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MVPipe: Enabling Lightweight Updates and Fast
Convergence in Hierarchical Heavy Hitter Detection

Lu Tang, Qun Huang, Patrick P. C. Lee

Abstract---Finding hierarchical heavy hitters (HHHs) (i.e.,
hierarchical aggregates with exceptionally huge amounts of traffic)
is critical to network management, yet it is often challenged
by the requirements of fast packet processing, real-time and
accurate detection, as well as resource efficiency. Existing HHH
detection schemes either incur expensive packet updates for
multiple aggregation levels in the IP address hierarchy, or need
to process sufficient packets to converge to the required detection
accuracy. We present MVPipe, an invertible sketch that achieves
both lightweight updates and fast convergence in HHH detection.
MVPipe builds on the skewness property of IP traffic to process
packets via a pipeline of majority voting executions, such that
most packets can be updated for only one or few aggregation
levels in the IP address hierarchy. We show how MVPipe can
be feasibly deployed in P4-based programmable switches subject
to limited switch resources. We also theoretically analyze the
accuracy and coverage properties of MVPipe. Evaluation with
real-world Internet traces shows that MVPipe achieves high
accuracy, high throughput, and fast convergence compared to
six state-of-the-art HHH detection schemes. It also incurs low
resource overhead in the Tofino switch deployment.

I. INTRODUCTION

Network administrators often need to measure and charac-
terize the anomalous behaviors of IP traffic in operational
networks. IP traffic is inherently hierarchical. It can be
organized in hierarchical forms in one or multiple dimensions.
For example, it can be aggregated either by source IP
address prefixes (i.e., one-dimensional (1D)), or by the source-
destination IP address prefixes (i.e., two-dimensional (2D)).
Given the hierarchical nature of IP traffic, finding hierarchical
heavy hitters (HHHs) (i.e., the hierarchical aggregates with
exceptionally huge amounts of traffic) is of particular interest
to network measurement [12], [17], [26], [39]. One notable
application of HHH detection is to identify distributed denial-
of-service (DDoS) or botnet attacks [15], [32], in which the
traffic aggregates of multiple attack flows can bring substantial
damage to a network.
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Unlike the classical heavy hitter (HH) detection problem
[13], [19], [23], whose goal is to identify individual large-sized
flows (i.e., HHs), HHH detection is a much more challenging
task as it needs to identify not only the HHs, but also the set
of flows that have small sizes each but have a huge aggregate
size when combined together. As there are many possibilities
for aggregating traffic at different levels in the IP address
hierarchy (e.g., multiple lengths of prefixes in IP addresses),
enumerating all possible combinations of traffic aggregates
is infeasible for HHH detection. This motivates the need for
specialized algorithmic designs for HHH detection.

Like most network measurement tasks, practical HHH
detection schemes need to address the challenges of managing
the ever-increasing speed and size of IP traffic in modern
networks. For a typical backbone link with a bandwidth of
tens or hundreds of Gigabits per second, network measurement
tasks should efficiently track millions of concurrently active
flows at any time. Maintaining per-flow states, or even
any combination of traffic aggregates in HHH detection,
inevitably has tremendous resource demands. In addition, with
the emergence of programmable networking, new network
measurement solutions (e.g., [16], [27], [34]) often offload
packet processing to programmable hardware switches for
scalable network measurement. Unfortunately, the available
switch resources are scarce (e.g., less than 2 MB of SRAM
per processing stage [6], [34]), thereby complicating the use
of HHH detection in programmable hardware switches. To
this end, HHH detection should aim for the following design
requirements: (i) fast packet processing (i.e., keeping pace
with the line rate of operational networks), (ii) real-time and
accurate detection (i.e., identify all HHHs in real-time with low
false positive/negative rates), and (iii) resource efficiency (i.e.,
the computational and memory resources should be limited
within their available capacities in both hardware and software).

HHH detection has been extensively studied in the literature
for more than a decade (see §VII for details). One class of
HHH detection schemes is streaming-based [11], [21], [24],
[25], [37], [39], in which they use memory-efficient stream
data structures to process IP traffic and detect HHHs at short
time scales, at the expense of incurring bounded errors on
detection. However, such schemes often have high processing
costs to capture multiple aggregation levels of HHHs in stream
data structures, and hence cannot be readily scaled to line-
rate processing in modern networks. Another class of HHH
detection schemes is sampling-based, by updating a sketch
instance with only a sampled subset of packets [2], [3]. One
representative example is randomized HHH (RHHH) [3], which
detects HHHs at long time scales. RHHH maintains multiple
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instances of sketches for different aggregation levels and
randomly selects one instance to update per packet. It has
high update performance, but has slow convergence, as the
HHHs cannot be detected until sufficient packets have been
processed. Furthermore, both streaming-based and sampling-
based HHH detection schemes have been deployed in hardware
[2], [17], [20], [26], [30], but their designs often face different
limitations, such as relying on a controller to specify what
HHHs are monitored [17], [26], requiring specialized hardware
(e.g., TCAM) to maintain high update throughput [20], [30], or
sampling packets to trade convergence for resource efficiency
in hardware [2].

We present MVPipe, an invertible sketch that achieves
lightweight updates, fast convergence, and resource efficiency
in HHH detection, in both software and hardware. By ‘‘invert-
ible’’, we mean that MVPipe can directly return all HHHs (with
high accuracy) from the data structure itself. MVPipe’s design
builds on the observation that IP traffic is highly skewed across
multiple aggregation levels, in which most IP traffic belonging
to large flows can be aggregated in a single level, while only a
small fraction of traffic needs to be aggregated across all levels
in the IP address hierarchy. Specifically, MVPipe maintains
its sketch with small and static memory allocation (i.e., the
memory can be pre-allocated a priori) and tracks aggregates
via the pipelined executions of the majority vote algorithm
(MJRTY) [7]. For most packets, MVPipe only updates a single
level with a single MJRTY execution, while only for a small
fraction of packets, MVPipe needs to update more levels along
the pipeline with multiple MJRTY executions (i.e., lightweight
updates). In addition, MVPipe processes all packets within
its sketch, so it can detect HHHs at short time scales (i.e.,
fast convergence) as opposed to sampling-based approaches.
Furthermore, with small and static memory allocation, MVPipe
can be readily deployed in programmable hardware switches.

While we motivate our HHH detection problem from the
hierarchical nature of IP traffic, we expect that our MVPipe
design is also applicable to general types of hierarchical
datasets, such as geographic or temporal datasets [24].

The contributions of this paper are summarized as follows.

• We design MVPipe, a novel invertible sketch for HHH de-
tection with three major design features: lightweight updates,
fast convergence, and resource efficiency for deployment in
both software and hardware.

• We implement MVPipe on P4-based programmable switches
[28] and compile our prototype in the Tofino chipset [36],
subject to limited hardware resources.

• We conduct theoretical analysis on MVPipe, including its
space and time complexities, accuracy, and coverage.

• We conduct trace-driven evaluation on MVPipe in both
software and hardware. Evaluation in software shows that
MVPipe achieves higher detection accuracy, faster conver-
gence, and up to 22.13× throughput gain compared to six
state-of-the-art HHH detection schemes. MVPipe also incurs
limited resource overhead in the Tofino switch deployment.

We open-source our MVPipe prototype in both software
and P4 at https://github.com/Grace-TL/MVPipe.
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Figure 1: 1D-byte and 2D-byte hierarchies.

II. PROBLEM FORMULATION

We formulate the HHH detection problem; similar formula-
tions are also found in [3], [11], [24]. We focus on IP traffic,
which can be aggregated by different prefixes in the IP address
space. We model IP traffic as a stream of packets. Each packet
is denoted by a tuple ( f ,v f ) and is allowed to be processed
only once. In network measurement, f identifies a flow, and v f
is either one (for packet counting) or the packet size (for byte
counting). In this work, we consider one-dimensional (1D) and
two-dimensional (2D) HHH detection: for 1D HHH detection,
f refers to a source IP address (the same arguments hold for
a destination IP address); for 2D HHH detection, f refers to a
source-destination IP address pair.

We aggregate source addresses or source-destination address
pairs by the address prefixes at either byte-level or bit-level
granularities; we refer to them as 1D-byte, 2D-byte, 1D-bit, and
2D-bit hierarchies. Figure 1 shows the 1D-byte and 2D-byte
hierarchies. Each node corresponds to the key of a flow at a
certain aggregation level in a hierarchy. We define the level
of a node as the position in a hierarchy of depth d, where the
level ranges between 0 and d−1. The key at the lowest level 0
is the most specific and refers to an exact address (1D) or
an address pair (2D), while the key at the highest level d−1
corresponds to the most general aggregate (i.e., all addresses
or address pairs). In general, a key refers to an address prefix
(1D) or a pair of address prefixes (2D). The keys of lower-level
nodes (a.k.a. descendants) can be generalized to the keys of
their higher-level nodes (a.k.a. ancestors); for example, the
key 1.2.3.4 can be generalized by one byte to 1.2.3.∗. Let ≺
be the generalization relation of two keys. For any keys x and
y, we say that x≺ y if x can be generalized to y, and that x� y
if x≺ y or x = y.

