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In this supplementary file, we present (i) the major operations
of 2D HHH detection, (ii) the proofs of theorems for 2D HHH
detection, and (iii) the additional experimental results for IPv6
traffic.

I. 2D HHH DETECTION

We elaborate on the major operations of 2D HHH detection,
whose pseudo-code is shown in Figure 1.

The Update operation builds on the Push function, which
inserts the input (key, value) starting from the array at node
(a0,b0) and stops until it reaches the array at node (a1,b1) or
key is admitted by a candidate HHH. The Update operation is
invoked for each incoming packet ( f ,v f ). Initially, the fields of
each bucket of MVPipe are zeros. Upon the arrival of ( f ,v f ),
we call the function Push( f ,v f ,(0,0),(d−1,d−1)) to process
f from level 0 of the lattice until it reaches the top node or
is admitted by a candidate HHH at one of the nodes in the
lattice.

The Detect operation is invoked at the end of each epoch.
It addresses the double counting problem via the ConCount
function, which returns the estimated conditioned count of a
key x respect to H based on Ŝ(x), the coordinate (a,b) of x
in the lattice, and H. The ConCount function calculates the
estimated conditioned count of key x based on the inclusion-
exclusion principle. Specifically, let P be the set of the closest
descendants of x in H (Line 38). To obtain the conditioned
count of x without the double-counting errors, we first subtract
the count L(y) of each key y in P from the estimated
conditioned count of x (Lines 39-44). We show that the count
L(y) is the lower bound of S(y) in the proof of Theorem 5.
Then for each pair of distinct keys in P , we obtain the closest
common descendant of the two keys, where the count of the
common descendant is doubly deducted from x (Line 46). We
add back the count of each common descendant to x to resolve
the double counting error (Lines 47-51).

II. PROOFS

We present the proofs of the theorems for 2D HHH detection.

A. Proof of Theorem 4

Proof. The space usage and detection time in 2D HHH
detection can be derived as in Theorem 1. The per-packet update
in 2D HHH detection accesses at most d buckets along the
source direction and d buckets along the destination direction,
thereby taking O(d) time.

B. Proof of Theorem 5

Proof. Our proof focuses on the coverage property only, as the
proof for the accuracy property follows that in Theorem 2.
We first consider SH(x). Let P be the set of the closest
descendants of x in H. Let Q be the set of the common
closest descendants of any two distinct keys y and y′ in P , that
have no other ancestors in P except y and y′. By the definition
of the conditioned count and the inclusion-exclusion principle
[2], we have SH(x) = S(x)−∑y∈P S(y)+∑z∈Q S(z).

We show that ŜH(x) given by MVPipe is always larger than
SH(x). From the ConCount and Estimate functions, we have
ŜH(x) = Ŝ(x)−∑y∈P L(y) + ∑z∈Q Ŝ(z) ≥ SH(x), where L(y)
is the sum of the cumulative count of y and the cumulative
counts of y’s descendants in H. By Lemma 1 and the accuracy
property, we have ˆS(x) ≥ S(x), L(y) ≤ S(y), and Ŝ(z) ≥ S(z).
Then, ŜH(x)≥ SH(x).

Thus, x is not reported as an HHH only if it is not in
Ki,hi(x) (suppose x is hashed to B(i, j) ). We then push the
count of x to higher-level nodes until it is admitted by an
HHH. That is, at least one of x’s ancestors is in H. By the
definition of the conditioned count, SH(x) = 0, which leads to
a contradiction.

III. ADDITIONAL EXPERIMENTS ON IPV6 TRAFFIC

In §VI of the main paper, we show that MVPipe achieves
high accuracy and high update throughput for IPv4 traffic.
In this section, we compare MVPipe with the state-of-the-art
schemes listed in §VI of the main paper for IPv6 traffic. We aim
to show that MVPipe maintains its accuracy and performance
gains for IPv6 traffic as well. Also, our observations for IPv4
traffic regarding the accuracy and performance trends for all
schemes still hold for IPv6 traffic.

A. Traces

We consider two different sources of traces in our evaluation:
(i) the same CAIDA traces as in §VI of the main paper and (ii)
the traces from MAWI’s WIDE project [1]. For the CAIDA
traces, we filter out the IPv4 traffic and focus on the IPv6
traffic only, where each epoch (of length one minute) contains
0.42 M packets and 5.9 K unique IPv6 source addresses on
average. Since the last 64 bits of each IPv6 address are zeros in
the CAIDA traces, we only consider the first 64 bits of an IPv6
address in our evaluation. For the MAWI traces, we consider
the traces at samplepoint-C [1], in which the daily IPv6 traffic
was captured on an IPv6 line connected to 6Bone in January
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1: function PUSH(key, value, (a0,b0),(a1,b1))
2: (x,vx)← (key, value)
3: for p = a0 to a1 do
4: (y,vy)← (x,vx)
5: for q = b0 to b1 do
6: y← generalize y to node (p,q)
7: i← p×d +q . i is the index of the corresponding

