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Elastic Reed-Solomon Codes for Efficient
Redundancy Transitioning in Distributed

Key-Value Stores
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Abstract—Modern distributed key-value (KV) stores increasingly adopt erasure coding to reliably store data. To adapt to the changing
demands on access performance and reliability requirements, distributed KV stores perform redundancy transitioning by tuning the
redundancy schemes with different coding parameters. However, redundancy transitioning incurs extensive network I/Os, which impair
the performance of distributed KV stores. We propose a new family of erasure codes, called Elastic Reed-Solomon (ERS) codes, whose
primary goal is to mitigate network I/Os in redundancy transitioning. ERS codes eliminate data block relocation, while limiting network
I/Os for parity block updates via the new co-design of encoding matrix construction and data placement. ERS codes achieve such gains
in both forward and backward transitioning scenarios. We realize ERS codes in a distributed KV store prototype based on Memcached,
and show via testbed experiments in both local and cloud environments that ERS codes significantly reduce the latency of redundancy
transitioning compared with state-of-the-arts.

Index Terms—Erasure codes, Redundancy transitioning, Key-value stores.
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1 INTRODUCTION

Distributed key-value (KV) stores improve scalability
and access performance of object storage compared to tradi-
tional relational databases. To provide reliability guarantees
against frequent failures [18], modern distributed KV stores
increasingly adopt erasure coding to provide low-cost data
redundancy [3], [13], [14], [33], [47]. Compared with repli-
cation, erasure coding significantly reduces the amount of
redundancy to attain the same degree of fault tolerance [38].
Among many erasure coding constructions, Reed-Solomon
(RS) codes [35] are one popular family of erasure codes that
minimize the storage overhead for reliability guarantees. At
a high level, RS codes encode k data blocks into additional
m redundant blocks, called parity blocks, such that the k data
blocks can be reconstructed from any k out of k+m available
data and parity blocks.

To adapt to the elastic demands on access efficiency and
fault tolerance, it is desirable for erasure-coded KV stores to
support redundancy transitioning, which dynamically adjusts
the coding parameters k and m to balance performance, stor-
age overhead, and reliability. We motivate that redundancy
transitioning is critical for modern KV stores for two reasons.
• Adaptation to workload changes. Real-world storage
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workloads exhibit highly skewed patterns of popularity
[9], [21], in which a small fraction of hot data is frequently
accessed, while the remaining large fraction of cold data
is rarely accessed. Also, the access patterns of storage
workloads are time-varying [44]. Fixing the coding pa-
rameters makes KV stores inflexible to achieve both high
performance and low storage overhead. Given that erasure
coding poses a design trade-off between performance
and storage efficiency [16], practical KV stores should
incorporate multiple redundancy schemes, such that hot
objects are encoded with high-redundancy erasure codes
for better performance, while cold objects are encoded
with low-redundancy erasure codes for better storage
efficiency. For example, Ceph adopts RS codes and allows
the coding parameters to be tunable [3], so that objects
can be stored with different coding parameters to balance
between performance and space efficiency.

• Adaptation to reliability requirements. Disk reliability
changes throughout the entire disk lifetime, so data cen-
ters can dynamically switch across different redundancy
schemes to balance between storage overhead and fault
tolerance [22], [23]. Also, the reliability importance varies
across data types, in which the loss of important data may
imply costly recovery [36]. Such important data may be
protected by erasure codes with higher redundancy.

However, realizing efficient redundancy transitioning in a
distributed environment is a non-trivial task, mainly because
the redundancy transitioning process often incurs data block
relocation and parity block updates, both of which incur
substantial network I/Os that lead to extensive amounts
of traffic being transferred over the network. Specifically,
traditional erasure codes often map blocks to a fixed set of
nodes, such that the number of data blocks for an object
is equal to the number of nodes that store the object data.
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If redundancy transitioning changes the number of data
blocks (i.e., k), then some data blocks have to be relocated
to different nodes, thereby incurring extra I/Os. Parity block
updates further aggravate I/Os: since the layout of data
blocks has changed, the parity blocks need to be updated
accordingly with additional I/Os, including the retrieval of
all data blocks for recomputing the new parity blocks and
the writes of the new parity blocks to nodes.

In this paper, we propose a new family of RS codes, called
Elastic Reed-Solomon (ERS) codes, so as to enable efficient
redundancy transitioning for erasure-coded distributed KV
stores. ERS codes build on the decoupling of block-to-node
mappings [36] by distributing data blocks into an extended
number of nodes, so as to completely eliminate data block re-
location. Furthermore, our key insight is that the computation
of the new parity blocks (after transitioning) can reuse the old
parity blocks (before transitioning), as both types of parity
blocks often share the same encoding operations for some
overlapping data blocks (defined in Section 2.3). Based on this
insight, we propose a novel co-design of encoding matrix
construction and data placement for ERS codes to increase
the number of such overlapping data blocks. This allows
the new parity blocks to be computed from largely the old
parity blocks plus a small number of non-overlapping data
blocks, thereby mitigating the network I/Os due to parity
block updates. ERS codes require limited network I/Os in
both forward and backward transitioning scenarios (defined
in Section 2.2). Note that ERS codes preserve the storage
optimality of RS codes (i.e., the minimum redundancy
overhead for reliability guarantees).

