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Efficient Hybrid Inline and Out-of-Line Deduplication
for Backup Storage
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of Hong Kong

Backup storage systems often remove redundancy across backups via inline deduplication, which works by
referring duplicate chunks of the latest backup to those of existing backups. However, inline deduplication
degrades restore performance of the latest backup due to fragmentation, and complicates deletion of expired
backups due to the sharing of data chunks. While out-of-line deduplication addresses the problems by
forward-pointing existing duplicate chunks to those of the latest backup, it introduces additional I/Os of
writing and removing duplicate chunks.

We design and implement RevDedup, an efficient hybrid inline and out-of-line deduplication system for
backup storage. It applies coarse-grained inline deduplication to remove duplicates of the latest backup, and
then fine-grained out-of-line reverse deduplication to remove duplicates from older backups. Our reverse
deduplication design limits the I/O overhead and prepares for efficient deletion of expired backups. Through
extensive testbed experiments using synthetic and real-world datasets, we show that RevDedup can bring
high performance to the backup, restore, and deletion operations, while maintaining high storage efficiency
comparable to conventional inline deduplication.
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1. INTRODUCTION

Deduplication is an established technique for eliminating data redundancy in backup
storage. It treats data as a stream of fixed-size or variable-size chunks, each of which is
identified by a fingerprint computed by a cryptographic hash (e.g., MD5, SHA-1) of its
content. Two chunks are said to be identical if their fingerprints are the same, while
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fingerprint collisions of two different chunks are very unlikely [Black 2006]. Instead
of storing multiple identical chunks, deduplication stores only one unique copy of a
chunk and refers any duplicate copies to the unique copy using smaller-size references.
Since backups have high redundant content, it is reported that deduplication can help
backup systems achieve effective storage saving by 20× [Andrews 2013].

1.1. Inline versus Out-of-Line Deduplication

Deduplication can be realized inline, which removes duplicate chunks on the write
path, or out-of-line, which first stores all data and later removes duplicates in the
background. Today’s production backup systems [Zhu et al. 2008; Wallace et al. 2012;
Lillibridge et al. 2013], which mainly build on disk-based backends, often implement in-
line deduplication with average chunk size 4–8KB. However, inline deduplication poses
several fundamental challenges to the basic operations of backup systems, including
backup, restore, and deletion:

—Backup: While inline deduplication avoids writing duplicates, its backup perfor-
mance can be degraded by extensive metadata operations for chunk indexing, includ-
ing fingerprint computations and index updates. The amount of metadata increases
proportionally with the number of chunks stored. Thus, keeping all fingerprints
and other metadata in main memory is infeasible. Instead, some indexing meta-
data must be kept on disk, but this incurs disk accesses for metadata lookups and
degrades backup performance.

—Restore: Inline deduplication introduces fragmentation [Rhea et al. 2008;
Kaczmarczyk et al. 2012; Nam et al. 2012; Lillibridge et al. 2013], as backups now
refer to existing data copies scattered in prior backups. This incurs significant disk
seeks when restoring recent backups, and the restore performance degrades.

Fragmentation becomes worse for newer backups, whose data is scattered across
more prior backups. The gradual degradation is undesirable since the new backups
are more likely to be restored during disaster recovery. A lower restore throughput
of the latest backup implies a longer system downtime.

—Deletion: With inline deduplication, expired backups cannot be directly deleted as
they may be shared by newer, nonexpired backups. Deletion is often handled via
a mark-and-sweep approach: In the mark phase, all chunks are scanned and any
unreferenced chunks are marked for removal; in the sweep phase, all marked chunks
are freed from disk in the background. However, the mark phase needs to search for
unreferenced chunks across disk and incurs significant I/Os.

Extensive studies address the preceding challenges of inline deduplication (see Sec-
tion 5). However, it remains an open issue of how to address the challenges simulta-
neously so as to enable deduplication-enabled backup systems to achieve high perfor-
mance in backup, restore, and deletion operations.

Out-of-line deduplication addresses some aforementioned issues of inline deduplica-
tion. For example, it can reduce the disk I/O overhead of index lookups on the write
path. It also mitigates fragmentation and preserves restore performance of the new
backups by referring duplicate chunks of old backups to the chunks of new backups
[Kaczmarczyk et al. 2012]. This forward-pointing approach also facilitates the deletion
of old backups, since their chunks are no longer shared by new backups. However,
out-of-line deduplication incurs extra I/Os of writing and removing redundant data,
and hence gives poorer backup performance than inline deduplication. For example,
writing duplicates can slow down the backup performance by around 3× compared
to inlne deduplication based on the measurements in a commercial backup system
[Kaczmarczyk et al. 2012]. Also, out-of-line deduplication needs extra storage space to
keep redundant data before the redundant data is removed.
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1.2. Contributions

Our position is that both inline deduplication and out-of-line deduplication complement
each other if carefully used. We propose RevDedup, an efficient hybrid inline and out-
of-line deduplication system for backup storage. Our work extends our prior work [Ng
and Lee 2013] to aim for high performance in backup, restore, and deletion operations,
while preserving storage efficiency as in conventional inline deduplication. RevDedup
first applies coarse-grained inline deduplication at the granularity of large-size units,
and further applies fine-grained out-of-line deduplication on small-size units to improve
storage efficiency. Our out-of-line deduplication step, called reverse deduplication, shifts
fragmentation to older backups by referring their duplicates to newer backups. To limit
the I/O overhead of reverse deduplication, we compare only two consecutive backup
versions derived from the same client, and we argue that it still effectively removes
duplicates. Also, during reverse deduplication, we repackage backup data to facilitate
subsequent deletion of expired backups.

We implement a RevDedup prototype and conduct extensive testbed experiments
using synthetic and real-world workloads. We show that RevDedup maintains compa-
rable storage efficiency to conventional inline deduplication, achieves high backup and
restore throughput for recent backups (e.g., on the order of GB/s), and supports fast
deletion for expired backups. To our knowledge, very few deduplication studies in the
literature evaluate the actual I/O performance through prototype implementation.