To quantify the level of a node, we associate each node with
a coordinate in multi-dimensional space as shown in Figure 1.
The i-th element of the coordinate represents the degree of
generalization in the i-th dimension. Then the level of a node is
the sum of all elements of the node’s coordinate. For example,
in Figure 1(a), the node with coordinate (1) is at level 1; in
Figure 1(b), the node with coordinate (4,2) is at level 6. In
multi-dimensional space, multiple nodes can reside at the same
level (e.g., see the 2D case in Figure 1(b)). We denote the set
of nodes at level i by L(i).

We now formally define HHHs. Let S(x) = ∑ f�x S( f ) be
the count of a key x (i.e., packet count or byte count), where
S( f ) denotes the sum of all v f ’s for every flow f under x;
for example, if x refers to a subnet, S(x) is the total count
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Figure 2: Cumulative percentage of packet counts versus the top-
percentage of keys at different aggregation levels. The dashed line
denotes the top-10% mark. Here, we focus on IPv4 traffic.

of all flows under the subnet. Intuitively, a key x is an HHH
if S(x) exceeds some pre-defined threshold. However, if the
count of a key exceeds a threshold, so do the counts of all
its ancestors, which cover the key itself. To concisely define
HHHs, we focus on the conditioned count of a key [3], [24],
defined as the total count of all its associated flows that do
not belong to any HHH. Specifically, for a key x and a set
of HHHs H, the conditioned count of x with respect to H is
SH(x) = ∑S( f ) : ( f � x)∧ (@y ∈ H, where f � y). Thus, we
can formally define an HHH in an inductive fashion:

Definition 1. (Hierarchical heavy hitters (HHHs) [11]). Let S
be the total count of all flows and φ be a fractional threshold
(where 0 < φ < 1). We define Hi as the set of HHHs at level i
(where 0≤ i < d), such that:
• H0 is a set of flows, in which each flow f has count S( f )≥

φS (i.e., f is a heavy hitter);
• Hi =Hi−1∪{x : (x ∈ L(i))∧ (SHi−1(x)≥ φS)}; and
• Hd−1 is the set of all HHHs.

We perform HHH detection at fixed-time intervals called
epochs. Our goal is to find: (i) the set of all HHHs (whose
conditioned counts exceed φS) at the end of each epoch and
(ii) the count S(x) of each key x that is identified as an HHH.

III. MVPIPE DESIGN

MVPipe is a novel invertible sketch for HHH detection, with
three major design goals: lightweight updates, fast convergence,
and resource efficiency.

MVPipe builds on the skewness of IP traffic to find HHHs.
Field studies [14], [31], [38] show that IP traffic is highly
skewed, in which a small fraction of flows accounts for a
majority of traffic. We argue that the skewness property also
holds across aggregation levels. To justify, we evaluate the real-
world IP traffic traces from CAIDA [8] (see §VI-A for details)
on the cumulative percentage of packet counts versus the top
percentage of keys at different aggregation levels. Figure 2
plots the results for the 1D-byte and 2D-byte hierarchies for
some aggregation levels in IPv4 traffic. We observe that the
top-10% of keys at each level all account for more than 65%
of IP traffic at that level.

MVPipe tracks the candidate HHHs that are likely the
true HHHs via the pipelined executions of the majority vote
algorithm (MJRTY) [7]. MJRTY is a one-pass, constant-
memory algorithm that finds the item that has more than half
of the occurrences (i.e., the majority item) in a data stream. It
is proven that if the majority item exists, MJRTY can always
find the majority item [7].

Based on MJRTY, MVPipe maintains an array of buckets
for each node in a hierarchy. Each bucket performs MJRTY
to find the dominant key among all packets that are hashed
to the bucket itself (i.e., the majority item in MJRTY) as the
candidate HHH for the bucket. Then MVPipe processes each
packet ( f ,v f ) starting from the lowest level 0 (i.e., node (0)
in the 1D hierarchy or node (0,0) in the 2D hierarchy) in the
hierarchy. If f does not belong to any candidate HHH at a
lower level, MVPipe generalizes f to its ancestor at the next
higher level and checks if the ancestor is a candidate HHH at
that level. MVPipe proceeds toward higher levels, until f is
admitted by a candidate HHH (i.e., the value v f is included in
the count of the candidate HHH).

We justify how MVPipe achieves its design goals:
• Lightweight updates: By the skewness of IP traffic, the

pipelined design of MVPipe stops processing most of the
packets at lower-level arrays and passes only a small fraction
of packets to higher-level arrays. Also, the processing of
each packet in each array of MVPipe only contains one hash
computation and one memory access. Thus, the amortized
processing cost is low.

• Fast convergence: MVPipe processes every packet (without
sampling) in the same data structure and ensures that any
HHH can be detected with high accuracy at short time scales.

• Resource efficiency: MVPipe requires only primitive com-
putations in packet processing (e.g., hashing, addition,
and subtraction). Also, MVPipe supports static memory
allocation (i.e., its memory space can be pre-allocated in
advance) and incurs limited memory usage. Such features
allow MVPipe to be readily implemented in both hardware
and software (§IV).

A. Data Structure

Figure 3 shows the data structure of MVPipe. It comprises
H arrays, denoted by A0,A1, · · · ,AH−1, where H is the number
of nodes in the hierarchy. Each array Ai (where 0 ≤ i < H)
contains wi buckets and corresponds to one node in the
hierarchy. Let B(i, j) be the j-th bucket in array Ai, where
0 ≤ j < wi. Each bucket B(i, j) consists of four fields: (i)
Ki, j, which stores the candidate HHH in the bucket; (ii) Vi, j,
which is the total count of all keys hashed to the bucket; (iii)
Ii, j, which is the indicator counter that checks if the current
candidate HHH in Ki, j should be kept or replaced by MJRTY;
and (iv) Ci, j, which is the cumulative count of the candidate
HHH since it is stored in Ki, j. MVPipe is associated with H
pairwise-independent hash functions h0,h1 · · ·hH−1, such that
each hi (where 0≤ i < H) hashes the generalization of the key
of each incoming packet to one of the wi buckets in Ai.

MVPipe currently associates a single array with each node
in the hierarchy. It can improve the HHH detection accuracy
by associating multiple arrays with each node in the hierarchy,
at the expense of degraded update performance. We discuss
the trade-off in §V-B.

B. 1D HHH Detection

We first consider the operations of MVPipe in 1D HHH
detection, whose pseudo-code is shown in Figure 4. MVPipe
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Figure 3: Data structure of MVPipe. Each bucket B(i, j) (where
0≤ i < H and 0≤ j < wi) has four fields: Ki, j , Vi, j, Ii, j, and Ci, j.

supports two major operations: (i) Update, which updates each
packet ( f ,v f ) into the data structure; and (ii) Detect, which
returns the set of all HHHs and their respective estimated counts
from the data structure. It also builds on two functions: (i)
Push, which pushes the updates of a key and its corresponding
count along the arrays; and (ii) Estimate, which returns an
estimated count of a key in its hashed bucket. Note that in
1D HHH detection, each node in a hierarchy corresponds to a
distinct level. Thus, each array Ai corresponds to level i, where
0≤ i < H.
Update operation. We apply the Update operation to insert
each incoming packet to MVPipe, starting from A0. At a high
level, we hash the flow key of each packet to one of the
buckets in A0 and check if the flow key is a candidate HHH
in the bucket via MJRTY. If so, we end the update; otherwise,
we generalize the flow key to its ancestor at the next higher
level 1 and continue to insert the ancestor to A1. We update A1
and the remaining arrays in a similar way until the flow key
is admitted by a candidate HHH. During the process, if the
original candidate HHH stored in MVPipe is replaced by the
current generalized flow key due to MJRTY, we generalize the
original candidate HHH and insert it into higher-level arrays.

We elaborate on the Update operation (Lines 26-27 of
Figure 4) as follows. At the beginning of each epoch, we
initialize the counters of all buckets of MVPipe to zeros. We
update each incoming packet ( f ,v f ) starting from array A0 of
MVPipe by calling the Push( f ,v f ,0) function, which processes
f starting from level 0 until f is admitted by a candidate HHH
in one of the levels.

The Push function (Lines 1-14 of Figure 4) takes a key, its
associated value, and the array index l (where 0≤ l < H) as
input. We first initialize (x,vx) from the input, where (x,vx)
is passed along the arrays at higher levels (Line 2). For each
array Ai (where l ≤ i < H), we generalize x at level i (Line 4)
and hash the new x into the bucket B(i,hi(x)). We increment
Vi,hi(x) by vx and check if x should become the candidate HHH
of the bucket based on MJRTY. Specifically, if Ki,hi(x) equals
x (i.e., x is already a candidate HHH), we increment both Ii,hi(x)
and Ci,hi(x) by vx and return (Lines 6-9); else if x is not the
candidate HHH and Ii,hi(x) is at least vx, we decrement Ii,hi(x)
by vx (Lines 10-11); otherwise, if x is not the candidate HHH
and Ii,hi(x) is below vx, it means that x should now become the
new candidate HHH in B(i, j). Then we should update Ki,hi(x)
and Ci,hi(x) with x and vx, respectively, and aggregate the count
of the original key in Ki,hi(x) to the next higher level. More
precisely, we set Ii,hi(x) to vx− Ii,hi(x) and swap (Ki,hi(x),Ci,hi(x))
and (x,vx) (Lines 12-14).

