4.2).

symbols within the stripe. In our implementation, we first locally recover any lost
symbols using row parity symbols whenever possible. Then, for each chunk that still
contains lost symbols, we count the number of its remaining lost symbols. Next, we
globally recover the lost symbols with global parity symbols using upstairs decoding as
described in Section 4.2, except those in the m chunks that have the most lost symbols.
These m chunks can be finally recovered via row parity symbols after all other lost
symbols have been recovered.

5. EXTENDED ENCODING: RELOCATING GLOBAL PARITY SYMBOLS INSIDE A STRIPE

We thus far assume that there are always s available global parity symbols that are
kept outside a stripe. However, to maintain the regularity of the code structure and to
avoid provisioning extra devices for keeping the global parity symbols, it is desirable
to keep all global parity symbols inside a stripe. The idea is that in each stripe, we
store the global parity symbols in some sectors that originally store the data symbols.
A challenge is that such inside global parity symbols are also subject to both device
and sector failures, so we must maintain their fault tolerance during encoding. In
this section, we propose two encoding methods, namely, upstairs encoding and down-
stairs encoding, which support the construction of inside global parity symbols, while
preserving the homomorphic property and hence the fault tolerance of STAIR codes.
These two encoding methods produce the same values for parity symbols but differ in
computational complexities for different configurations. We show how to deduce parity
relations from the two encoding methods and also show that the two encoding methods
have complementary performance advantages for different configurations.

5.1. Two New Encoding Methods

5.1.1. Upstairs Encoding. We let ĝh,l (0 ≤ l ≤ m′ − 1 and 0 ≤ h ≤ el − 1) be an inside
global parity symbol. Figure 5 illustrates how we place the inside global parity sym-
bols. Without loss of generality, we place them at the bottom of the rightmost data
chunks, following the stair layout. Specifically, we choose the m′ = 3 rightmost data
chunks in Columns 3–5 and place e0 = 1, e1 = 1, and e2 = 2 global parity symbols at
the bottom of these data chunks, respectively. That is, the original data symbols d3,3,
d3,4, d2,5, and d3,5 are now replaced by the inside global parity symbols ĝ0,0, ĝ0,1, ĝ0,2,
and ĝ1,2, respectively.

To obtain the inside global parity symbols, we extend the upstairs decoding method
in Section 4.2 and propose a recovery-based encoding approach called upstairs encod-
ing. We first set all the outside global parity symbols to be zero (see Figure 5). Then
we treat all m = 2 row parity chunks and all s = 4 inside global parity symbols as lost
chunks and lost sectors, respectively. Now we “recover” all inside global parity symbols,
followed by the m = 2 row parity chunks, using the upstairs decoding method in

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:11

Fig. 6. Downstairs encoding: we compute the parity symbols from top to bottom and right to left.

Table III. Downstairs Decoding: Detailed Steps for the Example in Figure 6

Step Detailed Description Coding Scheme

1 d0,0, d0,1, d0,2, d0,3, d0,4, d0,5 ⇒ p0,0, p0,1, p′
0,0, p′

0,1, p′
0,2 Crow

2 d1,0, d1,1, d1,2, d1,3, d1,4, d1,5 ⇒ p1,0, p1,1, p′
1,0, p′

1,1, p′
1,2 Crow

3 p′
0,2, p′

1,2, g0,2 = 0, g1,2 = 0 ⇒ p′
2,2, p′

3,2 Ccol

4 d2,0, d2,1, d2,2, d2,3, d2,4, p′
2,2 ⇒ ĝ0,2, p2,0, p2,1, p′

2,0, p′
2,1 Crow

5 p′
0,1, p′

1,1, p′
2,1, g0,1 = 0 ⇒ p′

3,1 Ccol

6 p′
0,0, p′

1,0, p′
2,0, g0,0 = 0 ⇒ p′

3,0 Ccol

7 d3,0, d3,1, d3,2, p′
3,0, p′

3,1, p′
3,2 ⇒ ĝ0,0, ĝ0,1, ĝ1,2, p3,0, p3,1 Crow

Section 4.2. Since all outside global parity symbols are set to be zero, we need not store
them. The homomorphic property, and hence the fault tolerance property, remain the
same, as discussed in Section 4. Thus, in failure mode, we can still use upstairs de-
coding to reconstruct lost symbols. We call this encoding method “upstairs encoding”
because the parity symbols are encoded from bottom to top, as described in Section 4.2.

5.1.2. Downstairs Encoding. In addition to upstairs encoding, we present a different en-
coding method called downstairs encoding, in which we generate parity symbols from
top to bottom and right to left. We illustrate the idea in Figure 6, which depicts the
sequence of generating parity symbols. We still set the outside global parity symbols
to be zero. First, we encode via Crow the n − m = 6 data symbols in each of the first
r − em′−1 = 2 rows (i.e., Rows 0 and 1) and generate m + m′ = 5 parity symbols
(including two row parity symbols and three intermediate parity symbols) (Steps 1–2).
The rightmost column (i.e., Column 10) now has r = 4 available symbols, including the
two intermediate parity symbols that are just encoded and two zeroed outside global
parity symbols. Thus, we can recover em′−1 = 2 intermediate parity symbols using Ccol
(Step 3). We can generate m + m′ = 5 parity symbols (including one inside global par-
ity symbol, two row parity symbols, and two intermediate parity symbols) for Row 2
using Crow (Step 4), followed by em′−2 = 1 and em′−3 = 1 intermediate parity symbols in
Columns 9 and 8 using Ccol, respectively (Steps 5–6). Finally, we obtain the remaining
m + m′ = 5 parity symbols (including three global parity symbols and two row parity
symbols) for Row 3 using Crow (Step 7). Table III shows the detailed steps of downstairs
encoding for the example in Figure 6.

In general, we start with encoding via Crow the rows from top to bottom. In each row,
we generate m + m′ symbols. When no more rows can be encoded because of insuf-
ficient available symbols, we encode via Ccol the columns from right to left to obtain
new intermediate parity symbols (initially, we obtain em′−1 symbols, followed by em′−2

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:12 M. Li and P. P. C. Lee

Fig. 7. A stair step with a tread and a riser.

symbols, and so on). We alternately encode rows and columns until all parity symbols
are formed. We can generalize the steps as in Section 4.2.2, but we omit the details in
the interest of space.

It is important to note that the downstairs encoding method cannot be generalized
for decoding lost symbols. For example, referring to our exemplary configuration, we
consider a worst-case recoverable failure scenario in which both row parity chunks
are entirely failed, and the data symbols d0,3, d1,4, d2,2, and d3,2 are lost. In this case,
we cannot recover the lost symbols in the top row first, but instead we must resort
to upstairs decoding, as described in Section 4.2. Upstairs decoding works because
we limit the maximum number of chunks with lost symbols (i.e., at most m + m′).
This enables us to first recover the leftmost virtual parity symbols of the augmented
rows first and gradually reconstruct lost symbols. On the other hand, we do not limit
the number of rows with lost symbols in our configuration, so the downstairs method
cannot be used for general decoding.

5.1.3. Discussion. Note that both upstairs and downstairs encoding methods always
generate the same values for all parity symbols, since both of them preserve the ho-
momorphic property, fix the outside global parity symbols to be zero, and use the same
schemes Crow and Ccol for encoding.