The rest of the article proceeds as follows. In Sections 2 and 3, we present the design
and implementation details of RevDedup, respectively. In Section 4, we report testbed
experimental results. We review related work in Section 5, and finally conclude the
article in Section 6.

2. REVDEDUP DESIGN

RevDedup combines inline and out-of-line deduplication and is designed for backup
storage. It aims for the following design goals:

—comparable storage efficiency to conventional inline deduplication approaches;
—high backup throughput for new backups;
—high restore throughput for new backups; and
—low deletion overhead for expired backups.

2.1. Backup Basics

Backups are copies of primary data snapshotted from client systems or applications,
and can be represented in the form of tar files or VM disk images (e.g., qcow2, vmdk, etc.).
They are regularly created by a backup system, either as daily incremental backups or
weekly full backups. Backup data is organized into containers as the units of storage
and read/write requests, such that each container is of size on the order of megabytes.
Today’s backup solutions mainly build on disk-based storage, which achieves better I/O
performance than traditional tape-based storage.

We define a series as the sequence of backups snapshotted from the same client at
different times. Each backup series has a retention period [Wallace et al. 2012], which
defines how long a backup is kept in storage. We define a retention window that specifies
a set of recent backups that need to be kept in storage. The retention window slides
over time to cover the latest backup, while the earliest backup stored in the system
expires. The backup system later deletes the expired backups and reclaims storage
space. Note that the retention window length may vary across different backup series.

Since backups share high redundancy, this work focuses on using deduplication to
remove redundancy and achieve high storage efficiency. We can further improve storage
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Fig. 1. Overview of RevDedup operations.

efficiency through local compression (e.g., Ziv-Lempel [Ziv and Lempel 1977]), yet we
do not consider the effect of compression in this work.

2.2. RevDedup Overview

RevDedup performs deduplication in two phases. It first applies inline deduplication
by dividing backup data into large-size units (e.g., on the order of megabytes) called
segments, and removes duplicate segments of new backups on the write path. It packs
the unique segments into containers and stores the containers on disk. Deduplication
on large-size segments reduces both fragmentation and indexing overheads [Kruus
et al. 2010]. See Section 2.3 for details.

RevDedup then reads the containers and applies out-of-line deduplication to small-
size data units (e.g., on the order of kilobytes) called chunks. It further removes du-
plicate chunks of older backups and refers them to the identical chunks in newer
backups. We call this reverse deduplication, which shifts fragmentation to older back-
ups and hence maintains high restore throughput of newer backups. See Section 2.4
for details.

After reverse deduplication, RevDedup repackages segments into separate contain-
ers to facilitate later deletions of expired backups. See Section 2.5 for details.

We first describe how RevDedup prepares for the two-phase deduplication before
explaining the design details.

2.2.1. Live and Archival Backups. RevDedup divides the retention window of a backup
series into two subwindows: live window and archival window. Backups in the live
window (called live backups) are those recently written and are more likely to be
restored, while those in the archival window (called archival backups) serve for the
archival purpose only and are rarely restored. RevDedup applies inline deduplication
to the latest backup, which is first stored in the live window. The retention window
then slides to cover the latest backup. The oldest live backup will move to the archival
window, and RevDedup applies reverse deduplication to that backup out of line (e.g.,
when the storage system has a light load).

Figure 1 illustrates the lifecycles of six backups of the same series created in the
following order: X0, X1, X2, X3, X4, and X5. Suppose that the retention window is set
to five backups, the live window is set to two backups, and the archival window is set to
three backups. When X5 is added, X0 expires and can be deleted to reclaim disk space.
Also, the segments of X5 can be deduplicated with those of existing live backups (i.e.,
X4 in this example). Also, X3 moves to the archival window. We can perform reverse
deduplication and remove duplicate chunks from X3.
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2.2.2. Chunking. Chunking is the process of dividing a data stream into fixed-size or
variable-size deduplication units (i.e., segments or chunks). Our discussion assumes
variable-size chunking. Here, we consider the chunking approach based on Rabin Fin-
gerprinting [Rabin 1981], whose idea is to compute a rolling hash of a sliding chunking
window over the data stream and then identify boundaries whose lower-order bits of
the rolling hash match a target pattern. An important property of Rabin Fingerprint-
ing is that the new rolling hash value can be efficiently computed using the last rolling
hash value.

RevDedup identifies both segment and chunk boundaries using the same target
pattern. We define two bit lengths m and n, where m > n, which correspond to the
average segment and chunk sizes, respectively. When the chunking window slides, we
first check whether the lowest n bits of the rolling hash match the target pattern. If yes,
the window endpoint is a chunk boundary, and we further check whether the lowest m
bits of the rolling hash match the same target pattern; if yes, the window endpoint is
also a segment boundary. Clearly, a segment boundary must also be a chunk boundary.
The chunking process can be done in a single pass of the data stream, and hence
preserves the chunking performance of Rabin fingerprinting.

In our discussion, the segment or chunk size configured in variable-size chunking
actually refers to an average size. We also assume that the minimum and maximum
segment or chunk sizes are half and twice the average size, respectively.

2.3. Segment-Level Inline Deduplication

RevDedup performs segment-level inline deduplication to the storage pool. As in con-
ventional inline deduplication, RevDedup performs deduplication globally in differ-
ent levels: within the same backup, across different backups of the same series, and
across different series of backups. The main difference is the deduplication unit size:
RevDedup uses large-size units (called segments) on the order of megabytes (e.g., 4–
8MB), while conventional inline deduplication uses small-size units on the order of
kilobytes (e.g., 4KB [Guo and Efstathopoulos 2011] or 8KB [Zhu et al. 2008]).

Choosing large deduplication units (segments) has two key benefits. First, it mit-
igates fragmentation [Srinivasan et al. 2012]. Since we put the entire segment in a
container, we reduce the number of containers that need to be accessed with a large
segment size. In addition, it keeps a small deduplication index (i.e., the data structure
for holding the segment fingerprints and their locations), and hence mitigates the in-
dexing overhead [Kruus et al. 2010]. For example, suppose that we store 1PB of data,
the segment size is 4MB, and the index entry size is 32bytes. Then the index size is
8GB only, as opposed to 8TB when the deduplication unit size is 4KB.