From the Update operation, it is clear that once the candidate

1: function PUSH(key, value, l)
2: (x,vx)← (key,value)
3: for i = l to H−1 do
4: x← generalize x at level i
5: Vi,hi(x)←Vi,hi(x)+ vx
6: if Ki,hi(x) = x then
7: Ii,hi(x)← Ii,hi(x)+ vx
8: Ci,hi(x)←Ci,hi(x)+ vx
9: return

10: else if Ii,hi(x) ≥ vx then
11: Ii,hi(x)← Ii,hi(x)− vx
12: else . Ki,hi(x) 6= x and Ii,hi(x) < vx
13: Ii,hi(x)← vx− Ii,hi(x)
14: swap (Ki,hi(x),Ci,hi(x)) and (x,vx)

15: function ESTIMATE(x, l, t)
16: Ul ← (Vl,hl(x)+ Il,hl(x))/2
17: v←Cl,hl(x)
18: for i = l +1 to min{l + t,H−1} do
19: y← generalize x at level i
20: if Ki,hi(y) = y then
21: Ui = (Vi,hi(y)+ Ii,hi(y))/2+ v
22: v← v+Ci,hi(y)
23: else
24: Ui = (Vi,hi(y)− Ii,hi(y))/2+ v
25: return minl≤i≤min{l+t,H−1}{Ui}
26: procedure UPDATE( f ,v f )
27: PUSH( f ,v f ,0)
28: procedure DETECT
29: A,Ho,H1, . . . ,HH−1← /0
30: for i = 0 to H−1 do
31: for j = 0 to wi−1 do
32: x← Ki, j
33: ŜHi−1(x)← ESTIMATE(x, i, t) . Hi−1 = /0 for i = 0
34: if ŜHi−1(x)> φS then
35: Ŝ(x)← ŜHi−1(x)+∑x′∈Hi−1∧x′≺x Ci′,hi′ (x′) . i′ is

the level of x′
36: A←A∪ (x, Ŝ(x))
37: else
38: PUSH(x,Vi, j, i+1)
39: Hi←Hi−1∪A
40: A← /0
41: return HH−1

Figure 4: Major operations for 1D HHH detection.
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Figure 5: Example of the Update operation in MVPipe.

HHH is stored in Ki, j, its subsequent values received at level
i (i.e. Ci, j) are not pushed to higher levels. In other words, the
cumulative count of a candidate HHH is not aggregated to any
of its ancestors at higher levels.

Example. Figure 5 depicts the Update operation. Suppose
that a packet ( f ,v f ) = (1.2.3.4,1) arrives. If, say, 1.2.3.4
is not the candidate HHH in the hashed bucket in A0 and
the branch in Lines 10-11 holds, we generalize 1.2.3.4 into
1.2.3.* and proceed to the next level. If, say, 1.2.3.* is not the
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candidate HHH in the hashed bucket in A1 but the branch in
Line 12-14 holds (i.e., it now becomes the candidate HHH),
we substitute the original candidate HHH 5.6.7.* by 1.2.3.*.
We now generalize 5.6.7.* into 5.6.*.* and push (5.6.*.*, 5) to
the next level. If, say, 5.6.*.* is the candidate HHH in A2 (i.e.,
the branch in Lines 6-9 holds), the Update operation updates
the counters and terminates (i.e., f is now admitted by 5.6.*.*).
Detect operation. We apply the Detect operation at the end of
each epoch to find all HHHs and their estimated counts. At a
high level, we traverse all arrays of MVPipe and check if the
candidate HHH in each bucket should be reported as an HHH.
We start from the array A0 and check each candidate HHH: if
the estimated conditioned count of the candidate HHH exceeds
the threshold, we treat the candidate HHH as an HHH and
include both the candidate HHH and its estimated count into
the output set HH−1; otherwise, the candidate HHH should
not be reported as an HHH and its key and cumulative count
should be further pushed to higher-level arrays (as one of its
ancestors may be reported as an HHH).

We elaborate on the Detect operation (Lines 28-41 of
Figure 4) as follows. Let ŜHi−1(x) and Ŝ(x) be the estimated
conditioned count at level i and the estimated count of key
x, respectively. For each bucket B(i, j) (where 0 ≤ i < H
and 0 ≤ j < wi), we call the Estimate function to return the
estimated conditioned count ŜHi−1(x) of key x stored in Ki, j
(Lines 32-33). If ŜHi−1(x) exceeds the threshold φS , we further
calculate the estimated count Ŝ(x) and add x to A, where A is
the set of detected HHHs at level i (Lines 34-36). Otherwise, we
call the Push function to push (x,Ci, j) to the next higher level
i+1 (Lines 37-38). After processing array Ai, we update Hi as
the union of Hi−1 and A, and reset A to empty (Line 39-40).

For each reported HHH x at level i, we need to calculate
its estimated count Ŝ(x). From the Update operation, we note
that the cumulative count of each of x’s descendants that are
reported as HHHs in Hi−1 is not pushed to the hashed bucket
of x. Thus, we need to include such ‘‘missing’’ counts in
the calculation of Ŝ(x). We calculate Ŝ(x) as the sum of: (i)
the estimated conditioned count ŜHi−1(x) is returned by the
Estimate function (see details below) and (ii) the cumulative
counts of x’s descendants that are reported as HHHs in lower
levels (Line 35). We analyze the error bound of Ŝ(x) in §V.

The Estimate function (Lines 15-25 of Figure 4) returns the
estimated conditioned count of a given key x in its hashed
bucket. The function takes a key x, the level l, and the
configurable number t of the ancestors that are checked in
estimation (see details below). We start from array Al and
obtain the upper bound Ul of x in Bl,hl(x) as (Vl,hl(x)+ Il,hl(x))/2
(Line 16); in MJRTY, the count of x in Il,hl(x) is decremented
by other keys in the same bucket by at most (Vl,hl(y)−Il,hl(y))/2.
We show that Ul is the upper bound of the true count of x
tracked in its hashed bucket (Lemma 1 of §V).

Note that x may have hash collisions with some large keys in
Al , and Ul severely overestimates the true count of x. To reduce
the collision error, we introduce the configurable parameter t,
through which we access t additional arrays and further check
the estimated counts of the t closest ancestors of x from Al+1 to
Al+t (if l + t is beyond the maximum number of arrays H−1,
we stop in AH−1). The idea here is that when we include the
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Figure 6: Example of the Detect operation in MVPipe.

cumulative count of x in the estimated count of each ancestor,
if the estimated count of the ancestor is smaller than Ul , it
implies that x collides with some large keys in Al and hence
Ul is severely overestimated. Thus, we use the minimum value
of Ul (the estimated count of x in Al) and Ui’s (the estimated
counts of t ancestors of x from Al+1 to Al+t) as the final
estimated count of x (Line 25). The parameter t determines
the performance-accuracy trade-off in HHH detection: a large
t means fewer false positives, but incurs more time to find all
HHHs.

Given t, the Estimate function proceeds as follows. For
each array Ai, where l+1≤ i≤min{l+ t,H−1}, we set y as
the generalization of x at level i (Line 19). We calculate the
estimate of y: if Ki,hi(y) equals y, Ui is (Vi,hi(y)+ Ii,hi(y))/2+ v
(Line 21); otherwise, Ui is (Vi,hi(y)− Ii,hi(y))/2+ v (Line 24).
The term v, which we initialize as the cumulative counter value
Cl,hl(x) (Line 17), refers to the cumulative count of x that should
be included in y when Ui is calculated. Finally, we return the
minimum value among Ui’s, where l ≤ i≤min{l + t,H−1}
(Line 25).

Example. Figure 6 depicts the Detect operation. We set the
threshold as 30 and t = 2. At the end of an epoch, we start
from A0 to check every bucket. Suppose that we check bucket
B(0,3). We first calculate the estimated conditioned count of
the candidate HHH 1.5.8.8 in B(0,3) via the Estimate function.
Suppose that we have U0 = 32 and v= 8. We generalize 1.5.8.8
to 1.5.8.* and find that it is the candidate HHH in the hashed
bucket in A1 (i.e., the branch in Lines 20-22 holds). We obtain
U1 = 23 and add the cumulative count C1,3 = 14 to v, so we
now have v = 22. We continue to generalize 1.5.8.* to 1.5.*.*
and find that the generalized key is not the candidate HHH
(which is now 1.6.*.*) in A2 (i.e., the branch in Lines 23-
24 holds). We obtain U2 = 26. Thus, the returned estimated
conditioned count of 1.5.8.8 is min{U0,U1,U2} = 23, which
is smaller than the threshold 30 (i.e., the branch Lines 37-38
holds). We then push 1.5.8.8 to higher levels: we generalize it
to 1.5.8.* and update the hashed bucket in A1. If, say, 1.5.8.*
is already stored in the bucket, we increment each of the three
counters of the bucket by 8 and finish the checking of B(0,3).