Also, both of them reuse parity symbols in the intermediate steps to generate addi-
tional parity symbols in subsequent steps. On the other hand, they differ in encoding
complexity, due to the different ways of reusing the parity symbols. We analyze this in
Section 5.3.

5.2. Uneven Parity Relations

Before relocating the global parity symbols inside a stripe, each data symbol con-
tributes to m row parity symbols and all s outside global parity symbols. However,
after relocation, the parity relations become uneven. That is, some row parity sym-
bols are also contributed by the data symbols in other rows, while some inside global
parity symbols are contributed by only a subset of data symbols in the stripe. Here,
we discuss the uneven parity relations of STAIR codes so as to better understand the
encoding and update performance of STAIR codes in subsequent analysis.

To analyze how exactly each parity symbol is generated, we revisit both upstairs and
downstairs encoding methods. Recall that the row parity symbols and the inside global
parity symbols are arranged in the form of stair steps, each of which is composed of
a tread (i.e., the horizontal portion of a step) and a riser (i.e., the vertical portion of
a step), as shown in Figure 7. If upstairs encoding is used, then from Figure 4, the
encoding of each parity symbol does not involve any data symbol on its right. Also,
among the columns spanned by the same tread, the encoding of parity symbols in
each column does not involve any data symbol in other columns. We can make similar
arguments for downstairs encoding. If downstairs encoding is used, then from Figure 6,
the encoding of each parity symbol does not involve any data symbol below it. Also,

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:13

Fig. 8. The data symbols that contribute to parity symbols p2,0, ĝ0,1, and p1,1, respectively.

among the rows spanned by the same riser, the encoding of parity symbols in each row
does not involve any data symbol in other rows.

As both upstairs and downstairs encoding methods generate the same values of par-
ity symbols, we can combine the above arguments into the following property of how
each parity symbol is related to data symbols.

Property 5.1 (Parity relations in STAIR codes). In a STAIR code stripe, a (row or
inside global) parity symbol in Row i0 and Column j0 (where 0 ≤ i0 ≤ r − 1 and
n − m − m′ ≤ j0 ≤ n − 1) depends only on the data symbols di,j’s where i ≤ i0 and j ≤ j0.
Moreover, each parity symbol is unrelated to any data symbol in any other column (row)
spanned by the same tread (riser).

Figure 8 illustrates this property. For example, p2,0 depends only on the data symbols
di,j’s in Rows 0–2 and Columns 0–5. Note that ĝ0,1 in Column 4 is unrelated to any data
symbol in Column 3, which is spanned by the same tread as Column 4. Similarly, p1,1
in Row 1 is unrelated to any data symbol in Row 0, which is spanned by the same riser
as Row 1.

5.3. Encoding Complexity Analysis

We have proposed two encoding methods for STAIR codes: upstairs encoding and down-
stairs encoding. Both of them alternately encode rows and columns to obtain the parity
symbols. We can also obtain parity symbols using the standard encoding approach, in
which each parity symbol is computed directly from a linear combination of data sym-
bols, as in classical Reed-Solomon codes. We now analyze the computational complexi-
ties of these three methods for different configuration parameters of STAIR codes.

STAIR codes perform encoding over a Galois Field, in which linear arithmetic can
be decomposed into the basic operations Mult XORs [Plank et al. 2013b]. We define
Mult XOR(R1, R2, a) as an operation that first multiplies a region R1 of bytes by a w-bit
constant a in Galois Field GF(2w), and then applies XOR-summing to the product and
the target region R2 of the same size. For example, Y = a0 · X0 + a1 · X1 can be decom-
posed into two Mult XORs (assuming Y is initialized as zero): Mult XOR(X0, Y, a0) and
Mult XOR(X1, Y, a1). Clearly, fewer Mult XORs imply a lower computational complexity.
To evaluate the computational complexity of an encoding method, we count its number
of Mult XORs (per stripe).

For upstairs encoding, we generate m · r row parity symbols and s virtual parity
symbols along the row direction, as well as s inside global parity symbols and (n − m) ·

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:14 M. Li and P. P. C. Lee

Fig. 9. Numbers of Mult XORs (per stripe) of the three encoding methods for STAIR codes versus different
e’s when n = 8, m = 2, and s = 4.

em′−1 − s virtual parity symbols along the column direction. Its number of Mult XORs
(denoted by Xup) is

Xup =
row direction︷ ︸︸ ︷

(n − m) × (m · r + s) +
column direction︷ ︸︸ ︷

r × [
(n − m) · em′−1

]
. (5)

For downstairs encoding, we generate m · r row parity symbols, s inside global parity
symbols, and m′ · r − s intermediate parity symbols along the row direction, as well
as s intermediate parity symbols along the column direction. Its number of Mult XORs
(denoted by Xdown) is

Xdown =
row direction︷ ︸︸ ︷

(n − m) × [
(m + m′) · r

] +
column direction︷ ︸︸ ︷

r × s . (6)

For standard encoding, we compute the number of Mult XORs by summing the num-
ber of data symbols that contribute to each parity symbol, based on the property of
uneven parity relations discussed in Section 5.2.

We show via a case study how the three encoding methods differ in the number of
Mult XORs. Figure 9 depicts the numbers of Mult XORs of the three encoding methods for
different e’s in the case where n = 8, m = 2, and s = 4. Upstairs encoding and down-
stairs encoding incur significantly fewer Mult XORs than standard encoding most of the
time. The main reason is that both upstairs encoding and downstairs encoding often
reuse the computed parity symbols in subsequent encoding steps. We also observe that
for a given s, the number of Mult XORs of upstairs encoding increases with em′−1 (see
Equation (5)), while that of downstairs encoding increases with m′ (see Equation (6)).
Since larger m′ often implies smaller em′−1, the value of m′ often determines which
of the two encoding methods is more efficient: when m′ is small, downstairs encoding
wins; when m′ is large, upstairs encoding wins.

In our encoding implementation of STAIR codes, for given configuration parameters,
we always pre-compute the number of Mult XORs for each of the encoding methods, and
then choose the one with the fewest Mult XORs.

6. STORAGE AND PERFORMANCE EVALUATION

We evaluate STAIR codes and compare them with other related erasure codes in dif-
ferent practical aspects, including storage space saving, encoding/decoding speed, and
update penalty.

6.1. Storage Space Saving

The main motivation for STAIR codes is to tolerate simultaneous device and sec-
tor failures with significantly lower storage space overhead than traditional erasure
codes (e.g., Reed-Solomon codes) that provide only device-level fault tolerance. Given a

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:15

Fig. 10. Space saving of STAIR codes over traditional erasure codes in terms of s, m′, and r.

failure scenario defined by m and e, traditional erasure codes need m + m′ chunks per
stripe for parity, while STAIR codes need only m chunks and s symbols (where m′ ≤ s).
Thus, STAIR codes save r × m′ − s symbols per stripe, or equivalently, m′ − s

r devices
per system. In short, the saving of STAIR codes depends on only three parameters s,
m′, and r (where s and m′ are determined by e).

Figure 10 plots the number of devices saved by STAIR codes for s ≤ 4, m′ ≤ s, and
r ≤ 32. As r increases, the number of devices saved is close to m′. The saving reaches
the highest when m′ = s.