Segment-level inline deduplication still achieves reasonably high deduplication ef-
ficiency, as changes of backups are likely aggregated in relatively few small regions,
while several extended regions remain the same [Kruus et al. 2010]. Nevertheless,
using large deduplication units cannot maintain the same level of deduplication effi-
ciency as do conventional fine-grained deduplication approaches (see our evaluations
in Section 4).

To keep track of the deduplication metadata for all stored segments, our current
RevDedup design maintains an in-memory deduplication index. We can keep an on-
disk index instead to reduce memory usage, and exploit compact data structures and
workload characteristics to reduce on-disk index lookups [Zhu et al. 2008]. Another
option is to keep the index on solid-state drives [Debnath et al. 2010; Meister and
Brinkmann 2010]. The issues of reducing memory usage of indexing are posed as
future work.

RevDedup packs the unique segments into a fixed-size container. To handle variable-
size segments, we initialize a new container with a new segment (even the segment size

ACM Transactions on Storage, Vol. 11, No. 1, Article 2, Publication date: December 2014.



2:6 Y.-K. Li et al.

is larger than the container size). We then keep adding new segments to the container
if it is not full. If adding a segment exceeds the container size, we seal and store the
container, and create a new container for the segment being added.

2.4. Reverse Deduplication

After segment-level inline deduplication, RevDedup divides each segment into smaller-
size chunks, each of which has size on the order of kilobytes, and applies chunk-level
out-of-line deduplication to further improve storage efficiency. To mitigate fragmen-
tation of the newer backups that are more likely to be restored, RevDedup performs
reverse deduplication, i.e., removing duplicate chunks in older backups and referring
them to identical chunks in newer backups.

However, we must address several issues of out-of-line deduplication. First, there
are extra I/Os of identifying and removing duplicate chunks on disk. To reduce the I/O
overhead, we limit the deduplication operation to two consecutive backups of the same
series. Second, we can remove duplicate chunks only when their associated segments
are no longer shared by other backups. We use two-level reference management to keep
track of how segments and chunks are referenced and decide if a chunk can be safely
removed. Third, we must support efficient removal of duplicate chunks. We argue that
we only check the segments that are not shared by any live backups for chunk removal.
In the following, we describe how we address the issues altogether.

2.4.1. Deduplication Operation. Our reverse deduplication works on two consecutive
backups of the same series. When a live backup (call it X0) moves from the live window
to the archival window, RevDedup loads the metadata of the following (live) backup of
the same series (call it X1). It then removes duplicate chunks from X0 and refers them
to those in X1.

The deduplication operation follows two principles and we provide justifications.
First, we limit reverse deduplication to the backups of the same series. Due to repeated
backups of the same client system, interversion duplicates of the same series are
common [Kaczmarczyk et al. 2012]. Also, changes of a backup tend to appear in small
regions [Kruus et al. 2010]. Thus, we can potentially remove additional interversion
duplicates around the small change regions in a more fine-grained way [Kruus et al.
2010]. Second, reverse deduplication is applied to consecutive backups. Our assumption
is that most duplicate chunks appear among consecutive backups.

Our current design focuses on only two consecutive backups, yet we can compare
more backups to trade deduplication performance for storage efficiency.

Each backup keeps a list of references to all chunks. Each chunk reference is one
of the two types: either (1) a direct reference, which points to a physical chunk, or
(2) an indirect reference, which points to a reference of the following backup of the
same series. Since the following backup may be further deduplicated with its own
following backup, accessing a chunk may follow a chain of indirect references. Figure
2 shows an example of reverse deduplication for four backups created in the order X0,
X1, X2, and X3. We see that X0 (the oldest backup) may access a chunk of X1 through
an indirect reference, or a chunk of X2 or X3 through a chain of indirect references.
Note that the latest backup must have direct references only.

To perform reverse deduplication between the old backup X0 and the following
backup X1, RevDedup loads the chunk fingerprints of X1 from the metadata store
(see Section 3) and builds an in-memory index on the fly. It then loads the chunk fin-
gerprints of X0 and checks if they match any chunk fingerprints of X1 in the index.
We quantify the worst-case memory usage as follows. Suppose that the raw size of
a backup is 20GB, the chunk size is 4KB, and each chunk-level index entry size is
32bytes. The total memory usage is up to 20GB–4KB × 32bytes = 160MB. Note that
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Fig. 2. Example of reverse deduplication for four backups of the same series created in the order X0, X1,
X2, and X3.

the index only temporarily resides in memory and will be discarded after we finish
reverse deduplication.

2.4.2. Two-Level Reference Management. After reverse deduplication, we can remove
chunks that are not referenced by any backup from disk to reclaim storage space.
RevDedup uses two-level reference management to keep track of how segments and
chunks are shared.

RevDedup associates each segment with a reference count, which indicates the num-
ber of references from the live backups. Suppose that we now store a segment of a
new backup. If the segment is unique, its reference count is initialized as one; if it is a
duplicate, its corresponding reference count is incremented by one. When a live backup
moves to the archival window, all its associated segments have their reference counts
decremented by one. Reverse deduplication is only applied to segments that have zero
reference counts, meaning that the segments are not shared by any live backup, and
hence their chunks can be removed. To simplify our discussion, we call the segments
with zero reference counts nonshared, and those with positive reference counts shared.
We only check the nonshared segments for chunk removal.

A nonshared segment may belong to more than one series, so we need to check if
each chunk in the nonshared segment can refer to another chunk in the next backup
of the same series. If a chunk is found duplicate in the next backup of the same series,
an indirect reference is recorded; if a chunk is unique, a direct reference is set. Each
chunk is associated with a direct reference flag. Initially, the flag is set to false. If a
direct reference is set for any one series, the flag is set to true. A chunk can be safely
removed if both conditions hold: (1) its associated segment is nonshared, and (2) its
direct reference flag remains false (i.e., it holds an indirect reference for every series
to which its associated segment belongs).