C. 2D HHH Detection

We extend MVPipe to 2D HHH detection, in which the gen-
eralization relation now forms a lattice structure (Figure 1(b)).
Similar to 1D HHH detection, we maintain an array of buckets
for each node of the lattice to track the candidate HHHs. We
briefly describe the Update and Detect operations in 2D HHH
detection; their pseudo-code is in the supplementary file.
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Update operation. In 2D HHH detection, we need to address
the generalization order and the stop condition in the Update
operation. Unlike 1D HHH detection, which only has one
generalization direction, a key in 2D HHH detection has two
generalization directions: the source direction (i.e., from left to
right) and the destination direction (from bottom to up). For
example, the address pair (1.2.3.4, 5.6.7.8) can be generalized
to either (1.2.3.*, 5.6.7.8) or (1.2.3.4, 5.6.7.*) by a single byte.
To represent the lattice structure in MVPipe, we index the
arrays of MVPipe first along the destination direction (from
bottom to up), followed by along the source direction (from
left to right). For example, array A0 corresponds to node (0,0),
while array A22 corresponds to node (4,2) in Figure 1(b) (recall
that the number of arrays is the number of nodes in the lattice).

We enforce that the generalization of a key along the source
direction only applies to the bottom nodes in the lattice (i.e.,
nodes (0,0), (0,1), . . . , (0,4) in Figure 1(b)). Specifically, we
update each incoming packet in MVPipe starting from level 0
(i.e., node (0,0)). If a key is not admitted by a candidate HHH,
we push the key in two generalization directions: (i) along
the destination direction from the bottom node and (ii) the
next bottom node. We stop the generalization until a key is
admitted by the candidate HHH in a bottom node.

We use Figure 7 to show the idea of the Update operation.
For the key (1.2.3.4, 5.6.7.8), we first insert it to array A0 in
node (0,0). If it is not a candidate HHH, we push the key along
the destination direction until it is admitted by some ancestor
(e.g., node o). We also push the key to the next bottom node
(1,0). If, say, the generalized key (1.2.3.*, 5.6.7.8) is still not
a candidate HHH, we push it along the destination direction
until it is admitted by some ancestor (e.g., node x). Similar
operations apply to node (2,0) and its destination direction.
We terminate until the key is admitted by a bottom node (e.g.,
node p).
Detect operation. Since we now push the count of a key
along both the source direction along the bottom nodes and
the destination direction from the bottom nodes, the count of a
key can contribute to multiple ancestors, leading to the double
counting problem [11], [24]. For example, the key (1.2.3.4,
5.6.7.8) is pushed along the arrows in Figure 7 according to
the Update operation. Suppose that its count is counted by
both of its ancestors x and y that are both reported to be HHHs.
Now, we calculate the conditioned count of z, which is the
common ancestor of both x and y. By the definition of the
conditioned count, we need to subtract the counts of both x
and y from z, but doing so will deduct the count of (1.2.3.4,
5.6.7.8) twice from z.

The Detect operation addresses the double counting problem
based on the inclusion-exclusion principle [11], [24], whose
idea is that after subtracting all descendants that are HHHs, we
add back the count that is discounted twice. At the end of an
epoch, the Detect operation checks the candidate HHH in each
bucket. If the estimated conditioned count of a candidate HHH
exceeds the threshold, we add it to the output set; otherwise,
we push the candidate HHH to higher-level nodes, either in the
source direction along the bottom nodes or in the destination
direction from the bottom nodes.

1.2.3.4,

5.6.7.8

1.2.3.*,

5.6.*.*

1.2.*.*,

5.6.*.*

1.2.*.*,

5.6.7.*

�

�

�

�

�

Figure 7: Illustration for the major operations in 2D HHH detection.
The generalization is applied either in the source direction along the
bottom nodes or in the destination direction from the bottom nodes.

D. Discussion

MJRTY has also been adopted in HH detection (i.e., no
hierarchy awareness) [18], [35]. In particular, MV-Sketch [35]
maintains multiple rows of buckets, in which each bucket
tracks a candidate HH using MJRTY. It hashes each packet
into a bucket in each of the rows, and updates the counters in
each bucket. It uses multiple rows of buckets to resolve the
hash collisions of HHs into the same bucket. In contrast to
MVPipe, MV-Sketch implements a single stage of MJRTY
and is not hierarchy-aware, while MVPipe forms multiple
pipelined stages of MJRTY for HHH detection.

MVPipe is much beyond a simple extension of MV-Sketch
in HHH detection. A naı̈ve way to extend MV-Sketch for HHH
detection is to maintain an instance of MV-Sketch for every
node of the IP address hierarchy. For each packet, we compute
all its generalizations and insert each of them independently
into the corresponding instances, so that the HHHs can later
be recovered as the HHs of each aggregation level. However,
such a naı̈ve approach incurs substantial update overhead, as it
updates all MV-Sketch instances for each incoming packet. In
contrast, MVPipe forms multiple pipelined stages of MJRTY
that correspond to different nodes in the IP address hierarchy,
and maintains one array for each node. With the skewness
of IP traffic, MVPipe only needs to update a small number
of arrays per packet (and one array for most of the time)
and hence achieves lightweight updates. Also, to resolve hash
collisions, MVPipe checks additional arrays in higher levels
when estimating the value of a candidate HHH (see the Estimate
function in Figure 4) and hence maintains high accuracy.

Currently, we focus on 1D and 2D HHH detection. MVPipe
can be extended for higher dimensions, yet both its space and
time complexities become the multiplication of the depths of
all dimensions. Nevertheless, practical applications do not need
to consider general HHH detection in all dimensions [39].

In addition, the examples presented in this paper are based
on IPv4 traffic, yet MVPipe can also be directly applied to
IPv6 traffic without modification. We present our evaluation
results for IPv6 traffic in the supplementary file.

IV. IMPLEMENTATION

We have implemented MVPipe in both software and hard-
ware. In particular, our hardware implementation of MVPipe
is written in P4 [28], and addresses the limitations of the
existing hardware-based HHH detection schemes (§I) in the
following ways: no reliance on a controller for counter updates,
using SRAM rather than TCAM (which is more expensive and
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scarce) for HHH counting, and avoids sampling of packets or
aggregation levels for fast convergence.

A. Software Implementation

We have built a software version of MVPipe in C++ with
around 800 LoC (including both 1D and 2D HHH detection).
MVPipe uses MurmurHash [1] as the hash function. It can
be integrated into the data plane of a software switch [29]
for real-time HHH detection. Specifically, the software switch
inserts the IP packet header of each incoming packet to an
in-memory buffer, from which MVPipe fetches and processes
the packet headers. We now implement MVPipe in a single
thread running on a single CPU core.

B. P4 Implementation

We implement MVPipe in P4 [28] with around 900 LoC and
compile it into a Tofino switch [36]. Our P4 implementation is
based on the Protocol Independent Switch Architecture (PISA)
[5], [6]. A PISA switch first extracts the header fields of each
incoming packet via a programmable parser. It then passes
the packet to an ingress pipeline of stages, each of which
contains a series of match-action tables. Each stage matches
the extracted header fields of the packet with the entries in the
match-action tables, and applies the matched actions to modify
the extracted header fields and/or update the persistent state at
the stage. Afterwards, the switch passes the packet to a similar
egress pipeline and emits the packet.

Programmable switches offer rich computational capability in
addition to packet forwarding, yet they pose stringent hardware
resource constraints [4]. For example, a programmable switch
typically has limited SRAM (e.g., few megabytes) and a
small number of stateful arithmetic-logic units (ALUs) per
stage. Such constraints pose two challenges to our MVPipe
implementation. First, each stage in the ingress/egress pipeline
can only access a memory block once per packet, with only a
single read-modify-write operation. Second, each stage only
supports an if-else chain with at most two branches.

In the following, we describe how we address the above
constraints and adapt MVPipe into a programmable switch.
Here, we only focus on the 1D-byte HHH detection due to
the limited number of stages available in a switch, while the
detection for other granularities is posed as future work. For
each level of the 1D-byte hierarchy, we create four register
arrays, denoted by K, V , I, and C, which correspond to the
four bucket fields in MVPipe (Figure 3).
Using pairs atoms to update dependent fields. One imple-
mentation challenge is that the Push function (Figure 4) makes
inter-dependent accesses to K and I: the write to I depends on
the value of K (Lines 6-7), yet the write to K is conditioned
on the value of I (Lines 12-14). It is infeasible to update both
K and I with a single read-modify-write.