We point out that the recently proposed SD codes [Plank et al. 2013a; Plank and
Blaum 2014] are also motivated for reducing the storage space over traditional era-
sure codes. Unlike STAIR codes, SD codes always achieve a saving of s − s

r devices,
which is the maximum saving of STAIR codes. While STAIR codes apparently cannot
outperform SD codes in space saving, it is important to note that the currently known
constructions of SD codes are limited to s ≤ 3 only [Plank et al. 2013a; Plank and
Blaum 2014; Blaum and Plank 2013], implying that SD codes can save no more than
three devices. On the other hand, STAIR codes do not have such limitations. As shown
in Figure 10, STAIR codes can save more than three devices for larger s.

6.2. Encoding/Decoding Speed

We evaluate the encoding/decoding speed of STAIR codes. Our implementation of
STAIR codes is written in C. We leverage the GF-Complete open source library [Plank
et al. 2013b] to accelerate Galois Field arithmetic using Intel SIMD instructions. Our
experiments compare STAIR codes with the state-of-the-art SD codes [Plank et al.
2013a; Plank and Blaum 2014]. At the time of this writing, the open-source implemen-
tation of SD codes encodes stripes in a decoding manner without any parity reuse. For
fair comparisons, we extend the SD code implementation to support the standard en-
coding method mentioned in Section 5.3. We run our performance tests on a machine
equipped with an Intel Core i5-3570 CPU at 3.40GHz with SSE4.2 support. The CPU
has a 256KB L2-cache and a 6MB L3-cache.

6.2.1. Encoding. We compare the encoding performance of STAIR codes and SD codes
for different values of n, r, m, and s. For SD codes, we only consider the range of
configuration parameters where s ≤ 3, since no code construction is available outside
this range [Blaum and Plank 2013; Plank et al. 2013a; Plank and Blaum 2014]. In
addition, the SD code constructions for s = 3 are only available in the range n ≤ 24,
r ≤ 24, and m ≤ 3 [Plank et al. 2013a; Plank and Blaum 2014]. For STAIR codes,
a single value of s can imply different configurations of e (e.g., see Figure 9), each
of which has different encoding performance. Here, we take a conservative approach
to analyze the worst-case performance of STAIR codes, that is, we test all possible
configurations of e for a given s and pick the one with the lowest encoding speed.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:16 M. Li and P. P. C. Lee

Fig. 11. Encoding speed of STAIR codes and SD codes for different combinations of n, r, m, and s.

Note that the encoding performance of both STAIR codes and SD codes heavily de-
pends on the word size w of the adopted Galois Field GF(2w), where w is often set
to be a power of 2. A smaller w often means a higher encoding speed [Plank et al.
2013b]. STAIR codes work as long as n + m′ ≤ 2w and r + em′−1 ≤ 2w. Thus, we choose
w = 8, since it suffices for all of our tests. However, SD codes may choose among w = 8,
w = 16, and w = 32, depending on configuration parameters. We choose the smallest
w that is feasible for the SD code construction.

We consider the metric encoding speed, defined as the amount of data encoded per
second. We construct a stripe of size roughly 32MB in memory [Plank et al. 2013a;
Plank and Blaum 2014]. We put random bytes in the stripe, and divide the stripe into
r × n sectors, each mapped to a symbol. We obtain the averaged results over 10 runs.

Figures 11(a) and 11(b) present the encoding speed results for different values of n
when r = 16 and for different values of r when n = 16, respectively. In most cases,
the encoding speed of STAIR codes is over 1,000MB/s, which is significantly higher
than the disk write speed in practice (note that although disk writes can be paral-
lelized in disk arrays, the encoding operations can also be parallelized with modern
multicore CPUs). The speed increases with both n and r. The intuitive reason is that
the proportion of parity symbols decreases with n and r. Compared to SD codes, STAIR
codes improve the encoding speed by 106.03% on average (in the range from 29.30% to
225.14%). The reason being that STAIR codes reuse encoded parity information in sub-
sequent encoding steps by upstairs/downstairs encoding (see Section 5.3), while such
an encoding property is not exploited in SD codes.

We also evaluate the impact of stripe size on the encoding speed of STAIR codes and
SD codes for given n and r. We fix n = 16 and r = 16, and vary the stripe size from
128KB to 512MB. Note that a stripe of size 128KB implies a symbol of size 512 bytes,
the standard sector size in practical disk drives. Figure 12 presents the encoding speed
results. As the stripe size increases, the encoding speed of both STAIR codes and SD
codes first increases and then drops, due to the mixed effects of SIMD instructions
adopted in GF-Complete [Plank et al. 2013b] and CPU cache. Nevertheless, the encod-
ing speed advantage of STAIR codes over SD codes remains unchanged.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:17

Fig. 12. Encoding speed of STAIR codes and SD codes for different stripe sizes when n = 16 and r = 16.

Fig. 13. Decoding speed of STAIR codes and SD codes for different combinations of n, r, m, and s.

6.2.2. Decoding. We measure the decoding performance of STAIR codes and SD codes
in recovering lost symbols. Since the decoding time increases with the number of lost
symbols to be recovered, we consider a particular worst case in which the m leftmost
chunks and s additional symbols in the following m′ chunks defined by e are all lost.
The evaluation setup is similar to that in Section 6.2.1, and in particular, the stripe
size is fixed at 32MB.

Figures 13(a) and 13(b) present the decoding speed results for different n when
r = 16 and for different r when n = 16, respectively. The results of both figures can
be viewed in comparison to those of Figures 11(a) and 11(b), respectively. Similar to
encoding, the decoding speed of STAIR codes is over 1,000MB/s in most cases and
increases with both n and r. Compared to SD codes, STAIR codes improve the decod-
ing speed by 102.99% on average (in the range from 1.70% to 537.87%).

In practice, we often have fewer lost symbols than the worst case (see Section 4.3).
One common case is that there are only failed chunks due to device failures (i.e., s = 0),
so the decoding of both STAIR and SD codes is identical to that of Reed-Solomon codes.
In this case, the decoding speed of STAIR/SD codes can be significantly higher than
that of s = 1 for STAIR codes in Figure 13. For example, when n = 16 and r = 16,
the decoding speed increases by 79.39%, 29.39%, and 11.98% for m = 1, 2, and 3,
respectively.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:18 M. Li and P. P. C. Lee

Fig. 14. Update penalty of STAIR codes for different e’s when n = 16 and s = 4.

Fig. 15. Update penalty of STAIR codes, SD codes, and Reed-Solomon (RS) codes when n = 16 and r = 16.
For STAIR codes, we plot the error bars for the maximum and minimum update penalty values among all
possible configurations of e.

6.3. Update Penalty

We evaluate the update cost of STAIR codes when data symbols are updated. For each
data symbol in a stripe being updated, we count the number of parity symbols being
affected (see Section 5.2). Here, we define the update penalty as the average number
of parity symbols that need to be updated when a data symbol is updated.

Clearly, the update penalty of STAIR codes increases with m. We are more interested
in how e influences the update penalty of STAIR codes. Figure 14 presents the update
penalty results for different e’s when n = 16 and s = 4. For different e’s with the
same s, the update penalty of STAIR codes often increases with em′−1. Intuitively, a
larger em′−1 implies that more rows of row parity symbols are encoded from inside
global parity symbols, which are further encoded from almost all data symbols (see
Section 5.2).