Figure 3 shows how we manage the segment and chunk references. Suppose that
we store the backups {X0, X1} and {Y0, Y1} of two separate backup series. Also, we
assume that when X1 and Y1 are stored in the live window, both X0 and Y0 move to
the archival window. Let the segment size be two chunks. From the figure, the segment
AB is no longer shared by any live backup, so its reference count is zero. Also, since X0
and Y0 can refer to chunk A in X1 and Y1, respectively, chunk A can be removed from
X0 by reverse deduplication. Since the segment CD is still shared by X1 and Y1, its
reference count is two. Both segments AB′ and AB′′ have reference counts equal to one.

2.4.3. Chunk Removal. RevDedup loads the containers that have nonshared segments.
It compacts all nonshared segments without the removed chunks in reverse dedu-
plication, and repackages them into separate containers. It also rewrites the loaded
containers with the remaining shared segments with positive reference counts back
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Fig. 3. Example of reference management in RevDedup for two backup series {X0,X1} and {Y0,Y1}, where
X0 and Y0 are in the archival window, while X1 and Y1 are in the live window.

to disk. Separating the nonshared and shared segments into different containers has
two benefits. First, when we run the chunk removal process next time, the repackaged
containers with nonshared segments are untouched. This saves the unnecessary I/Os.
Second, it supports efficient deletion of expired backups, as described in Section 2.5.

2.5. Deletion of Backups

RevDedup supports efficient deletion of expired backups using container timestamps.
When it removes chunks from nonshared segments and repackages them into a new
container (see Section 2.4.3), it associates with the container a timestamp that speci-
fies the creation time of the corresponding backup. Any segments whose backups are
created at about the same time can be gathered and packed into the same container,
even though the backups may be derived from different series. For containers with
shared segments, their timestamps are set to be undefined.

To delete expired backups, RevDedup examines the well-defined timestamps of all
containers and deletes the expired containers. Such containers must contain nonshared
segments that belong to expired backups, and hence are safe to be deleted. We do not
need to scan all segments/chunks as in the traditional mark-and-sweep approach, so
the deletion time is significantly reduced.

3. IMPLEMENTATION

We have implemented a RevDedup prototype in C on Linux. The prototype mounts its
storage backend on a native file system, which we choose to be Linux Ext4 in this work.
In this section, we describe the components of the prototype, including metadata and
executable modules. We also present techniques that further improve the prototype
performance.

3.1. Metadata

We maintain deduplication metadata for each of the segments, chunks, containers, and
backup series: (1) the metadata of each segment describes the segment fingerprint, the
fingerprints of all chunks in the segment, the reference count (for chunk removal in
reverse deduplication), and the segment offset; (2) the metadata of each chunk describes
the chunk fingerprint and the chunk offset; (3) the metadata of each container describes
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segments in the container and the timestamp (for reclamation); and (4) the metadata
of each backup series describes which versions are in the live, archival, and retention
windows. We store each type of the metadata as a log-structured file with fixed-size
entries, each of which is indexed by a unique identifier. We map the metadata logs into
memory using mmap(), so the entries are loaded into memory on demand.

In addition, we maintain an in-memory deduplication index for segment-level inline
deduplication (see Section 2.3). We implement the index as a hash map using the
Kyoto Cabinet library [FAL Labs 2012]. Each segment fingerprint is then mapped to
an identifier in the segment metadata log. In our prototype, we compute the segment
and chunk fingerprints with SHA-1 using the OpenSSL library [OpenSSL 2014].

Each backup is associated with a recipe that contains a list of references for re-
constructing the backup. For a live backup, the recipe describes the references to the
unique segments; for an archival backup, the recipe holds both direct and indirect ref-
erences, which state the offsets of chunks on disk and the offsets of direct reference
entries, respectively.

3.2. Executable Modules

We decompose the RevDedup prototype into executable modules that run as stand-
alone programs. We can also run them as daemons and connect them via interprocess
communication.

—chunking: It chunks a backup file into segments and chunks, and stores the finger-
prints and offsets in a temporary file.

—inlinededup: It performs segment-level inline deduplication on the backup file, using
the temporary file created from chunking. It first loads the in-memory segment dedu-
plication index from the segment metadata log. For new unique segments, it adds
them into containers, appends metadata to the segment metadata log, and adds new
entries to the deduplication index. It also creates the backup recipe holding all the
segment references for the backup.

—revdedup: It takes a backup of a series as the input and performs reverse deduplica-
tion on itself and its following backup of the same series. It also repacks segments
with removed chunks into different containers.

—restore: It reconstructs the chunks of a backup given the series and version numbers
as inputs. It reads the backup recipe, and returns the chunks by tracing the direct
references or chains of indirect references.

—delete: It takes a timestamp as the input and deletes all backups created earlier than
the input timestamp.

3.3. Further Improvements

We present techniques that improve the performance of RevDedup during deployment.

Multithreading: RevDedup exploits multithreading to parallelize operations. For ex-
ample, during backup, multiple threads check the segments for inline deduplication
opportunities and write segments into containers; during reverse deduplication, mul-
tiple threads read containers and check for chunk removal; during restore, multiple
threads read containers and trace indirect reference chains to reconstruct the segments.

Prefetching: RevDedup reads containers during reverse deduplication and restore. It
uses prefetching to improve read performance. Specifically, a dedicated prefetch thread
calls the POSIX function posix_fadvise(POSIX_FADV_WILLNEED) to notify the kernel
to prefetch the containers into cache and save future disk reads. While the prefetch
thread issues the notification and waits for the response from the kernel, other threads
work on metadata processing and data transmission so as to mitigate the notification
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Table I. Details of All Synthetic Datasets

Traces # Series # Backups α% β% γ MB
SG1 1 78 2% 10% 10MB
SG2 1 78 4% 10% 10MB
SG3 1 78 2% 20% 10MB
SG4 1 78 2% 10% 20MB
SG5 1 78 10% 10% 10MB
GP 16 320 2% 10% 10MB

overhead. Note that prefetching is also used by Lillibridge et al. [2013] (known as the
forward assembly area) to improve read performance of deduplication systems. Our
prefetching approach differs in that it leverages the kernel support.