We resolve the inter-dependency of updating both K and
I using the pairs atoms [33], which are natively supported
atomic operations in PISA. A pairs atom reads two 32-bit
elements from a register array, performs conditional branching
and primitive arithmetic on both elements, and writes back
the results. At the same time, it can output either the original

1: function PUSH(l)
2: (x,vx)← (Meta.keyl , Meta.vall)
3: // Stage 1: update Vl,h(x) and (Kl,h(x), Il,h(x))
4: Vl,h(x)←Vl,h(x)+ vx
5: if Kl,h(x) = x then . Case 1
6: Il,h(x)← Il,h(x)+ vx
7: else . Case 2
8: Il,h(x)← Il,h(x)− vx
9: if Kl,h(x) 6= x and Il,h(x) < vx then . Case 3

10: Kl,h(x)← x
11: if Kl,h(x) = x or Il,h(x) < vx then . Case 1 or 3
12: Meta.key(l+1) ← Kl,h(x)
13: // Stage 2: set metadata fields based on the last Stage
14: if Meta.key(l+1) = 0 then . Case 2
15: Meta.key(l+1) ← generalize x at level l +1
16: Meta.val(l+1) ← vx
17: else
18: Meta.flagl ← Meta.key(l+1) xor x
19: // Stage 3: update Cl,h(x) based on metadata set in Stage 2
20: if Meta.flagl = 0 then . Case 1
21: Cl,h(x)←Cl,h(x)+ vx
22: else . Case 3
23: Meta.val(l+1)←Cl,h(x)
24: Cl,h(x)← vx
25: Meta.key(l+1)← generalize Meta.key(l+1) at level l +1
26: procedure UPDATE
27: PUSH(0)
28: if Meta.val1 6= 0 then
29: PUSH(1)
30: if Meta.val2 6= 0 then
31: PUSH(2)
32: if Meta.val3 6= 0 then
33: PUSH(3)
34: if Meta.val4 6= 0 then
35: V4←V4+ Meta.val4
Figure 8: Pseudo-code of the update operation for 1D-byte HHH
detection in P4.

value of an element or the computation results to a specified
metadata field. In our case, we pack K and I to the upper 32
bits and lower 32 bits in a 64-bit register array, respectively.
We then update them using a pairs atom.
Reducing the updates to the indicator counter. Referring
to the Push function in Figure 4, we split the updates to the
bucket fields into three branches: Lines 6-9, Lines 10-11, and
Lines 12-14. Only the indicator counter (i.e., the register array
I) will be updated in each of the three branches. This needs a
three-branch if-else chain to update I, which is infeasible as
only a two-branch if-else chain is supported in each stage.

To fit the update of I into a two-branch if-else chain, we
discard the update of I in the third branch (i.e., Line 13 in
Figure 4); in other words, the indicator counter will not be
updated if a key is not a candidate HHH in K but has a count
larger than the current indicator counter I. The rationale here is
that the condition rarely happens in skewed workloads, in which
an HHH is quickly tracked in K and is unlikely (albeit possible)
substituted by a different key. Thus, we (slightly) sacrifice the
accuracy to reduce the update of I to only two (instead of
three) branches. Now all bucket fields can be updated with a
two-branch if-else chain in a single stage.
Putting it all together. Figure 8 shows the pseudo-code of
our P4 implementation. For each level l, where 0 ≤ l ≤ 4,
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we denote the corresponding register arrays by Kl , Vl , Il , and
Cl , where each element of Kl is initialized as −1 and each
element of other arrays is initialized as zero. We define three
metadata fields for level l, namely Meta.keyl , Meta.valuel , and
Meta.flagl . The metadata fields Meta.keyl and Meta.valuel store
the key and its value, respectively, that are pushed to level l,
while Meta.flagl stores the intermediate result at level l. All
metadata fields are initialized as zeros prior to the processing
of each packet.

The Push function pushes the key Meta.keyl and the value
Meta.vall to level l in three stages:
• Stage 1: update (Kl , Il) with a pairs atom;
• Stage 2: set the metadata value using the results in Stage 1;

and
• Stage 3: update Cl and prepare the key and value that should

be pushed to the next level based on the metadata value
from Stage 2.

We denote the three branches in the Push function (i.e., Lines 6-
9, Lines 10-11, and Lines 12-14 in Figure 4) by Case 1, Case 2
and Case 3, respectively. In Stage 1, we issue a pairs atom
to perform conditional branching on Kl,hl(x) and Il,hl(x) and
update their values accordingly. Each time when Case 1 or
Case 3 happens, we output the original value of Kl,hl(x) to
Meta.keyl+1 (Lines 11-12). Note that all conditional branches
in a pairs atom are executed simultaneously. In Stage 2, if
Meta.key(l+1) equals zero (i.e., neither Case 1 nor Case 3
happens), we set Meta.key(l+1) as the generalization of x at
level l + 1 and Meta.val(l+1) as vx (Line 14-16). Otherwise,
we set Meta.flagl as 0 if x equals Meta.key(l+1) (Case 1), or 1
if they are different (Case 2) (Line 18). In Stage 3, we update
Cl,h(x) based on the value of Meta.flagl (Lines 20-25).

To realize the Update procedure of MVPipe in P4, we call
Push(0) to update each packet from level 0 (Line 27). If
Meta.val1 has a non-zero value in Push(0) (i.e., either Case 2
or Case 3 happens), we continue to call Push(1) to update
level 1 (Lines 28-29). We have a similar process for level 2
and level 3 (Lines 30-33). For level 4, we maintain only one
register to count the value of Meta.val4, as there is only one
fully generalized key (i.e., any address) (Lines 34-35).

V. THEORETICAL ANALYSIS

We present theoretical analysis on MVPipe for both 1D
and 2D HHH detection. Our analysis configures MVPipe with
2
ε

buckets per array on average and the number of ancestors
being checked in estimation t = log 1

δ
(t is defined in §III-B),

where ε (0 < ε ≤ φ < 1) is the approximation parameter, δ

(0 < δ < 1) is the error probability, and the logarithm base is 2.
Each key is represented in logn bits, where n is the maximum
value of a key. We use the same n for both 1D and 2D cases.

Our analysis assumes H ≥ t = log 1
δ

(where H is the number
of nodes in the hierarchy, or the number of arrays in MVPipe,
as defined in §III-A). That is, MVPipe has sufficient memory
to cover all nodes in the hierarchy for accurate HHH detection.

A. Main Results

Our goal is to show that MVPipe maintains the following
two properties.

• Accuracy: Pr[Ŝ(x)−S(x)≤ kεS]> 1− 1
4k , for some constant

k ≥ 1. This property states that the estimated count of a key
in MVPipe is close to its true count with a high probability.

• Coverage: For each key x /∈H, SH(x)< φS . This property
states that any key not in the output set of HHHs H must
have a conditioned count with respect to H less than φS.
We first bound the count of a key in a bucket to which

the key is hashed. Let ∆(x) be the true count of x tracked in
its hashed bucket B(i, j). Lemma 1 gives both the upper and
lower bounds of ∆(x). Lemma 2 further shows that U(x) given
by the Estimate function is an upper bound of ∆(x).

Lemma 1. Consider the bucket B(i, j) to which key x is hashed.
If Ki, j equals x, then Ci, j ≤ ∆(x) ≤ Vi, j+Ii, j

2 ; otherwise, 0 ≤
∆(x)≤ Vi, j−Ii, j

2 .

Proof. We can bound ∆(x) with the values of Ki, j and Ii, j
based on the prior analysis [35, Lemma 2] on MJRTY [7].
If x equals Ki, j, Ii, j ≤ ∆(x) ≤ Vi, j+Ii, j

2 ; otherwise, 0 ≤ ∆(x) ≤
Vi, j−Ii, j

2 . In MVPipe, if x equals Ki, j, we use Ci, j to track the
cumulative count of x since it is stored in Ki, j, which implies
∆(x)≥Ci, j ≥ Ii, j.

Lemma 2. The returned estimate U(x) of key x by the Estimate
function is an upper bound of ∆(x).

Proof. We focus on 1D HHH detection, while the proof for 2D
HHH detection is identical. Denote the t closest ancestors of x
by yi, where 1≤ i≤ t. Let Ux and Ui be the temporary estimates
calculated for x and yi in the Estimate function, respectively.
By Lemma 1 and the Estimate function, we have Ux ≥ ∆(x)
and Ui ≥ ∆(yi)+ v≥ ∆(x), where v is the sum of cumulative
counts of yi’s descendants. Thus, U(x) = min1≤i≤t {Ux,Ui} ≥
∆(x).

We first consider 1D HHH detection. Theorem 1 states the
space and time complexities of MVPipe. Theorem 2 shows
that MVPipe satisfies both accuracy and coverage properties.
Theorem 3 further presents the bounds of MVPipe for 1D
HHH detection under certain conditions.

Theorem 1. In 1D HHH detection, MVPipe finds HHHs in
O(H

ε
logn) space. The update time is O(H). The detection time

is O(H(d−1)
ε

log 1
δ
). Note that the space and time complexities

of MVPipe are implicitly related to the error probability δ ,
as we assume H ≥ log 1

δ
.

Proof. We maintain an array of buckets for each of the H
nodes in the hierarchy. Each bucket stores a logn-bit candidate
HHH and three counters. Thus, the space usage is O(H

ε
logn).

Each per-packet update accesses at most H buckets, and hence
takes O(H) time in the worst case. We traverse all Hw buckets
to return the set of HHHs. For each candidate HHH x in a
bucket, we obtain ŜH(x) by checking the t closest ancestors
of x. If ŜH(x) is below the threshold, we push x to at most
d−1 higher-level arrays. Thus, it takes O(H(d−1)

ε
log 1

δ
) time

to return all HHHs.