array
8: Vi,hi(y)←Vi,hi(y)+ vy
9: if Ki,hi(y) = y then

10: Ii,hi(y)← Ii,hi(y)+ vy
11: Ci,hi(y)←Ci,hi(y)+ vy
12: if q = 0 then
13: return
14: end if
15: b0← 0
16: break
17: else if Ii,hi(y) ≥ vy then
18: Ii,hi(y)← Ii,hi(y)− vy
19: else
20: Ii,hi(y)← vy− Ii,hi(y)
21: if q = 0 then
22: (x,vx)← (Ki,hi(y),Ci,hi(y))
23: end if
24: swap (Ki,hi(y),Ci,hi(y)) and (y,vy)
25: end if
26: end for
27: b0← 0
28: end for
29: end function
30: function ESTIMATE(x,(a,b), t)
31: v← 0
32: b′←min{b+ t,d−1}
33: for q = b to b′ do
34: i← a×d +q
35: y← generalize y to node (a,q)
36: if Ki,hi(x) = y then
37: Uq = (Vi,hi(y)+ Ii,hi(y))/2+ v
38: v← v+Ci,hi(y)
39: else
40: Uq = (Vi,hi(y)− Ii,hi(y))/2+ v
41: end if
42: end for
43: return minb≤q≤b′{Uq}
44: end function
45: function CONCOUNT(x, Ŝ(x),(a,b),H)
46: ŜH(x)← Ŝ(x)
47: P ←{(y,(p,q)) ∈H | @y′ ∈H : y≺ y′ ≺ x}

48: for each (y,(p,q)) ∈ P do
49: i← p×d +q
50: T ←{(y′,(p′,q′)) ∈H,(y′ ≺ y)—p′ = p or q′ = 0}
51: i′← p′×d +q′
52: L(y) =Ci,hi(y)+∑y′∈T Ci′,hi′ (y′)
53: ŜH(x)← ŜH(x)−L(y)
54: end for
55: for each pair of distinct element y,y′ in P do
56: (y′′,(p′′,q′′))← closest common descendant of y and y′
57: if @z 6= y,y′ ∈ P, s.t. y′′ ≺ z then
58: T ←{(z′,(p′,q′)) ∈H,(z′ ≺ z)—p′ = p or q′ = 0}
59: i′← p′×d +q′
60: Ŝ(z) = ESTIMATE(z,(p,q), t)+∑z′∈T Ci′,hi′ (z′)
61: ŜH(x)← ŜH(x)+ Ŝ(z)
62: end if
63: end for
64: return ŜH(x)
65: end function
66: procedure UPDATE(x,vx)
67: PUSH(x,vx,(0,0),(d−1,d−1))
68: end procedure
69: procedure DETECT
70: H← /0
71: for p = 0 to d−1 do
72: for q = 0 to d−1 do
73: i← p×d +q
74: for j = 0 to wi−1 do
75: x← Ki, j
76: U(x)← ESTIMATE(x,(p,q), t)
77: T ←{(x′,(p′,q′))∈H,(x′≺ x)—p′= p or q′= 0}
78: i′← p′×d +q′
79: Ŝ(x)←U(x) + ∑x′∈T Ci′,hi′ (x′)
80: ŜH(x)← CONCOUNT(x, Ŝ(x),(p,q),H )
81: if ŜH(x)≥ φS then
82: H←H∪ (x, Ŝ(x))
83: else
84: if q = 0 then
85: PUSH(x,Ci, j,(p,q+1),(d−1,d−1))
86: else
87: PUSH(x,Ci, j,(p,q+1),(p,d−1))
88: end if
89: end if
90: end for
91: end for
92: end for
93: return H
94: end procedure

Figure 1: Major operations in 2D HHH detection.

2008. While the traces were collected more than a decade ago,
we believe that the MAWI traces are sufficiently representative
for two reasons: (i) the 6Bone network is a dedicated testbed
purely for IPv6 traffic and is not mixed with IPv4 traffic as in
the CAIDA traces and (ii) the traces show similar skewness as
observed in IPv4 traffic (see details below). In our evaluation,
we set the epoch length of the MAWI traces as one day to
include sufficient amounts of traffic, in which each epoch
contains 2 M packets and 3.98 K unique IPv6 addresses on
average. By default, we keep the same parameter settings as
in §VI of the main paper.