Handling of null chunks: Some backup workloads such as Virtual Machine (VM)
images may contain a large number of null (or zero-filled) chunks [Jin and Miller
2009]. RevDedup skips writing null chunks. When a read request is issued to a null
chunk, the restore module returns the null chunk on the fly instead of reading it from
disk. This improves both backup and restore performance.

Tunable parameters: RevDedup makes performance trade-offs through configurable
parameters, including the sizes of segments, chunks, and containers, as well as the
lengths of retention, live, archival windows. For example, a longer live window implies
that more backups are ready to be restored, while consuming more storage space;
larger segments and chunks imply less indexing overhead and data fragmentation,
while reducing deduplication efficiency. We explore the performance effects of different
parameters in Section 4.

4. EXPERIMENTS

We conduct testbed experiments on our RevDedup prototype. We show that RevDedup
achieves high storage efficiency, high backup throughput, high restore throughput of
new backups, and low deletion overhead of expired backups.

4.1. Setup

Datasets: We evaluate RevDedup using both synthetic and real-world datasets. For
synthetic datasets, we extend the idea by Lillibridge et al. [2013] to generate config-
urable workloads for stress-testing data fragmentation. We simulate a backup series
by first creating a full backup using a Ubuntu 12.04 VM disk image configured with
8GB space. Initially, the image has 1.1GB of system files. On each simulated weekday,
we randomly walk through the file system to pick α% of files and modify β% of file
contents, and further add γ MB of new files to the file system. The parameters α, β,
and γ are configurable in our evaluation. We represent five simulated weekdays as one
simulated week. At the start of each simulated week, we perform a full backup of the
disk image using the dd utility. We generate 78 full backups to simulate a duration of
1.5 years. We configure the parameters to simulate five types of activities of a single
backup series, as listed in Table I. We call the datasets SG1-5. In addition, we also
simulate a scenario with a group of 16 backup series covering 20 weekly full backups
each. We call the dataset GP.

We also consider a real-world dataset taken from the snapshots of VM images used
by university students in a programming course. We prepared a master image of 7.6GB
installed with Ubuntu 10.04 and assigned it to each student to work on three program-
ming assignments over a 12-week span. We took weekly snapshots for the VMs. For
privacy reasons, we only collected cryptographic hashes on 4KB fixed-size blocks. For
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our throughput tests, we reconstruct each block by placing its block hash at the end of a
null 4KB block. Any two identical (resp., different) block hashes will give identical (dif-
ferent, respectively) blocks. This preserves the characteristics of content similarities in
the granularity of 4KB. Our evaluation selects a subset of 80 VMs covering a total of
960 weekly full backups. The total size is 7.2TB with 3.3TB of nonzero blocks. We call
the dataset VM. Note that the dataset only presents a special real-world use case, and
we do not claim its representativeness for general virtual desktop environments.

Testbed: We conduct our experiments on a machine with an Intel Xeon E3-
1240v2 quad-core, eight-threaded processor, 32GB RAM, and a disk array with eight
ST1000DM003 7200RPM 1TB SATA disks. By default, we configure a RAID-0 array as
done in prior work [Guo and Efstathopoulos 2011] to maximize the disk array through-
put for high-performance tests, while we also consider RAID-5 and RAID-6 in baseline
performance tests (see Section 4.2). We fix the RAID chunk size at 512KB. The machine
runs Ubuntu 12.04.3 with Linux kernel 3.8.

Default settings: We compare RevDedup and conventional inline deduplication. For
RevDedup, we fix the container size at 32MB, the segment size at 4MB for inline
deduplication, and the chunk size at 4KB for reverse deduplication. We also assume
that the retention window covers all backups. We fix the live window length to be one
backup and the archival window length to be the number of all remaining backups.
For conventional inline deduplication, we configure RevDedup to fix the segment size
as 4KB and disable reverse deduplication. The container size is also fixed at 32MB. We
refer to conventional inline deduplication as Conv in the following discussion.

For the datasets SG1-5 and GP, both RevDedup and Conv use variable-size chunking
based on Rabin fingerprinting [Rabin 1981]; for the dataset VM, we use fixed-size
chunking, which is known to be effective for VM image storage [Jin and Miller 2009].
We examine the effects of various parameters, including the container size, the segment
size, and the live window length.

Evaluation methodology: Our experiments focus on examining the I/O performance
of RevDedup. When we perform throughput and latency measurements, we exclude
the overhead of fingerprint computations, which we assume can be done by backup
clients offline before they store backup data. We precompute all segment and chunk
fingerprints before benchmarking. In addition, for each write, we call sync() to force all
data to disk. Before each read, we flush the file system cache using the command “echo
3 > /proc/sys/vm/drop_caches.” By default, we disable prefetching (see Section 3.3)
to focus on the effect of disk accesses on I/O performance.

4.2. Baseline Performance

We measure the baseline performance of RevDedup using unique data (i.e., without
any duplicates). We write 8GB of unique data, and then read the same data from disk.
We also measure the raw throughput of the native file system. We obtain averages and
standard deviations over 20 runs.

Table II shows the results. In RAID-0, RevDedup can achieve at least 95.9% and
88.6% of raw write and read throughputs, respectively. We also configure the testbed
as RAID-5 and RAID-6. We observe throughput drops due to the storage of parities.
Nevertheless, RevDedup achieves nearly the raw throughput.

4.3. Storage Efficiency

We calculate the percentage reduction of storage space with deduplication. We exclude
the metadata overhead and null chunks in our calculation. We compare RevDedup and
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Table II. Baseline Throughput of RevDedup with Segment Size 4MB
and Container Size 32MB on Unique Data under RAID-0, RAID-5,

and RAID-6 (values in brackets are standard deviations)

(GB/s) Raw RevDedup
W (R0) 1.060 (0.013) 1.017 (0.034)
R (R0) 1.235 (0.004) 1.094 (0.004)
W (R5) 0.913 (0.011) 0.81 (0.013)
R (R5) 1.004 (0.020) 0.85 (0.008)
W (R6) 0.793 (0.016) 0.734 (0.020)
R (R6) 0.935 (0.010) 0.726 (0.029)

Fig. 4. Percentage reduction of storage space of RevDedup and Conv.