We compare STAIR codes with SD codes [Plank et al. 2013a; Plank and Blaum 2014].
For STAIR codes with a given s, we test all possible configurations of e and find the
average, minimum, and maximum update penalty. For SD codes, we only consider s
between 1 and 3. We also include the update penalty results of Reed-Solomon codes
for reference. Figure 15 presents the update penalty results when n = 16 and r = 16
(while similar observations are made for other n and r). For a given s, the range of
update penalty of STAIR codes covers that of SD codes, although the average is some-
times higher than that of SD codes (same for s = 1, by 7.30% to 14.02% for s = 2,
and by 10.47% to 23.72% for s = 3). Both STAIR codes and SD codes have higher
update penalty than Reed-Solomon codes due to more parity symbols in a stripe, and
hence are suitable for storage systems with rare updates (e.g., backup or write-once-
read-many (WORM) systems) or systems dominated by full-stripe writes [Plank et al.
2013a; Plank and Blaum 2014].

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:19

Table IV. Major Notation Used for Reliability Analysis

Notation Description
U Total amount (in bytes) of user data stored in a storage system
C Device capacity (in bytes)
S Sector size (in bytes)
E Storage efficiency of an erasure code
Narr Number of storage arrays in a storage system
MTTDLsys MTTDL of a storage system
MTTDLarr MTTDL of a single storage array
1/λ Mean time to device failure
1/μ Mean time to rebuild in critical mode
Parr Probability that a storage array in critical mode encounters unrecoverable

sector failures in nonfailed devices
Pstr Probability that a stripe in critical mode encounters unrecoverable sector

failures in nonfailed chunks
Pchk(i) Probability that a chunk encounters i sector failures (where 0 ≤ i ≤ r)
Pbit Probability of an unrecoverable bit error
Psec Probability of a sector failure
B Average length (in number of sectors) of a sector failure burst
bi Fraction of sector failure bursts of length i (where i ≥ 1)
α Tail index of a Pareto distribution that best fits the distribution of length

≥ 2 for sector failure bursts

7. RELIABILITY ANALYSIS

In the previous section, we examine the storage and performance properties of
STAIR codes. We now characterize the reliability of STAIR codes using analytical
models. We also show that STAIR codes effectively tolerate sector failure bursts
[Bairavasundaram et al. 2007; Schroeder et al. 2010] by supporting a wide range of
configurations of the sector failure coverage defined by e. We extend the reliability
analysis by Dholakia et al. [2008] specifically for STAIR codes, whose fault tolerance
is defined by the specific configuration of e. Table IV summarizes the major notation
for our reliability analysis.

7.1. Analytical Models

In this section, we develop analytical models for the reliability analysis.

7.1.1. MTTDL Model. We first model the overall reliability of a storage system. We use
the standard reliability metric called mean time to data loss (MTTDL), although other
advanced metrics have been proposed in the literature [Greenan et al. 2010].

Recall from Section 2 that we encode a storage array using a STAIR code with con-
figuration parameters n, r, m, and e (and hence s). Consider a storage system with
Narr storage arrays, each with n devices of capacity C. To store a given amount U of
user data, Narr should be set to be

Narr =
⌈

U
/

E
C · n

⌉
, (7)

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:20 M. Li and P. P. C. Lee

Fig. 16. Markov model for a storage array with m = 1: State 0 means no device failure; State 1 means one
device failure; and State DL means data loss.

where E denotes the storage efficiency of an erasure code (i.e., the fraction of storage
capacity used for storing the actual data). For STAIR codes, E can be calculated by

E = r · (n − m) − s
r · n

× 100%. (8)

Note that the storage efficiency of Reed-Solomon codes can be obtained from
Equation (8) by setting s = 0, while that of an SD code with a given s [Plank et al.
2013a; Plank and Blaum 2014] can be directly computed via Equation (8).

Let MTTDLarr be the MTTDL of a storage array. Suppose that MTTDLarr is ex-
ponentially distributed. Then the MTTDL of the whole storage system (denoted by
MTTDLsys) can be calculated by

MTTDLsys = MTTDLarr

Narr
. (9)

We first derive MTTDLarr as in Dholakia et al. [2008]. To simplify our analysis, we
only consider the most practical case where m = 1. When a storage array experiences
a device failure, it enters critical mode, in which either an additional device failure or
an unrecoverable sector failure in a nonfailed device can lead to data loss. For device
failures, suppose that they are independent and exponentially distributed with param-
eter λ, where 1/λ is the mean time to device failure; for sector failures, suppose that
the probability that a storage array in critical mode encounters unrecoverable sector
failures in nonfailed devices is Parr. In addition, suppose that the rebuild time in crit-
ical mode is exponentially distributed with parameter μ, where 1/μ is the mean time
to rebuild. Figure 16 depicts the corresponding Markov model [Dholakia et al. 2008],
where State 0 means no device failure, State 1 means one device failure, and State DL
means data loss. In this Markov model, we do not consider the scenario where a stor-
age array in State 0 encounters a sector failure, by assuming that the storage array
can recover the sector failure in a very short time (� 1/μ) and is highly unlikely to
encounter another device or sector failure that may lead to data loss. An explicit ex-
pression of MTTDLarr deduced based on this Markov model can be derived as follows
[Dholakia et al. 2008]:

MTTDLarr = (2n − 1)λ + μ

nλ[(n − 1)λ + μParr]
. (10)

We next derive Parr. Recall that each stripe is independently encoded in a storage
array (see Section 2). Let Pstr be the probability that a stripe in critical mode encoun-
ters unrecoverable sector failures in nonfailed chunks. Since the number of stripes
in a storage array is

⌊
C

S·r
⌋

, where S is the sector size in bytes (typically 512 bytes),
we have

Parr = 1 − (1 − Pstr)

⌊
C

S·r
⌋

≈
⌊

C
S · r

⌋
· Pstr. (11)

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:21

Finally, we discuss how to derive Pstr. In critical mode, there are n − m nonfailed
chunks in a stripe. Suppose that each nonfailed chunk independently suffers from
sector failures. Let Pchk(i) (where 0 ≤ i ≤ r) be the probability that a nonfailed chunk
encounters i sector failures. For the STAIR code with a given e, we compute Pstr as a
function of Pchk(i)’s by enumerating all cases of sector failures. For example, if e = (s)
(where s ≥ 1), then Pstr can be computed by the complement of the probability that all
n − m nonfailed chunks have no sector failure or exactly one nonfailed chunk has one
up to s sector failures. Appendix B describes the explicit expressions of Pstr for some
specific configurations of e considered in our analysis. For comparisons, Appendix B
also describes the explicit expressions of Pstr for Reed-Solomon codes and SD codes.
Note that the values of Pchk(i)’s are determined by the sector failure model, which we
describe next.

7.1.2. Sector Failure Models. Let Psec be the probability of a sector failure, and let Pbit be
the probability of an unrecoverable bit error. Suppose that bit errors are independent.
Then Psec can be estimated by

Psec = 1 − (1 − Pbit)
S×8 ≈ (S × 8) · Pbit. (12)

We now consider two models for sector failures [Dholakia et al. 2008]: the indepen-
dent model and the correlated model. We fix Psec in both models, so both models see
the same expected number of sector failures in the whole array. Intuitively, in the inde-
pendent model, we assume that sector failures occur independently, so sector failures
tend to be scattered across different chunks within a stripe. In the correlated model,
we assume that sector failures come in bursts, according to the previous field studies
[Bairavasundaram et al. 2007; Schroeder et al. 2010]. Thus, sector failures tend to ap-
pear together in one of the chunks within a stripe. We derive Pchk(i) (where 0 ≤ i ≤ r)
for each model as follows.