Theorem 2. The main operations of MVPipe in 1D HHH
detection (Figure 4 in §III-B) satisfy the accuracy and coverage
properties.
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Proof. We first prove the accuracy property. Let B(i, j) be
the bucket to which x is hashed. Consider the sum of all
keys in B(i, j) except x. Its expectation is E[Vi, j −∆(x)] =
E[∑y6=x,hi(y)=hi(x) ∆(y)]≤ S−∆(x)

wi
≤ εS

2 . By Markov’s inequality,

Pr[Vi, j−∆(x)≥ kεS]≤ 1
2k . (1)

We study the difference between S(x) and Ŝ(x). When we
start checking B(i, j) in the Detect operation, the counts of the
descendants of x that are not in H are all pushed to B(i, j). At
this time, S(x) consists of two parts in MVPipe: ∆(x); and the
sum of the cumulative counts of x’s descendants in H. That
is, S(x) = ∆(x)+∑x′∈H∧x′≺x Ci′,hi′ (x

′), where i′ is the level of
x′. By the Detect operation, Ŝ(x) =U(x)+∑x′≺x∧x∈HCi′,hi′ (x

′).
We then have Ŝ(x)− S(x) = U(x)−∆(x). By Lemma 1 and
the Estimate function, if Ki, j equals x, U(x)−∆(x)≤ Vi, j+Ii, j

2 −
∆(x)≤ Vi, j−∆(x)

2 ; otherwise, if Ki, j 6= x, U(x)−∆(x)≤ Vi, j−Ii, j
2 −

∆(x) ≤ Vi, j−∆(x)
2 . Combining both cases, we have Pr[U(x)−

∆(x) ≥ kεS] ≤ Pr[Vi, j−∆(x)
2 ≥ kεS] ≤ 1

4k by Equation 1. Thus,
Pr[Ŝ(x)−S(x)≤ kεS] = Pr[U(x)−∆(x)≤ kεS]≥ 1− 1

4k .
We prove the coverage property by contradiction. Suppose

that SH(x)≥ φS. As the counts of the descendants of x that
are not in H must be pushed to B(i, j), we have SH(x)≤ ∆(x).
Then, φS ≤ SH(x)≤ ∆(x)≤U(x) = ŜH(x). We do not report
x as an HHH only if x is not stored in Ki, j. In this case, the
count of x in B(i, j) is further pushed to its ancestors until x
is admitted by an HHH. Thus, we must add at least one of
the ancestors of x to H. By the definition of the conditioned
count, SH(x) = 0, which is a contradiction.

Theorem 3. In 1D HHH detection, if key x and each of
its t = log 1

δ
closest ancestors have counts at most (φ − ε

2 )S,
MVPipe falsely reports x as an HHH with a probability at
most δ ; if x is at level l with SHl−1(x)≥ φS , MVPipe misses
x and reports its ancestor at a level higher than l + t as an
HHH with a probability at most δ .

Proof. We first show that MVPipe reports a small key x that
is at level l with a small probability. Suppose that x is hashed
to bucket B(l, j). A necessary condition of reporting x as an
HHH is that ŜHl−1(x) =U(x)≥ φS . We get U(x) = min{Uk},
where 0≤ k≤ t and U0,U1, . . . ,Ut are the estimate of x and its
t ancestors y1, . . . ,yt , respectively, in the Estimate function. We
have Uk ≥ φS for each 0≤ k ≤ t. Consider U0 first. We have
U0−S(x)≥ φS− (φ − ε

2 )S = εS
2 . Then, Pr[U0−S(x)≥ εS

2 ]≤
Pr[U0−∆(x)≥ εS

2 ]≤ Pr[Vi, j−∆(x)
2 ≥ εS

2 ]≤ 1
2 by Equation 1 and

the proof in Theorem 2. Similarly, we can get Pr[Uk−S(yk)≥
εS
2 ] ≤ 1

2 . Thus, Pr[U(x) ≥ φS] = ∏
t
k=0 Pr[Uk−S(yk) ≥ εS

2 ] ≤
1

2t+1 ≤ δ .
We show that MVPipe misses an HHH x at level l but

reports its ancestor at much higher levels with a small
probability. Given SHl−1(x)≥ φS , we have ŜHl−1(x) =U(x)≥
∆(x)≥ SHl−1(x)≥ φS by the Detect operation and Lemma 2.
We do not report x as an HHH when checking its hashed
bucket B(l, j) if x is not stored in Kl, j. By MJRTY, the
count of x in B(l, j) does not account for more than half
of the total count in that bucket. We have Pr[∆(x) ≤ Vl, j

2 ] =
Pr[Vl, j − ∆(x) ≥ ∆(x)] ≤ Pr[Vl, j − ∆(x) ≥ SH(x)] ≤ Pr[Vl, j −

∆(x)≥ φS]≤Pr[Vl, j−∆(x)≥ εS]≤ 1
2 by Equation 1. Similarly,

the probability that we miss the next ancestor of x is also
smaller than 1

2 . Thus, the probability that we miss all t− 1
closest ancestors of x is smaller than 1

2t = δ .

We also consider 2D HHH detection. Theorem 4 states the
space and time complexities. Theorem 5 shows that MVPipe
satisfies both the accuracy and coverage properties. In the
interest of space, we present the major operations of 2D HHH
detection and the proofs of the theorems in the supplementary
file.

Theorem 4. In 2D HHH detection, MVPipe finds HHHs in
O(H

ε
logn) space. The update time is O(d) in the worst case.

The detection time is O( (d−1)H
ε

log 1
δ
).

Theorem 5. The main operations of MVPipe in 2D HHH
detection satisfy the accuracy and coverage properties.

B. Comparisons with Existing Schemes

Update time. Compared to previous studies, except for RHHH
[3] with O(1) update time, MVPipe achieves the same or even
a lower update time complexity even in the worst case. For
example, the schemes in [24] process each packet at each of
the H nodes in the hierarchy, and the update time complexity is
O(H log 1

ε
) (for heap-based implementation) and O(H) (using

unitary updates). The schemes in [11] have an amortized update
time complexity O(H log(εS)).

Note that our update time analysis for MVPipe in Theorem 1
focuses on the worst case (i.e., each packet update takes O(H)
time), yet our evaluation (i.e. Experiments 4 and 5 in §VI)
shows that MVPipe can terminate the Update operation for
most packets at low levels under the skewness of IP traffic.
The amortized update time of MVPipe in our evaluation for
real-world traces is much smaller than O(H).
Accuracy. Prior studies pose strong accuracy guarantees for the
estimated count Ŝ(x) of key x. For example, the HHH detection
schemes in [11], [24] guarantee that the error between Ŝ(x)
and S(x) is at most εS , while randomized HHH (RHHH) [3]
keeps the error within εS with a probability of at least 1−δ .
In contrast, MVPipe relaxes the accuracy guarantee for high
update performance, in which Ŝ(x) is close to S(x) and deviates
much from S(x) with a small probability.

We can improve the accuracy of MVPipe by maintaining
multiple rows of buckets for each node of the hierarchy, at
the expense of degrading the processing speed and increasing
the update complexity. The reasons are two-fold. First, the
process of each key in an array of MVPipe requires multiple
memory accesses, as MVPipe needs to insert each processed
key into multiple arrays to reduce the errors caused by hash
collisions. Second, there could be multiple keys being kicked
out from an array after a key is updated, and if it happens,
we need to further check whether each of the kicked-out keys
remains in the other rows of the array except for the row
where the key is kicked out. When we push the kicked-out
keys that are no longer in the array to the subsequent higher-
level arrays, each of these keys may also kick out multiple
keys. Thus, maintaining multiple rows of buckets for each node
of the hierarchy incurs high update overhead. Nevertheless,
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even though the one-row-array design of MVPipe relaxes the
accuracy guarantee, our evaluation (i.e., Experiments 1 and 2
in §VI) shows that MVPipe achieves high accuracy.

VI. EVALUATION

We compare MVPipe with six state-of-the-art HHH detection
schemes, including: trie-based HHH detection (TRIE) [39], full
ancestry (FULL) [11], partial ancestry (PARTIAL) [11], heap-
based Space Saving (HSS) [24], unitary-update-based Space
Saving (USS) [24], and randomized HHH (RHHH) [3]; the first
five schemes are streaming-based, while RHHH is sampling-
based (§I). We show that MVPipe achieves (i) high detection
accuracy, (ii) high update throughput, (iii) small convergence
time, and (iv) limited resource usage in a Tofino switch [36].

A. Methodology

Traces. We use the real-world traces from CAIDA [8], captured
on an OC-192 backbone link in January 2019. Note that CAIDA
traces are also used for evaluating HHH detection in both
networking [3] and database [11], [24] communities. By default,
we use the first five minutes of the traces for evaluation and
divide them into five one-minute epochs, each of which has
36.7 M packets and 1.1 M unique IPv4 addresses on average;
in Experiment 6, we vary the number of epochs and the epoch
length. We perform HHH detection in each epoch and obtain
the average results over all epochs.