Conv. For RevDedup, we vary the segment size and fix the chunk size at 4KB. We also
provide a breakdown for segment-level inline deduplication and reverse deduplication.

Figure 4 shows the results. Consider the synthetic datasets SG1-5 and GP. In RevD-
edup, segment-level inline deduplication itself also reduces storage space, but the sav-
ing drastically drops as the segment size increases. For example, when the segment
size is 8MB, segment-level inline deduplication only gives 56.5%–68.9% of space saving
for SG1-5. Nevertheless, reverse deduplication increases the saving to 93.6%–97.0%,
which is comparable to Conv.

For the real-world dataset VM, RevDedup achieves a saving of 96.3%–97.1%, which is
close to 98.3% achieved by Conv. In particular, segment-level inline deduplication saves
at least 90% of space, since most system files remain unchanged in the VM images. We
emphasize that the findings are specific to our dataset and may not hold in general.

4.4. Throughput

We evaluate the backup and restore throughput of RevDedup, and compare the results
with Conv. We study how the different segment sizes and container sizes affect the
backup and restore throughput. We only focus on the datasets SG1, GP, and VM. We
also study the overhead of reverse deduplication, the gains of prefetching, and the effect
of live window length, where we focus on the dataset SG1. The results for SG1 are plot-
ted every three weeks for clarity of presentation. All results are averaged over five runs.

4.4.1. Backup. To evaluate the backup throughput of RevDedup, we only measure the
backup performance due to segment-level inline deduplication, since reverse dedupli-
cation is assumed to be done out of line. We will measure the overhead of reverse
deduplication in Section 4.4.3.

Before each experimental run of a dataset, we format the file system without any
data. We submit each backup using inlinededup (see Section 3.2), and measure the

ACM Transactions on Storage, Vol. 11, No. 1, Article 2, Publication date: December 2014.



Efficient Hybrid Inline and Out-of-Line Deduplication for Backup Storage 2:13

Fig. 5. Backup throughput of RevDedup and Conv for different datasets. We vary the container and segment
sizes of RevDedup: (a), (c), and (e) fix the segment size at 4MB and vary the container size; (b), (d), and (f)
fix the container size at 32MB and vary the segment size. The plots start from the second week to take into
account interversion redundancy.

duration starting from when the in-memory deduplication index is built until all seg-
ments are packed into containers and written to disk. The backup throughput is calcu-
lated as the ratio of the original backup size to the measured duration. Figure 5 shows
the backup throughput results, which we elaborate next.

Performance trends of Conv and RevDedup: At the beginning, RevDedup has
significantly higher backup throughput than the raw write throughput [e.g., 4× for
SG1 as shown in Figure 5(a)]. The throughput decreases over time, as we make more
content changes to the backups and hence introduce more unique data. Both synthetic
datasets SG1 and GP show similar trends, due to the ways of how we inject changes to
the backups.
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Table III. Time Breakdown of Writing the Second Backup of SG1 for
Conv with Segment Size 4KB and RevDedup with Varying

Segment Sizes, Where the Container Size is Fixed at 32MB

RevDedup
Conv 1MB 4MB 8MB

Index lookups (s) 2.562 0.032 0.012 0.008
Data writes (s) 0.961 0.501 0.617 0.646

The real-world dataset VM shows throughput fluctuations because of the varying
usage patterns. For example, week 4 shows a sudden throughput drop because there
was an assignment deadline and students made significant changes to their VMs.
Despite the fluctuations, RevDedup still achieves much higher backup throughput
than the raw write throughput. We note that RevDedup can reach an exceptionally
high throughput of up to 30GB/s. The reason is that our VM dataset contains a large
volume of duplicate segments and null segments, both of which can be eliminated on
the write path.

Although Conv has higher reduction of storage space than RevDedup with only
segment-level inline deduplication (see Figure 4), it has much lower backup through-
put, and its throughput is fairly stable. To explain the results, we measure two subop-
erations of a backup operation: index lookups and data writes (note that data writes
include packing segments to containers and writing containers to disk). With multi-
threading (see Section 3.3), both suboperations are carried out simultaneously, and
hence the backup performance is bottlenecked by the slowest suboperation. We con-
sider a special case when we store the backup of the second week for SG1. We configure
Conv with segment size 4KB and RevDedup with varying segment sizes, while both
schemes have container size fixed at 32MB. Table III provides a time breakdown for
the two suboperations. We observe that for Conv, although its deduplication index is
kept in memory, its small deduplication units significantly increase the lookup time
and make the index lookups become the bottleneck. Even though we inject more unique
data to the backups over time, the backup throughput remains bottlenecked by index
lookups. On the other hand, RevDedup has much less index lookup overhead with
larger segments. We also note that Conv has higher data write time than RevDedup,
because it adds a much larger number of small segments into containers.

We emphasize that as more unique data is added, RevDedup eventually has its
backup throughput dropped below Conv. Nevertheless, the backup throughput of RevD-
edup is lower bounded by the baseline for unique data (see Section 4.2).

We can reduce the index lookup overhead of inline deduplication by maintaining the
temporal locality of fingerprints [Zhu et al. 2008], so as to improve the backup per-
formance of Conv. Our current prototype does not implement this enhanced indexing
scheme, and we consider this issue in future work.

Effect of container size: While a larger container size implies fewer write requests
and hence better data write performance, the gains in backup throughput is insignif-
icant due to the inevitable indexing overhead in deduplication. For example, for SG1
in Figure 5(a) and GP in Figure 5(c), the backup throughput of RevDedup increases
by only 9% and 16% (averaged over all weeks) when the container size increases from
4MB to 16MB, respectively.