In the independent model, Pchk(i) (where 0 ≤ i ≤ r) is calculated by

Pchk(i) =
(

r
i

)
· Pi

sec · (1 − Psec)
r−i. (13)

In the correlated model, let B be the average length (in number of sectors) of a sector
failure burst. While the burst length may vary across different bursts, it is shown that
the average length B is close to one sector (e.g., B = 1.0291 [Dholakia et al. 2008]). To
simplify our analysis, we assume that the burst length is at most r sectors in all cases,
and that a burst spans one chunk only (i.e., it does not span across two chunks). We
further assume that sector failure bursts are independent of each other. Let bi be the
fraction of sector failure bursts of length i (where 1 ≤ i ≤ r) in a storage array (note
that

∑r
i=1 bi = 1). Then, we have

B =
r∑

i=1

i × bi. (14)

Note that the probability that a sector is the beginning of a sector failure burst is
given by Psec · 1

B . Moreover, Pchk(0) is equal to the probability that each of the r sectors
in a chunk is not the beginning of a sector failure burst. Thus, we have

Pchk(0) = (1 − Psec

B
)r ≈ 1 − r · Psec

B
. (15)

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:22 M. Li and P. P. C. Lee

Fig. 17. MTTDLsys results of STAIR codes, SD codes, and Reed-Solomon (RS) codes for different Pbit ’s in
the independent sector failure model.

In other words, the probability that a chunk encounters at least one sector failure is

Pchk(1) + Pchk(2) + · · · + Pchk(r) = 1 − Pchk(0) ≈ r · Psec

B
. (16)

We can compute Pchk(i) (where 1 ≤ i ≤ r) as

Pchk(i) = bi ·
(

r · Psec

B

)
. (17)

7.2. Numerical Results

We examine the system reliability MTTDLsys of STAIR codes and compare it with
those of Reed-Solomon codes and SD codes. We follow the storage array configurations
in Dholakia et al. [2008]. We consider a storage system that stores U = 10PB of user
data using SATA disk drives with parameters C = 300GB, S = 512 bytes, 1/λ =
500, 000 hours, and 1/μ = 17.8 hours. In each storage array, we fix n = 8, r = 16, and
m = 1. We consider different values of s (note that s = 0 corresponds to Reed-Solomon
codes). For a given s, to store 10PB of user data, we set the number Narr of storage
arrays as follows.

s 0 1 2 3 4 5 6
Narr 4994 5039 5085 5131 5179 5227 5276

s 7 8 9 10 11 12
Narr 5327 5378 5430 5483 5538 5593

For the probability Pbit of an unrecoverable bit error in SATA disk drives, we pick
the range [10−14, 10−10] to cover the data sheet value 10−14 considered by Dholakia
et al. [2008] and the empirical values that are much higher than stated in data sheets
[Iliadis and Hu 2008]. We investigate how Pbit affects the system reliability.

7.2.1. Independent Sector Failures. We first consider the case of independent sector fail-
ures. Figure 17 depicts MTTDLsys results of different erasure codes versus Pbit. From
Figure 17(a), we observe that both the STAIR code and SD code with s = 1 achieve
much higher reliability than Reed-Solomon codes, for example, by more than two or-
ders of magnitude at Pbit = 10−14. As Pbit increases, the reliability of Reed-Solomon
codes follows a power-law decrease, while those of the STAIR code and SD code with
s = 1 remain almost unchanged. The reason is that both STAIR codes and SD codes
can protect against the data loss due to an additional sector failure with an additional

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:23

Fig. 18. MTTDLsys results of STAIR codes, SD codes, and Reed-Solomon (RS) codes for different Pbit’s in
the correlated sector failure model with b1 = 0.98 and α = 1.79.

parity sector. As Pbit further increases (beyond the order of 10−12), a storage array is
more likely to encounter more than one sector failure in critical mode, and eventually
has data loss before the rebuild finishes. Thus, the MTTDLsys’s of both STAIR codes
and SD codes drop (following a power-law decrease). Note that the decreasing trend of
MTTDLsys observed here is similar to that observed by Dholakia et al. [2008].

To improve the system reliability of both STAIR codes and SD codes, we choose a
higher value of s. For SD codes, if we choose s = 2, its MTTDLsys remains almost
unchanged over all Pbit’s we consider (see Figure 17(a)); for STAIR codes, we need
to switch to e = (1, 2) (i.e., s = 3) to keep MTTDLsys unchanged (see Figure 17(b)).
Compared to SD codes, STAIR codes incur slightly higher storage overhead (by
storing one more parity sector per stripe) to achieve the same reliability. On the
other hand, STAIR codes achieve much higher encoding performance, as observed in
Figures 11 and 12.

Figure 17(b) shows the MTTDLsys results of STAIR codes for different configurations
of e, all of which correspond to s = 3. Interestingly, e = (1, 2) shows the highest reli-
ability. It has higher reliability than e = (3) because it can protect against the sector
failures that span more than one chunk (horizontally), and it has higher reliability
than e = (1, 1, 1), since it can protect against more than one sector failure in a chunk
(vertically).

7.2.2. Correlated Sector Failures. We now consider the case of correlated sector failures,
in which sector failure bursts can occur. Schroeder et al. [2010] discover that the length
distribution of sector failure bursts can be fitted with a pair of parameters: (b1, α),
where b1 is the fraction of sector failure bursts of length one, and α (> 0) is the tail
index of a Pareto distribution that best fits the distribution of burst length greater than
one. A smaller α means a more heavy-tailed Pareto distribution. Typically, b1 often falls
into the range between 0.9 and 0.99, and α often falls into the range between 1 and 2
[Schroeder et al. 2010, Table 1].

Figure 18 first shows the impact of Pbit on MTTDLsys. Here, we consider a specific
length distribution of sector failure bursts, where b1 = 0.98 and α = 1.79 based on the
“D-2” drive model in the work [Schroeder et al. 2010]. The reliability characteristics in
the correlated sector failure model are very different from those in the independent sec-
tor failure model. From Figure 18(a), we observe that as Pbit increases, STAIR codes,
SD codes, and Reed-Solomon codes show a power-law decrease in reliability. Neverthe-
less, both STAIR codes and SD codes are more reliable than Reed-Solomon codes. For
example, when Pbit = 10−14, both the STAIR code and SD code with s = 1 achieve

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:24 M. Li and P. P. C. Lee

Fig. 19. MTTDLsys results of STAIR codes with e = (s) and e = (1, s − 1) for different s’s in the correlated
sector failure model with different (b1, α) values when n = 8, r = 16, and m = 1.

higher reliability than Reed-Solomon codes by more than one order of magnitude. In
addition, from Figure 18(b), we observe that the STAIR code with e = (e0, e1, · · · , em′−1)
has almost the same reliability as the SD code with s = em′−1 (e.g., see the MTTDLsys’s
of the STAIR code with e = (1, 2) and the SD code with s = 2). Also, among all con-
figurations of e’s under the same s, the STAIR code with e = (s) provides the highest
reliability, which is almost the same as that of the SD code with the same s (e.g., see
the MTTDLsys’s of the STAIR code with e = (3) and the SD code with s = 3). The rea-
son being that in our configuration of the correlated sector failure model, most sector
failures come as a burst that appears in one chunk. Thus, the STAIR code with e = (s)
effectively protects against a sector burst of length s in any chunk and has the same
protection as the SD code with the same s.