B. Skewness Analysis

Before we start our experiments, we first analyze whether the
skewness property we observed in §III of the main paper still
holds across the aggregation levels for IPv6 traffic. Figure 2
plots the cumulative percentage of packet counts versus the top
percentage of keys for the 1D-byte and 2D-byte hierarchies
across different aggregation levels for both CAIDA and MAWI
traces. We observe that the top-10% of keys at each level all
account for more than 80% and 91% of IP traffic for the level
in the CAIDA and MAWI traces, respectively. Thus, we show
that the skewness of IPv6 traffic is also observed.
(Experiment S1) Accuracy comparisons for IPv6 traffic.
We compare different HHH detection schemes on accuracy
versus different values of the absolute threshold. For the CAIDA
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Figure 2: Cumulative percentage of packet counts versus the top-percentage of keys at different aggregation levels for IPv6 traffic in CAIDA
(figures (a)-(b)) and MAWI (figures (c)-(d)). The dashed line denotes the top-10% mark.
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Figure 3: (Experiment S1) Accuracy comparisons for IPv6 traffic in CAIDA.
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Figure 4: (Experiment S1) Accuracy comparisons for IPv6 traffic in MAWI.

traces, we fix the memory space of MVPipe as 256 KiB, 1 MiB,
1.5 MiB, and 90 MiB for 1D-byte, 1D-bit, 2D-byte, and 2D-
bit HHH detection, respectively. For the MAWI traces, we
fix the memory space of MVPipe as 256 KiB, 2 MiB, 5 MiB,
and 200 MiB for 1D-byte, 1D-bit, 2D-byte, and 2D-bit HHH
detection, respectively. We consider the same accuracy metrics
as in Experiment 1 of the main paper. Figures 3 and 4 show
the results. Since PARTIAL cannot return any results for 2D-
bit HHH detection on the MAWI traces after running more
than 36 hours, we do not plot its results in Figures 4(m)-
4(p). We observe that all schemes show a similar trend as in
Experiment 1. MVPipe achieves high accuracy and medium
size of memory usage among all cases.

(Experiment S2) Robustness of MVPipe for IPv6 traffic.
We evaluate MVPipe versus the absolute threshold by varying
the memory size allocated for MVPipe. Figures 5 and 6 show
the results. The accuracy of MVPipe remains robust for IPv6
traffic.

(Experiment S3) Update throughput for IPv6 traffic. We
benchmark the update throughput of all schemes with the

same setting as in Experiment 3. Figure 7 shows the results in
the CAIDA traces. MVPipe achieves the highest throughput
with up to 6.36× and 40.31× throughput gain for byte-level
and bit-level HHH detection, respectively. We observe similar
results on the MAWI traces as shown in Figure 8, where the
throughput gains for byte-level and bit-level HHH detection are
up to 9.61× and 69.72×, respectively. Note that the throughput
of MVPipe is higher than that in IPv4 traffic. The reason is
that the skewness of IPv6 traffic is higher than that of IPv4
traffic, so MVPipe only needs to access fewer arrays and hence
achieves faster processing.

(Experiment S4) Throughput versus skewness. We bench-
mark the update throughput of all HHH detection schemes
on a server equipped with an Intel i7-11700 2.50GHz CPU
and 16GiB RAM. The server runs Ubuntu 20.04. We vary the
skewness degree of the IPv6 traffic in both the CAIDA and
MAWI traces by using the method described in Experiment 5.
In the original IPv6 traffic, the top-100 flows account for 73%
and 75% of the total number of packets in the CAIDA and
MAWI traces, respectively. Figures 9 and 10 show the results.
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Figure 5: (Experiment S2) Robustness of MVPipe for IPv6 traffic in CAIDA.
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Figure 6: (Experiment S2) Robustness of MVPipe for IPv6 traffic in MAWI.
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Figure 7: (Experiment S3) Update throughput for IPv6 traffic in
CAIDA.

MVPipe shows a similar update performance as for IPv4 traffic.
The throughput of MVPipe decreases for less skewed traces,
yet it remains higher than other schemes except for RHHH
and TRIE.
(Experiment S5) Number of traversed nodes for IPv6 traffic.
Figures 11 and 12 show the cumulative percentage of packets
versus the number of traversed nodes by MVPipe for different
skewness degrees. For the original IPv6 traffic in the CAIDA
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Figure 8: (Experiment S3) Update throughput for IPv6 traffic in
MAWI.

traces (i.e, the black curve), in 1D-byte HHH detection, 92% of
packet updates traverse only one node in the hierarchy, where
each packet updates on average traverses only 1.09 nodes. In
1D-bit HHH detection, 87% of packet updates traverse one
node, while each packet update on average traverses 1.21 nodes.
For the MAWI traces, 89% of packet updates traverse only one
node in 1D-byte HHH detection, where each packet update
on average traverses only 1.1242 nodes. Also, 90% of packet
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Figure 9: (Experiment S4) Throughput vs. skewness in CAIDA.
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Figure 10: (Experiment S4) Throughput vs. skewness in MAWI.
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Figure 11: (Experiment S5) Number of traversed nodes for IPv6
traffic in CAIDA.
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Figure 12: (Experiment S5) Number of traversed nodes for IPv6
traffic in MAWI.

updates traverse one node in 1D-bit HHH detection, where
each packet update on average traverses only 1.1201 nodes. As
the skewness degree decreases, the number of traversed nodes
for each packet update increases.
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