Effect of segment size: A large segment size reduces the deduplication opportunity,
and hence RevDedup writes more data to disk. Since the data write dominates the
backup performance of RevDedup (see Table III), its backup throughput drops as the
segment size increases. For example, for SG1 in Figure 5(b), the backup throughput
drops by 38% (averaged over all weeks) when the segment size increases from 1MB to
8MB.
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Fig. 6. Restore throughput of RevDedup and Conv, corresponding to the settings in Figure 5.

4.4.2. Restore. After writing all backups, we restore each backup using the module
restore (see Section 3.2). We measure the restore throughput of RevDedup and Conv as
the ratio of the original backup size to the restore time. For RevDedup, we first perform
out-of-line reverse deduplication on the backups, so that the restore performance of
both RevDedup and Conv is measured when they have comparable storage efficiency
(see Section 4.3). Figure 6 shows the restore throughput results for various container
sizes and segment sizes, corresponding to the settings of Figure 5. The results are
elaborated as follows.

Performance trends of Conv and RevDedup: Conv suffers from data fragmentation
and hence its restore throughput decreases for more recent backups (e.g., by 86% from
week 2 to week 78 in Figure 6(a)), while RevDedup shifts data fragmentation to older
backups and maintains high restore throughput for the latest backups. For instance,
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Fig. 7. Reverse deduplication throughput of RevDedup.

from Figures 6(a) and 6(c), the restore throughput for the latest backup of RevDedup
is 5× and 4× that of Conv for SG1 and GP, respectively. The throughput values are
smaller than the raw read throughput, mainly due to data fragmentation caused by
segment-level inline deduplication.

For the real-world dataset VM, we see similar trends of restore throughput for both
RevDedup and Conv. However, the restore throughput of RevDedup goes beyond the
raw read throughput (see Figures 6(e) and 6(f)). The reason is that the VM images
contain a large number of null chunks, which are generated on the fly by RevDedup
rather than read from disk. We expect that the restore throughput drops as the number
of null chunks decreases.

Effect of container size: The restore throughput increases with the container size
as the number of read requests decreases. For example, for SG1 in Figure 6(a) and
GP in Figure 6(c), the restore throughput of RevDedup increases by 11.8% and 14.4%
(averaged over all weeks) when the container size increases from 4MB to 16MB, re-
spectively. However, further increasing the container size from 16MB to 32MB shows
only marginal gains.

Effect of segment size: A larger segment size increases the restore throughput,
as it mitigates data fragmentation. For example, for SG1 in Figure 6(b), the restore
throughput for the latest backup of RevDedup increases by 39.3% (averaged over all
weeks) when the segment size increases from 1MB to 8MB. The trade-off of using larger
segments is that it reduces both storage efficiency and backup throughput.

4.4.3. Reverse Deduplication Overhead. We now evaluate the reverse deduplication
throughput, defined as the ratio of the original backup size to the reverse dedupli-
cation time. Recall that we set the default live window length as one backup. After
we submit a new backup, we perform reverse deduplication on its previous backup.
We measure the time of reading the containers that have nonshared segments of the
previous backup and writing the compacted segments without removed chunks to disk.

Figure 7 shows the reverse deduplication throughput for SG1 starting from Week
1. Week 1 has lower throughput than the next few weeks, due to the following rea-
son. Initially, many containers are mixed with shared and nonshared segments, so
we load such containers and separate the shared and nonshared segments into differ-
ent containers (see Section 2.4.3). Later we only load the containers whose segments
change from shared to nonshared, plus the containers that have nonshared segments
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Fig. 8. Restore throughput of Conv and RevDedup with and without prefetching.

associated with the backup on which we apply reverse deduplication. We also see that
the throughput drops as the amount of unique data increases, yet it is lower bounded
by about half of the baseline read/write throughput (see Section 4.2) because the whole
backup is read for chunk removal and rewritten to disk (assuming that the baseline
read and write throughputs are about the same).

4.4.4. Gains of Prefetching. We disable prefetching in the previous experiments. We now
evaluate the restore throughput increases with prefetching enabled. We focus on SG1.
For RevDedup, we fix the segment size at 4MB and the container size at 32MB. Figure 8
shows the results. We see that prefetching improves the restore throughput by 23.9%
and 45.8% (averaged over all weeks) for Conv and RevDedup, respectively. Note that
the data fragmentation problem, while being mitigated, still manifests in Conv, which
still has around 82% drop in restore throughput from the first week to the last one.

4.4.5. Effective Live Window Length. The live window length defines the number of back-
ups that remain coarsely deduplicated by segment-level inline deduplication, and de-
termines the trade-off between storage efficiency and restore performance. Here, we
study the effect of live window length for the dataset SG1. We first store all backups of
SG1 and perform reverse deduplication using RevDedup. We then measure the restore
throughput for each backup. We vary the live window length to be 1, 5, and 17 backups
(i.e., the archival window lengths are 77, 73, and 61 backups, respectively).

Figure 9 shows the restore throughput results. The restore throughput increases over
time for backups within the archival window, since RevDedup shifts data fragmentation
to old backups. On the other hand, the restore throughput decreases over time for the
backups within the live window (e.g., when the live window is 17 backups), due to data
fragmentation caused by segment-level inline deduplication. Nevertheless, the drop is
slower than conventional deduplication as the large segment size limits the overhead
of data fragmentation.

Setting a larger live window increases the restore throughput of backups in the
archival window. Recall that an archival backup has indirect reference chains to the
oldest live backup. A larger live window implies that an archival backup has shorter
indirect reference chains. This reduces the tracing time when restoring the archival
backups.

The trade-off is that a larger live window length increases the storage space. For
example, the percentage reductions of space saved due to deduplication drop from
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Fig. 9. Restore throughput of RevDedup with different live window lengths.

Fig. 10. Deletion times of RevDedup and mark-and-sweep.

96.6% to 93.2% (averaged over all weeks) when the live window length increases from
1 to 17 backups.