We also consider IPv6 traffic from both the CAIDA traces
and the IPv6 traces from MAWI’s WIDE project [10]. We
find that MVPipe shows similar trends on both IPv4 and IPv6
traffic compared with state-of-the-arts. For brevity, we focus
on IPv4 traffic in the CAIDA traces in this section, and report
the findings for IPv6 traffic in the supplementary file.
Parameter settings. We configure the number of buckets (i.e.,
wi) in each array Ai of MVPipe for a given available memory
size, where 0≤ i < H. We first calculate the average number
of buckets, denoted by wavg, for each array of MVPipe based
on the bucket size (e.g, a bucket consumes 16 bytes, with
four bytes for each field, for 1D-byte HHH detection) and
the number of nodes H in the hierarchy (e.g., five nodes for
1D-byte HHH detection). We set wi for each array Ai, starting
from the top level H−1 of the hierarchy. If a level has a key
space size smaller than wavg (e.g., the highest level H−1 has
only the wildcard element), we set wi as the key space size
and update wavg by averaging the residual available memory
size among the remaining arrays; otherwise, we set wi = wavg.

We configure the memory sizes for HSS, USS, and RHHH
based on the fractional threshold φ to ensure that there is
enough memory to store the maximum possible number of
HHHs; a large φ implies a small number of true HHHs in an
epoch, which also implies less memory usage to store all HHHs.
We also configure the maximum memory sizes for FULL and
PARTIAL based on φ . Note that the memory sizes for FULL
and PARTIAL vary in an epoch, as they dynamically expand
and shrink their counter arrays during packet processing to
keep only the large keys in the arrays.

We consider 1D-byte, 1D-bit, 2D-byte, and 2D-bit HHH
detection. We only present the results for packet counting (i.e.,

v f = 1) in the interest of space, while MVPipe shows similar
results for byte counting. For TRIE, we only evaluate it for 1D
cases, due to its high space complexity and low accuracy for
2D cases. We implement hash functions using MurmurHash
[1] in all schemes.

B. Results

(Experiment 1) Accuracy comparisons. We compare different
HHH detection schemes on accuracy versus different values
of the absolute threshold φS. We fix the memory space of
MVPipe as 256 KiB, 1 MiB, 1 MiB, and 16 MiB for 1D-byte,
1D-bit, 2D-byte, and 2D-bit HHH detection, respectively. We
consider different absolute thresholds, such that the number of
true HHHs per epoch varies between 200 and 1,000.

We consider three accuracy metrics: (i) precision, the ratio of
true HHHs reported over all reported HHHs (the denominator
includes all true and false HHHs); (ii) recall, the ratio of true
HHHs reported over all true HHHs (the denominator includes
all reported and non-reported true HHHs); and (iii) relative
error, defined as 1

|H| ∑x∈H
|Ŝ(x)−S(x)|

S(x) , where H is the set of
true HHHs reported. Note that an HHH is identified by both
its prefix and subnet mask. For example, it is treated as an
error if an HHH 1.2.3.4/32 is reported as 1.2.3.4/31 in 1D-bit
HHH detection.

We also measure the memory usage of each scheme based
on the number of counters allocated in its data structure. As
both FULL and PARTIAL dynamically allocate memory space
in each epoch, we report their peak memory usage.

Figure 9 shows the results. MVPipe achieves higher accuracy
in most cases compared to others in all cases. RHHH achieves
a precision below 0.85 and 0.25 for byte-level and bit-level
HHH detection, respectively, with a relative error of around
100%. The reason is that RHHH has slow convergence and
needs to process sufficient packets in order to converge to high
accuracy (see Experiment 6 for further analysis). Both HSS
and USS have comparable accuracy to MVPipe in 1D-byte
and 1D-bit HHH detection, yet their precisions are significantly
lower than MVPipe in 2D-byte and 2D-bit HHH detection (e.g.,
their precisions are around 0.6 in 2D-bit precision), mainly
because they estimate the conditioned count of a key in a
more conservative way. TRIE, FULL, and PARTIAL have
low accuracy in all settings. We observe that the accuracy
of MVPipe increases with the threshold (i.e., fewer HHHs),
while those of other schemes remain almost the same for all
thresholds. The reason is that MVPipe adopts static memory
allocation and its memory size is fixed for all thresholds, while
the memory sizes of other schemes decrease as the threshold
increases (§VI-A).

For memory usage, MVPipe maintains a medium size of
memory usage among all schemes. RHHH and USS have
the highest memory usage in most cases, as they implement
multiple Space Saving instances [23], each of which comprises
a hash table and multiple doubly linked lists. FULL and PAR-
TIAL have the smallest memory usage, as they dynamically
kick out small keys and keep only large keys in their counter
arrays; however, such dynamic memory allocation incurs high
update overhead (Experiment 3).



IEEE/ACM TRANSACTIONS ON NETWORKING 11

●MV HSS USS RHHH FULL PARTIAL TRIE

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

Threshold (10
4
 pkts)

P
re

c
is

io
n

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

Threshold (10
4
 pkts)

R
e
c
a
ll

● ● ● ●
● ●

10
−4

10
−2

10
0

10
2

2 4 6 8 10 12

Threshold (10
4
 pkts)

E
rr

o
r

●
● ● ● ● ●0.0

0.5

1.0

1.5

2.0

2 4 6 8 10 12

Threshold (10
4
 pkts)

M
e
m

o
ry

 (
M

iB
)

(a) Precision for 1D-byte (b) Recall for 1D-byte (c) Error for 1D-byte (d) Memory for 1D-byte

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

4 6 8 10 12 14

Threshold (10
4
 pkts)

P
re

c
is

io
n

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

4 6 8 10 12 14

Threshold (10
4
 pkts)

R
e
c
a
ll

● ● ●
● ● ●

10
−4

10
−2

10
0

10
2

4 6 8 10 12 14

Threshold (10
4
 pkts)

E
rr

o
r

●

●
● ● ● ●

0.0
0.5
1.0
1.5
2.0
2.5
3.0

4 6 8 10 12 14

Threshold (10
4
 pkts)

M
e
m

o
ry

 (
M

iB
)

(e) Precision for 1D-bit (f) Recall for 1D-bit (g) Error for 1D-bit (h) Memory for 1D-bit

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

Threshold (10
4
 pkts)

P
re

c
is

io
n

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

Threshold (10
4
 pkts)

R
e
c
a
ll

● ● ● ● ● ●

10
−4

10
−2

10
0

10
2

2 4 6 8 10 12

Threshold (10
4
 pkts)

E
rr

o
r

●

●
● ● ● ●

0.0

1.5

3.0

4.5

6.0

2 4 6 8 10 12

Threshold (10
4
 pkts)

M
e
m

o
ry

 (
M

iB
)

(i) Precision for 2D-byte (j) Recall for 2D-byte (k) Error for 2D-byte (l) Memory for 2D-byte

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

15 20 25 30 35 40

Threshold (10
4
 pkts)

P
re

c
is

io
n

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

15 20 25 30 35 40

Threshold (10
4
 pkts)

R
e
c
a
ll

● ● ● ● ● ●

10
−4

10
−2

10
0

10
2

15 20 25 30 35 40

Threshold (10
4
 pkts)

E
rr

o
r

●
●

●
● ● ●

0

10

20

30

40

15 20 25 30 35 40

Threshold (10
4
 pkts)

M
e
m

o
ry

 (
M

iB
)

(m) Precision for 2D-bit (n) Recall for 2D-bit (o) Error for 2D-bit (p) Memory for 2D-bit

Figure 9: (Experiment 1) Accuracy comparisons.

(Experiment 2) Robustness of MVPipe under various
memory sizes. We evaluate MVPipe versus the absolute
threshold φS by varying the memory size allocated for MVPipe.
We configure the memory size in the range from 256 KiB to
2 MiB for 1D-byte, 1D-bit, and 2D-byte HHH detection, while
increasing the memory size to the range from 8 MiB to 14 MiB
for 2D-bit HHH detection for tracking many more nodes in
the 2D-bit hierarchy.

Figure 10 shows the results. As expected, MVPipe achieves
higher accuracy with larger memory sizes. Also, the accuracy
of MVPipe is fairly robust in different cases. For example,
with a memory size of 1 MiB, both the precision and recall
of MVPipe are above 0.9 for most of the absolute threshold
settings in 1D-bit, 1D-byte, and 2D-byte HHH detection.
(Experiment 3) Update throughput. We benchmark the
update throughput of all HHH detection schemes on a server
equipped with an Intel Xeon E5-1630 3.70 GHz CPU and
16 GiB RAM. The server runs Ubuntu 14.04.5. To exclude
disk I/O overhead and stress-test each scheme, we first load the
whole trace into memory before running the experiment, and
then process the trace as fast as possible. Here, we focus on

1D-byte and 1D-bit HHH detection, while similar performance
trends are observed for 2D-byte and 2D-bit HHH detection.
We keep the same memory size setting for MVPipe as in
Experiment 1 and fix the absolute threshold as 100,000 packets.