Figure 19 next shows the impact of the length distribution of sector failure bursts
on MTTDLsys. Here, we only consider STAIR codes, which can protect against sec-
tor failure bursts of any length. Figure 19(a) depicts the burst length distribution for
different pairs of (b1, α) that we consider. Smaller values of b1 and α imply that the
length of a sector failure burst is more likely to be greater than one, or in other words,
sector failures are more bursty. Figure 19(b) presents the MTTDLsys results of STAIR
codes with e = (s) and e = (1, s − 1) for different values of s under different pairs of
(b1, α). We observe that for more bursty sector failures (e.g., b1 = 0.9 and α = 1), the
STAIR code with e = (s) (for s ≥ 2) achieves significantly higher reliability than the
STAIR code with e = (1, s−1). In particular, as s increases, the reliability of the STAIR
code with e = (s) increases exponentially. This demonstrates the significance of STAIR
codes that support a wider range of s. On the other hand, for less bursty sector failures

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:25

(e.g., b1 = 0.9999 and α = 4), as s increases, the reliability of the STAIR code with
e = (s) increases much more slowly, and in some cases, is even lower than that with
e = (1, s − 1) (e.g., when Pbit = 10−10). This observation is consistent with that in the
independent sector failure model in which sector failures are likely scattered across
different chunks within a stripe.

8. RELATED WORK

Erasure codes have been widely adopted to provide fault tolerance against device fail-
ures in storage systems [Plank and Huang 2013]. Classical erasure codes include stan-
dard Reed-Solomon codes [Reed and Solomon 1960] and Cauchy Reed-Solomon codes
[Blomer et al. 1995], both of which are MDS codes that provide general constructions
for all possible configuration parameters. They are usually implemented as system-
atic codes for storage applications [Plank 1997; Plank and Ding 2005; Plank and Xu
2006], and thus can be used to implement the construction of STAIR codes. In addi-
tion, Cauchy Reed-Solomon codes can be further transformed into array codes, whose
encoding computations purely build on efficient XOR operations [Plank and Xu 2006].

In the past decades, many kinds of array codes have been proposed, including MDS
array codes (e.g., Blaum et al. [1995, 1996], Blaum [2006], Corbett et al. [2004], Feng
et al. [2005a, 2005b], Huang and Xu [2005], Li and Shu [2011], Plank et al. [2011], Xu
and Bruck [1999], Xu et al. [1999]) and non-MDS array codes (e.g., Hafner [2005, 2006],
Li et al. [2009]). Array codes are often designed for specific configuration parameters.
To avoid compromising the generality of STAIR codes, we do not suggest adopting
array codes in the construction of STAIR codes. Moreover, recent work [Plank et al.
2013b] has shown that Galois Field arithmetic can be implemented to be extremely
fast (sometimes at cache line speeds) using SIMD instructions in modern processors.

Sector failures are not explicitly considered in traditional erasure codes, which focus
on tolerating device-level failures. To cope with sector failures, ad hoc schemes are of-
ten considered. One scheme is scrubbing [Oprea and Juels 2010; Schroeder et al. 2010;
Schwarz et al. 2004], which proactively scans all disks and recovers any spotted sector
failure using the underlying erasure codes. Another scheme is intra-device redundancy
[Dholakia et al. 2008, 2011; Schroeder et al. 2010], in which contiguous sectors in each
device are grouped together to form a segment and are then encoded with redundancy
within the device. Our work targets a different objective and focuses on constructing
an erasure code that explicitly addresses sector failures.

To simultaneously tolerate device and sector failures with minimal redundancy, SD
codes [Plank et al. 2013a; Plank and Blaum 2014] (including the earlier PMDS codes
[Blaum et al. 2013], which are a subset of SD codes) have recently been proposed. As
stated in Section 1, SD codes are known only for limited configurations, and some of the
known constructions rely on extensive searches. A relaxation of the SD property has
also been recently addressed as future work [Plank and Blaum 2014], which assumes
that each row has no more than a given number of sector failures. It is important to
note that the relaxation of Plank and Blaum [2014] is different from ours, in which we
limit the maximum number of devices with sector failures and the maximum number
of sector failures that simultaneously occur in each such device. It turns out that our
relaxation enables us to derive a general code construction.

There are other similar kinds of erasure codes that have similar constructions to
STAIR codes but serve different purposes. Blaum et al. [2012] have constructed a fam-
ily of nested codes that define the number of tolerable sector failures in each row for an
SSD array in which sector failures appear as worn-out blocks. However, unlike STAIR
codes, such nested codes do not consider sector failure bursts [Bairavasundaram et al.
2007; Schroeder et al. 2010]. Another kind of erasure codes is the family of locally

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:26 M. Li and P. P. C. Lee

repairable codes (LRCs) [Huang et al. 2012, 2013; Sathiamoorthy et al. 2013], which fo-
cus on improving the recovery performance of storage systems. Pyramid codes [Huang
et al. 2013] are designed for small-scale device failures and have been implemented in
archival storage [Wildani et al. 2009]. Huang et al. and Sathiamoorthy et al.’s LRCs
[Huang et al. 2012; Sathiamoorthy et al. 2013] can be viewed as generalizations of
Pyramid codes and are recently adopted in commercial storage systems. In particular,
Huang et al.’s LRCs [2012] achieve the same fault tolerance property as PMDS codes
[Blaum et al. 2013], and thus can also be used as SD codes. However, the construction
of Huang et al.’s LRCs is limited to m = 1 only. To the best of our knowledge, STAIR
codes are the first general family of erasure codes that can efficiently tolerate both
device and sector failures.

9. CONCLUSIONS

We present STAIR codes, a general family of erasure codes that can tolerate simul-
taneous device and sector failures in a space-efficient manner. STAIR codes can be
constructed for tolerating any numbers of device and sector failures subject to a
prespecified sector failure coverage. The special construction of STAIR codes also
makes efficient encoding/decoding possible through parity reuse. Compared to the re-
cently proposed SD codes [Blaum et al. 2013; Plank et al. 2013a; Plank and Blaum
2014], STAIR codes not only support a much wider range of configuration parameters
but also achieve higher encoding/decoding speed based on our experiments.

The source code of STAIR codes is available at http://ansrlab.cse.cuhk.edu.hk/
software/stair.

APPENDIXES

A. PROOF OF HOMOMORPHIC PROPERTY

We formally prove the homomorphic property described in Section 4.1. We state the
following theorem.

THEOREM A.1. In the construction of the canonical stripe of STAIR codes, the en-
coding of each chunk in the column direction via Ccol is homomorphic, such that each
augmented row in the canonical stripe is a codeword of Crow.

PROOF. We prove by matrix operations. We define the matrices D = [di,j]r×(n−m),
P = [pi,k]r×m, and P′ = [p′

i,l]r×m′ . Also, we define the generator matrices Grow and Gcol

for the codes Crow and Ccol, respectively, as

Grow = (
I(n−m)×(n−m) | A(n−m)×(m+m′)

)
,

Gcol = (
Ir×r | Br×em′−1

)
,

where I is an identity matrix, and A and B are the submatrices that form the parity
symbols. The upper r rows of the stripe can be expressed as follows:(

D | P | P′) = D · Grow.