4.5. Deletion Overhead

We evaluate the deletion overhead of RevDedup and compare it with the traditional
mark-and-sweep approach. We consider two types of deletion operations: incremental
deletion of the earliest backup and batch deletion of multiple expired backups. We first
store 78 weeks of backups and perform reverse deduplication using RevDedup, and
then run each type of deletion. Figure 10 shows the average results over five runs for
the dataset SG1. We elaborate the results next.

Incremental deletion: In this test, we keep deleting a backup from the series one
by one, starting from the earliest backup. RevDedup simply deletes the metadata of
the deleted backup and the containers whose timestamps are equal to the creation
time of the deleted backup. On the other hand, in the mark-and-sweep approach, the
mark phase loads the metadata of the backup and decrements the reference count
of each associated segment, and the sweep phase scans through all containers to
delete the nonreferenced segments and reconstruct the containers with the remain-
ing segments that are not deleted. Figure 10(a) shows the time breakdown. The mark
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phase incurs small running time as it only processes metadata, while the sweep phase
incurs significant running time as it needs to read and reconstruct the containers.
RevDedup has significantly smaller deletion time than each of the mark-and-sweep
phases.

Batch deletion: In this test, we delete the n earliest backups, with n ranging from
1 (only the earliest one) to 77 (all except the most recent one). To measure the time
of deleting n backups, we first take a snapshot of the storage partition and store the
snapshot elsewhere, perform the deletion and record the time, and finally restore the
snapshot to prepare for the next deletion. The deletion processes of both RevDedup
and mark-and-sweep are similar to those in individual deletion. Figure 10(b) shows
the time breakdown. The running time of the mark phase increases with n since it
reads the metadata of more backups, while the sweep phase has similar running time
as in incremental deletion as it scans through all containers once only. The deletion
time of RevDedup remains very small.

Summary: The two tests show that RevDedup incurs small overhead in both incre-
mental and batch deletion operations. The deletion overhead is amortized over the
chunk removal process during reverse deduplication. The small batch deletion over-
head of RevDedup provides flexibility for administrators to defer the deletion of expired
backups as long as the storage space remains sufficient.

5. RELATED WORK

Backup: Most existing deduplication studies for backup storage focus on achieving
high backup performance. Deduplication is first proposed in Venti [Quinlan and
Dorward 2002] for data backup in content-addressable storage systems. DDFS [Zhu
et al. 2008] and Foundation [Rhea et al. 2008] maintain fingerprints in a Bloom filter
[Bloom 1970] to minimize memory usage for fingerprint indexing. Data Domain File
System (DDFS) further exploits spatial locality to cache the fingerprints of blocks that
are likely written later. Other studies [Bhagwat et al. 2009; Lillibridge et al. 2009;
Kruus et al. 2010; Guo and Efstathopoulos 2011; Xia et al. 2011; Meister et al. 2013]
exploit workload characteristics to further improve backup performance while limiting
the memory overhead for indexing. ChunkStash [Debnath et al. 2010] and Dedupv1
[Meister and Brinkmann 2010] store fingerprints in solid-state drives to achieve
high-speed fingerprint lookup. All previous approaches build on inline deduplication,
while RevDedup uses out-of-line deduplication to address both restore and deletion
performance. In particular, Bimodal [Kruus et al. 2010] uses a hybrid of large and
small chunk sizes. Although seemingly similar to RevDedup, it dynamically switches
between the chunk sizes in inline deduplication, while RevDedup uses out-of-line
deduplication on small-size chunks.

Restore: To mitigate chunk fragmentation in inline deduplication and hence improve
restore performance, Kaczmarczyk et al. [2012] propose context-based rewriting, which
selectively rewrites a small percentage of data for the latest backups. Nam et al. [2012]
measure the fragmentation impact given the input workload and activate selective
deduplication on demand. Lillibridge et al. [2013] use container capping to limit the
region of chunk scattering, and propose the forward assembly area (similar to caching)
to improve restore performance. Note that the studies [Kaczmarczyk et al. 2012; Nam
et al. 2012; Lillibridge et al. 2013] only conduct simulation-based evaluations, while
we implement a prototype to experiment with the actual I/O throughput. SAR [Mao
et al. 2014] leverages Solid-State Drives (SSDs) to store the chunks referenced by many
duplicate chunks and absorb the random reads to hard disks. In contrast, RevDedup
does not rely on the use of SSDs.
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The previous approaches are designed for backup storage, while iDedup [Srinivasan
et al. 2012] is designed for primary storage and it limits disk seeks by applying dedu-
plication to chains of continuous duplicate chunks rather than individual chunks.

Reclamation: Several approaches focus on reducing the reclamation overhead in in-
line deduplication systems. Guo and Efstathopoulos [2011] propose a grouped mark-
and-sweep approach that associates files into different backup groups and limits the
scanning to only a subset of backup groups. Botelho et al. [2013] propose a memory-
efficient data structure for indexing chunk references. Strzelczak et al. [2013] extend
HYDRAstor [Dubnicki et al. 2009] with concurrent deletion to minimize the interfer-
ence of background sweeping to ongoing writes. Simha et al. [2013] limit the number
of reclaimed chunks and ensure that the reclamation overhead is proportional to the
size of incremental backups.

6. CONCLUSIONS

We explore the problem of achieving high performance in essential operations of dedu-
plication backup storage systems, including backup, restore, and deletion, while main-
taining high storage efficiency. We present RevDedup, an efficient hybrid inline and
out-of-line deduplication system for backup storage. The key design component of RevD-
edup is reverse deduplication, which removes duplicates of old backups out of line and
mitigates fragmentation of latest backups. We propose heuristics to make reverse dedu-
plication efficient: (1) limiting the deduplication operation to consecutive backup ver-
sions of the same series, (2) using two-level reference management to keep track of how
segments and chunks are shared, and (3) checking only nonshared segments for chunk
removal. We extensively evaluate our RevDedup prototype using synthetic and real-
world workloads and validate our design goals. The source code of our RevDedup pro-
totype is available for download at http://ansrlab.cse.cuhk.edu.hk/software/revdedup.
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