Figures 11(a) and 11(b) show the update throughput of all
schemes in million packets per second (MPPS) for 1D-byte and
1D-bit HHH detection, respectively; each error bar shows the
maximum and minimum throughput across different epochs for
each scheme. MVPipe achieves the highest throughput with up
to 5.84× and 22.13× throughput gain for byte-level and bit-
level HHH detection, respectively. Both HSS and USS have the
lowest throughput as they update the sketch instance for every
node in the hierarchy for each packet. FULL, PARTIAL, and
TRIE also have low throughput, as they dynamically expand
or shrink their data structures during packet updates.

Although RHHH supports constant-time updates per packet
[3], it has lower throughput than MVPipe in 1D HHH detection.
The reason is that for each packet update, RHHH accesses a
single Space Saving instance, but may incur multiple pointer
assignments to update the linked lists in the Space Saving
data structure [23]. RHHH can increase its throughput via
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Figure 10: (Experiment 2) Robustness of MVPipe under various memory sizes.
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Figure 11: (Experiment 3) Update throughput.

packet sampling (e.g., 10% of packets in 10-RHHH [3]), but
it increases the convergence time and has low accuracy.
(Experiment 4) Throughput versus skewness. While MVPipe
is designed for highly skewed workloads, we evaluate the
update throughput of MVPipe for less skewed workloads by
varying the skewness degree of the CAIDA traces. In the
original CAIDA traces used in our evaluation, the top-1000
flows account for 54% of the total number of packets in the
traces. We vary the skewness degree of the traces by controlling
the fraction of the total number of packets occupied by the
top-1000 flows in each epoch. Specifically, we replace some
packets of the top-1000 flows with new packets that have
randomly generated source and destination IP addresses, such
that the top-1000 flows account for a specified fraction (varied
from 10% to 50%) of the total number of packets in each epoch.
A smaller specified fraction implies a less skewed workload.
Here, we set w0 as 5,000 and 3,000 in 1D-byte and 1D-bit
detection, respectively.

Figure 12 shows the update throughput of all schemes
under various skewness degrees for 1D-byte and 1D-bit HHH
detection. The throughput of MVPipe drops quickly as the
specified fraction decreases (i.e., less skewed), as more packets
need to be pushed to higher levels. Although MVPipe’s
throughput decreases for less skewed workloads, its throughput
remains higher than other schemes except for RHHH and TRIE.
(Experiment 5) Number of traversed nodes. To understand
the update throughput of MVPipe, we collect the number of
nodes being traversed by MVPipe in a hierarchy for each packet

update in both 1D-byte and 1D-bit hierarchies for different
skewness degrees as specified in Experiment 4.

Figure 13 shows the cumulative percentage of packets
versus the number of traversed nodes by MVPipe for different
skewness degrees. We first examine the results for the original
CAIDA traces (i.e., the top-1000 fraction is 54%). In 1D-
byte HHH detection, 73% of packet updates traverse only one
node in the hierarchy, where each packet update on average
traverses only 1.39 nodes. In 1D-bit HHH detection, the number
of traversed nodes slightly increases: only 66% of packet
updates traverse one node, while each packet update on average
traverses 2.36 nodes. The reason is that as the number of nodes
increases in the 1D-bit hierarchy, each packet update generally
needs to traverse more nodes in order to be admitted by a
candidate HHH. Thus, MVPipe has lower throughput in 1D-bit
HHH detection than in 1D-byte HHH detection. Nevertheless,
since each packet update traverses only one node in a hierarchy
in most cases, it justifies the high update throughput of MVPipe
(see Figure 11 in Experiment 3).

We examine the results when the skewness degree decreases.
As the top-1000 fraction decreases from 54% to 10%, the
fraction of packet updates traversing only one node decreases
from 73% to 31% for 1D-byte HHH detection, and from 66% to
26% for 1D-bit HHH detection. Correspondingly, the average
number of traversed nodes per update increases from 1.39 to
2.72, and from 2.36 to 11.62, respectively. This explains the
throughput drop of MVPipe for less skewed workloads.
(Experiment 6) Convergence. We study the convergence
by comparing the accuracy between MVPipe and RHHH [3]
for various epoch lengths. We use the first twelve minutes
of the CAIDA traces and vary the epoch length from one
second to ten minutes (our default is one minute), where the
number of packets in each epoch on average varies from 0.5 M
to 401 M. For each epoch length, we divide the traces into
multiple epochs (if the epoch length is larger than six minutes,
we consider one epoch only). A small epoch length (e.g., one
second) implies a small number of packets in the epoch, and
any scheme that requires sufficient packets for convergence
may have low accuracy. We set the absolute threshold for each
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Figure 12: (Experiment 4) Throughput vs. skewness.
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Figure 13: (Experiment 5) Number of traversed nodes.
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Figure 14: (Experiment 6) Convergence.

epoch as φS , where we fix φ = 0.01 and S as the total number
of packets in that epoch. We keep the same memory usage of
MVPipe and RHHH. We focus on 1D HHH detection, and
similar observations are made for the 2D cases.

Figure 14 shows the results. The accuracy of RHHH drops in
small epoch lengths, due to its slow convergence. For example,
its precision is less than 0.9 if the epoch length is less than 30 s
in the 1D-byte case; in the 1D-bit case, both its precision and
recall converge to around 0.8 after 300 seconds (conforming to
the results in the original paper [3]). In contrast, the precision
and recall of MVPipe are higher than 0.99 in all settings.
(Experiment 7) MVPipe in hardware. We evaluate MVPipe
for 1D-byte HHH detection in a Tofino switch [36]. We
configure the number of buckets from arrays A0 to A4 as
2048, 2048, 2048, 256, and 1, respectively. In this case, both
the precision and recall of MVPipe are above 0.9 for an epoch
length of one second in our traces.

Table I summarizes the resource usage of MVPipe in the
Tofino switch, in terms of the number of physical stages used,
SRAM consumption, the number of stateful ALUs consumed,
and the message size overhead across stages in the packet
header vector (PHV). MVPipe occupies all 12 physical stages
of the switch. Nevertheless, its average resource consumption
per stage is small, and the remaining resources in each occupied
stage can still be made available for other applications. For
example, MVPipe consumes only 2.81% of SRAM and 27.18%
of stateful ALUs of the switch. The total size of messages
across stages, including packet header information and metadata
needed by MVPipe, is 132 bytes, among which only 48 bytes
are due to the metadata from MVPipe.

We also validate that MVPipe’s throughput now achieves
100 Gb/s in our testbed (bounded by our packet generation rate),
and it does not have any packet resubmission or recirculation.
As MVPipe incurs limited switch resource overhead, we
conjecture that its throughput in switch hardware can be even
higher in production deployment.

No. stages SRAM (KiB) No. SALUs PHV size (byte)
12 (100%) 432 (2.81%) 13 (27.08%) 132 (17.18%)

Table I: (Experiment 7) Switch resource usage of MVPipe; percent-
ages are fractions of total resources.

VII. RELATED WORK

Dynamic data structures. To maintain memory efficiency in
HHH detection, prior studies propose dynamic data structures
that insert or delete keys of interest on-the-fly. Trie-based HHH
detection [37], [39] tracks keys in trie nodes and dynamically
spawns new child nodes if a trie node has a byte count above
a splitting threshold. Cormode et al. [11] propose full ancestry
and partial ancestry, both of which build on Lossy Counting
[22] with hierarchy awareness. Both algorithms maintain a
lattice structure that dynamically adds or removes nodes. In
contrast, MVPipe uses static memory allocation and incurs no
dynamic memory management overhead.
Extensions of HH detection. Several studies extend existing
heavy-hitter-based solutions for HHH detection. Lin et al.
[21] adapt Space Saving [23] to improve the accuracy of 1D
HHH detection. Mitzenmacher et al. [24] further extend Space
Saving with better space efficiency. Randomized HHH (RHHH)
[3] extends the solution by Mitzenmacher et al. [24] with
randomization: it maintains a Space Saving instance for each
level of the hierarchy and randomly updates only one of the
instances for each packet. While RHHH achieves high update
throughput, it has slow convergence. In contrast, MVPipe
preserves the invertibility and static memory allocation of
MV-Sketch and adopts a pipelined design to achieve both
lightweight updates and fast convergence in HHH detection.
TCAM-based solutions. Some studies [17], [26], [30] leverage
TCAM counters in hardware switches for 1D HHH detection,
by matching and counting packets in the data plane and
adapting the monitoring rules for different prefixes based on
counter values. They rely on a centralized controller to decide
the rules on which specific aggregation levels are monitored.
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In contrast, MVPipe can work entirely in the data plane for
general aggregation levels.
Others. Some HHH detection solutions specifically address
the practical requirements of network measurement. AutoFocus
[12] is an offline traffic analysis tool for identifying large traffic
clusters. Cho [9] proposes a recursive partitioning approach
for tractable HHH detection from an operational perspective.

VIII. CONCLUSIONS

We revisit the HHH detection problem in network mea-
surement. We present MVPipe, a novel invertible sketch that
supports both lightweight updates and fast convergence in
HHH detection and can be feasibly deployed in programmable
switches. MVPipe builds on the skewness property of IP traffic
and the pipelined executions of majority voting. Theoretical
analysis and prototype evaluation in both software and hardware
justify the design properties of MVPipe: high accuracy, high
update throughput, fast convergence, and resource efficiency
in P4-based switch deployment.
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