The lower em′−1 augmented rows are expressed as follows:((
D | P | P′)T · B

)T = BT · (
D · Grow

)
=

(
BT · D

)
· Grow

We can see that each of the lower em′−1 rows can be calculated using the generator
matrix Grow, and hence is a codeword of Crow.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

http://ansrlab.cse.cuhk.edu.hk/software/stair
http://ansrlab.cse.cuhk.edu.hk/software/stair

�

�

�

�

�

�

�

�

STAIR Codes 14:27

B. EXPLICIT EXPRESSIONS OF PSTR FOR VARIOUS ERASURE CODES

B.1. Reed-Solomon Codes

The explicit expression of Pstr for Reed-Solomon codes is as follows:

Pstr = 1 − Pn−m
chk(0)

. (18)

B.2. STAIR Codes

Explicit expressions of Pstr for some STAIR codes with special e’s are as follows.

(1) For a STAIR code with e = (s) for s ≥ 1,

Pstr = 1 − Pn−m
chk(0)

−
(

n − m
1

)
·

s∑
i=1

Pchk(i) · Pn−m−1
chk(0)

. (19)

(2) For a STAIR code with e = (1, s − 1) for s ≥ 2,

Pstr = 1 − Pn−m
chk(0)

−
(

n − m
1

)
·

s−1∑
i=1

Pchk(i) · Pn−m−1
chk(0)

−
(

n−m
2

)
·P2

chk(1) ·Pn−m−2
chk(0)

−
(

n−m
1

)
·
(

n−m−1
1

)
·

s−1∑
i=2

Pchk(i) ·Pchk(1) ·Pn−m−2
chk(0)

.

(20)
(3) For a STAIR code with e = (2, s − 2) for s ≥ 4,

Pstr =1 − Pn−m
chk(0)

−
(

n − m
1

)
·

s−2∑
i=1

Pchk(i) · Pn−m−1
chk(0)

−
(

n−m
2

)
·P2

chk(1) ·Pn−m−2
chk(0)

−
(

n−m
1

)
·
(

n−m−1
1

)
·

s−2∑
i=2

Pchk(i) ·Pchk(1) ·Pn−m−2
chk(0)

−
(

n−m
2

)
·P2

chk(2) ·Pn−m−2
chk(0)

−
(

n−m
1

)
·
(

n−m−1
1

)
·

s−2∑
i=3

Pchk(i) ·Pchk(2) ·Pn−m−2
chk(0)

.

(21)
(4) For a STAIR code with e = (1, 1, s − 2) for s ≥ 3,

Pstr =1 − Pn−m
chk(0)

−
(

n − m
1

)
·

s−2∑
i=1

Pchk(i) · Pn−m−1
chk(0)

−
(

n−m
2

)
·P2

chk(1) ·Pn−m−2
chk(0)

−
(

n−m
1

)
·
(

n−m−1
1

)
·

s−2∑
i=2

Pchk(i) ·Pchk(1) ·Pn−m−2
chk(0)

−
(

n−m
3

)
·P3

chk(1)
·Pn−m−3

chk(0)
−

(
n−m

2

)
·
(

n−m−2
1

)
·

s−2∑
i=2

Pchk(i) ·P2
chk(1) ·Pn−m−3

chk(0)
.

(22)

(5) For a STAIR code with e = (

s︷ ︸︸ ︷
1, 1, · · · , 1) for s ≥ 1,

Pstr = 1 −
s∑

i=0

((
n − m

i

)
· Pi

chk(1)
· Pn−m−i

chk(0)

)
. (23)

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:28 M. Li and P. P. C. Lee

B.3. SD Codes

Explicit expressions of Pstr for SD codes with s ≤ 3 [Plank et al. 2013a; Plank and
Blaum 2014] are as follows.

(1) For an SD code with s = 1,

Pstr = 1 − Pn−m
chk(0)

−
(

n − m
1

)
· Pchk(1) · Pn−m−1

chk(0)
. (24)

(2) For an SD code with s = 2,

Pstr = 1 − Pn−m
chk(0)

−
(

n − m
1

)
·

2∑
i=1

Pchk(i) · Pn−m−1
chk(0)

−
(

n − m
2

)
· P2

chk(1) · Pn−m−2
chk(0)

. (25)

(3) For an SD code with s = 3,

Pstr =1 − Pn−m
chk(0)

−
(

n − m
1

)
·

3∑
i=1

Pchk(i) · Pn−m−1
chk(0)

−
(

n − m
2

)
·P2

chk(1) ·Pn−m−2
chk(0)

−
(

n − m
1

)
·
(

n − m − 1
1

)
·Pchk(2) ·Pchk(1) ·Pn−m−2

chk(0)
−(

n − m
3

)
· P3

chk(1)
· Pn−m−3

chk(0)
.

(26)

ACKNOWLEDGMENTS

We would like to thank our FAST’14 shepherd, James S. Plank, and the anonymous FAST’14 reviewers for
their valuable comments. We would also like to thank Mario Blaum for his inspiring feedbacks on improving
our FAST’14 paper.

REFERENCES

Bairavasundaram, L. N., Goodson, G. R., Pasupathy, S., and Schindler, J. 2007. An analysis of latent sector
errors in disk drives. In Proceedings of the ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS’07), 289–300.

Blaum, M. 2006. A family of MDS array codes with minimal number of encoding operations. In Proceedings
of the IEEE International Symposium on Information Theory (ISIT’06), 2784–2788.

Blaum, M., Brady, J., Bruck, J., and Menon, J. 1995. EVENODD: An efficient scheme for tolerating double
disk failures in RAID architectures. IEEE Trans. Comput. 44, 2, 192–202.

Blaum, M., Bruck, J., and Vardy, A. 1996. MDS array codes with independent parity symbols. IEEE Trans.
Inf. Theory 42, 2, 529–542.

Blaum, M., Hafner, J. L., and Hetzler, S. 2013. Partial-MDS codes and their application to RAID type of
architectures. IEEE Trans. Inf. Theory 59, 7, 4510–4519.

Blaum, M., Hafner, J. L., and Hetzler, S. R. 2012. Nested multiple erasure correcting codes for storage arrays.
U.S. Patent No. 13/036,845, Filed February 28, 2011, Issued August 30, 2012.

Blaum, M. and Plank, J. S. 2013. Construction of sector-disk (SD) codes with two global parity symbols. IBM
Res. Rep. RJ10511 (ALM1308-007), Almaden Research Center, IBM Research Division.

Blomer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., and Zuckerman, D. 1995. An XOR-based erasure-
resilient coding scheme. Tech. Rep. TR-95-048, International Computer Science Institute, University of
California, Berkeley.

Boboila, S. and Desnoyers, P. 2010. Write endurance in flash drives: Measurements and analysis. In
Proceedings of the 8th USENIX Conference on File and Storage Technologies (FAST’10), 115–128.

Corbett, P., English, B., Goel, A., Grcanac, T., Kleiman, S., Leong, J., and Sankar, S. 2004. Row-diagonal
parity for double disk failure correction. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST’04), 1–14.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

STAIR Codes 14:29

Dholakia, A., Eleftheriou, E., Hu, X.-Y., Iliadis, I., Menon, J., and Rao, K. 2008. A new intra-disk redundancy
scheme for high-reliability RAID storage systems in the presence of unrecoverable errors. ACM Trans.
Storage 4, 1, 1–42.

Dholakia, A., Eleftheriou, E., Hu, X.-Y., Iliadis, I., Menon, J., and Rao, K. 2011. Disk scrubbing versus
intradisk redundancy for RAID storage systems. ACM Trans. Storage 7, 2, 1–42.

Elias, P. 1954. Error-free coding. IRE Trans. Inf. Theory 4, 4, 29–37.
Feng, G., Deng, R., Bao, F., and Shen, J. 2005a. New efficient MDS array codes for RAID Part I: Reed-

Solomon-like codes for tolerating three disk failures. IEEE Trans. Comput. 54, 9, 1071–1080.
Feng, G., Deng, R., Bao, F., and Shen, J. 2005b. New efficient MDS array codes for RAID Part II: Rabin-like

codes for tolerating multiple (≥ 4) disk failures. IEEE Trans. Comput. 54, 12, 1473–1483.
Greenan, K. M., Plank, J. S., and Wylie, J. J. 2010. Mean time to meaningless: MTTDL, Markov models,

and storage system reliability. In Proceedings of the 2nd Workshop on Hot Topics in Storage and File
Systems (HotStorage’10), 1–5.

Grupp, L. M., Caulfield, A. M., Coburn, J., Swanson, S., Yaakobi, E., Siegel, P. H., and Wolf, J. K. 2009.
Characterizing flash memory: Anomalies, observations, and applications. In Proceedings of the 42nd
International Symposium on Microarchitecture (MICRO’09), 24–33.

Grupp, L. M., Davis, J. D., and Swanson, S. 2012. The bleak future of NAND flash memory. In Proceedings
of the 10th USENIX Conference on File and Storage Technologies (FAST’12), 17–24.

Hafner, J. L. 2005. WEAVER codes: Highly fault tolerant erasure codes for storage systems. In Proceedings
of the 4th USENIX Conference on File and Storage Technologies (FAST’05), 211–224.

Hafner, J. L. 2006. HoVer erasure codes for disk arrays. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’06), 1–10.

Huang, C., Chen, M., and Li, J. 2013. Pyramid codes: Flexible schemes to trade space for access efficiency in
reliable data storage systems. ACM Trans. Storage 9, 1, 1–28.

Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., and Yekhanin, S. 2012. Erasure
coding in Windows Azure storage. In Proceedings of the USENIX Annual Technical Conference (USENIX
ATC’12), 15–26.

Huang, C. and Xu, L. 2005. STAR: An efficient coding scheme for correcting triple storage node failures. In
Proceedings of the 4th USENIX Conference on File and Storage Technologies (FAST’05), 889–901.

Iliadis, I. and Hu, X.-Y. 2008. Reliability assurance of RAID storage systems for a wide range of latent sector
errors. In Proceedings of the IEEE International Conference on Networking, Architecture, and Storage
(NAS’08), 10–19.

Intel. 2005. Intelligent RAID 6 theory — overview and implementation. White Paper. Intel Corporation.
Li, M. and Lee, P. P. C. 2014. STAIR codes: A general family of erasure codes for tolerating device and sector

failures in practical storage systems. In Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST’14), 147–162.

Li, M. and Shu, J. 2011. C-Codes: Cyclic lowest-density MDS array codes constructed using starters for
RAID 6. IBM Res. Rep. RC25218 (C1110-004), China Research Laboratory, IBM Research Division.

Li, M., Shu, J., and Zheng, W. 2009. GRID codes: Strip-based erasure codes with high fault tolerance for
storage systems. ACM Trans. Storage 4, 4, 1–22.

Oprea, A. and Juels, A. 2010. A clean-slate look at disk scrubbing. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies (FAST’10), 1–14.

Pinheiro, E., Weber, W.-D., and Barroso, L. A. 2007. Failure trends in a large disk drive population. In
Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST’07), 17–28.

Plank, J. S. 1997. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Softw. Pract.
Exp. 27, 9, 995–1012.

Plank, J. S. and Blaum, M. 2014. Sector-disk (SD) erasure codes for mixed failure modes in RAID systems.
ACM Trans. Storage 10, 1, 1–17.

Plank, J. S., Blaum, M., and Hafner, J. L. 2013a. SD codes: Erasure codes designed for how storage systems
really fail. In Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST’13),
95–104.

Plank, J. S., Buchsbaum, A. L., and Vander Zanden, B. T. 2011. Minimum density RAID-6 codes. ACM Trans.
Storage 6, 4, 1–22.

Plank, J. S. and Ding, Y. 2005. Note: Correction to the 1997 tutorial on Reed-Solomon coding. Softw. Pract.
Exp. 35, 2, 189–194.

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

�

�

�

�

�

�

�

�

14:30 M. Li and P. P. C. Lee

Plank, J. S., Greenan, K. M., and Miller, E. L. 2013b. Screaming fast Galois Field arithmetic using Intel
SIMD instructions. In Proceedings of the 11th USENIX Conference on File and Storage Technologies
(FAST’13), 299–306.

Plank, J. S. and Huang, C. 2013. Tutorial: Erasure coding for storage applications. Slides presented at the
11th USENIX Conference on File and Storage Technologies.

Plank, J. S. and Xu, L. 2006. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage
applications. In Proceedings of the 5th IEEE International Symposium on Network Computing and
Applications (NCA’06), 173–180.

Reed, I. S. and Solomon, G. 1960. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math. 8, 2,
300–304.

Sathiamoorthy, M., Asteris, M., Papailiopoulous, D., Dimakis, A. G., Vadali, R., Chen, S., and Borthakur,
D. 2013. XORing elephants: Novel erasure codes for big data. In Proceedings of the 39th International
Conference on Very Large Data Bases (VLDB’13), 325–336.

Schroeder, B., Damouras, S., and Gill, P. 2010. Understanding latent sector errors and how to protect against
them. In Proceedings of the 8th USENIX Conference on File and Storage Technologies (FAST’10), 71–84.

Schroeder, B. and Gibson, G. A. 2007. Disk failures in the real world: What does an MTTF of 1,000,000 hours
mean to you? In Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST’07),
1–16.

Schwarz, T. J. E., Xin, Q., Miller, E. L., and Long, D. D. E. 2004. Disk scrubbing in large archival stor-
age systems. In Proceedings of the 12th Annual Meeting of the IEEE/ACM International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’04),
409–418.

White, J. and Lueth, C. 2010. RAID-DP: NetApp implementation of double-parity RAID for data protection.
Tech. Rep. TR-3298, NetApp, Inc.

Wildani, A., Schwarz, T. J. E., Miller, E. L., and Long, D. D. 2009. Protecting against rare event fail-
ures in archival systems. In Proceedings of the 17th Annual Meeting of the IEEE/ACM Interna-
tional Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’09), 1–11.

Xu, L., Bohossian, V., Bruck, J., and Wagner, D. G. 1999. Low-density MDS codes and factors of complete
graphs. IEEE Trans. Inf. Theory 45, 6, 1817–1826.

Xu, L. and Bruck, J. 1999. X-Code: MDS array codes with optimal encoding. IEEE Trans. Inf. Theory 45, 1,
272–276.

Zheng, M., Tucek, J., Qin, F., and Lillibridge, M. 2013. Understanding the robustness of SSDs under power
fault. In Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST’13),
271–284.

Received June 2014; accepted July 2014

ACM Transactions on Storage, Vol. 10, No. 4, Article 14, Publication date: October 2014.