We implement a distributed KV store prototype that
realizes ERS codes based on Memcached [6]. Our prototype
supports all basic KV operations (e.g., PUT, GET, UPDATE,
etc.), while enabling redundancy transitioning. Experiments
in both a local cluster and Alibaba Cloud [1] show that ERS
codes reduce the transitioning latency of the state-of-the-art
stretched RS codes [36] by up to 65.8% and 60.9% in forward
transitioning and backward transitioning, respectively.

The source code of our prototype of ERS codes is available
at http://adslab.cse.cuhk.edu.hk/software/ers.

2 BACKGROUND AND MOTIVATION

We present the background of erasure coding in distributed
KV stores (Section 2.1). We formulate the redundancy tran-
sitioning problem and state its challenges (Section 2.2). We
motivate our solutions to the challenges (Section 2.3).

2.1 Erasure Coding in Distributed KV Stores
Distributed KV stores disperse objects (in the form of KV
pairs) across a cluster of nodes. By using fast mapping
algorithms, they achieve high-performance and scalable data
accesses. For example, Dynamo [15] and Memcached [6]
are two well-known distributed KV stores using consistent
hashing [24] for object mapping. Consistent hashing organizes
nodes into a hash ring. It deterministically maps each object
to a node by hashing the object’s key to a location in the hash
ring, such that the object is stored in the nearest node in the
clockwise direction of the hash ring.

Failures are prevalent in distributed KV stores [18], so
it is essential for distributed KV stores to guarantee fault

tolerance by introducing redundancy. Erasure coding incurs
much less storage redundancy for the same degree of fault
tolerance compared to replication [38]. In this work, we focus
on Reed-Solomon (RS) codes [35], a popular family of erasure
codes that are widely used in modern KV stores [3], [13], [25],
[33], [47]. We construct RS codes, denoted by RS(k,m), with
two configurable parameters k and m. RS(k,m) takes k data
blocks (denoted by D0, D1, · · · , Dk−1) as input for encoding,
and generates m parity blocks (denoted by P0, P1, · · · , Pm−1),
such that any k out of the k+m data and parity blocks suffice
to reconstruct the original k data blocks. The k+m data and
parity blocks that are encoded together collectively form a
stripe. In practice, a KV store comprises multiple stripes that
are encoded independently. It distributes each stripe of k+m
blocks across k+m nodes (denoted by X0, X1, · · · , Xk+m−1)
to tolerate any m node failures.

Mathematically, the encoding process of RS codes can be
specified by an m × k encoding matrix (denoted by Gm×k),
constructed by the Vandermonde matrix [31]. Given a data
vector (i.e., a column vector of k data blocks), RS codes
multiply Gm×k by the data vector to compute the parity
vector (i.e., a column vector of m parity blocks) over the
Galois Field GF(2ω), where ω is the size of a coding unit
(in bits). For example, when (k,m) = (2, 2) and ω = 4, the
matrix-vector product representation is:[

P0

P1

]
= G2×2 ×

[
D0

D1

]
=

[
1 1
1 8

]
×

[
D0

D1

]
. (1)

There are two approaches of applying erasure coding
to objects in KV stores, namely per-object coding [3], [25],
[33], which divides each object into k data blocks for
encoding, and cross-object coding [13], [14], [47], which stores
multiple objects within a data block and collects every k data
blocks for encoding. In this work, we mainly consider per-
object coding, which exhibits better load balancing and I/O
performance [33]. We target the workloads with large-size
objects (e.g., in cloud storage), in which each object can be
divided into multiple data blocks for encoding. For example,
EC-Cache focuses on the object size of at least 1 MB [33].

2.2 Redundancy Transitioning

Problem definition. Redundancy transitioning focuses on
changing the coding parameters k and m of existing erasure-
coded objects, so as to adapt to the varying access charac-
teristics and reliability demands (Section 1). In this work,
we pay special attention to the transitioning that changes
k only, while the number of tolerable failures m remains
unchanged. We call the conversion forward transitioning when
transitioning from RS(k,m) to RS(k′,m) (where k < k′), and
backward transitioning when transitioning from RS(k′,m) to
RS(k,m), such that RS(k′,m) is derived from RS(k,m) by
forward transitioning. By increasing k in forward transition-
ing, we can reduce the storage redundancy and increase the
overall storage efficiency; on the other hand, by decreasing
k in backward transitioning, we can enhance the access
performance and reliability of the objects. Thus, both forward
transitioning and backward transitioning are essential in
distributed KV stores. In the following, we first focus on
forward transitioning and state the challenges in redundancy
transitioning, and show how our ERS codes address the
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Figure 1. Example of SRS(2,1,3), which eliminates data block relocation
in the transitioning from RS(2,1) to RS(3,1). The data and parity blocks
of the same color constitute a stripe.

challenges (Sections 2 and 3). Later, we address backward
transitioning in ERS codes (Section 4).

Redundancy transitioning inevitably changes the encod-
ing layout of a stripe (e.g., in forward transitioning, the
number of data blocks changes from k to k′), so we need
to update both the encoding matrix and the corresponding
parity blocks. There are two key I/O operations, namely
data block relocation, which relocates existing data blocks to
form a new stripe, and parity block updates, in which the
parity blocks are updated based on the new encoding matrix
Gm×k′ . Both operations incur network I/Os in distributed
KV stores and hence data traffic being transferred over the
network (Section 1). In this work, we focus on mitigating the
network I/Os in redundancy transitioning.

To eliminate data block relocation during redundancy
transitioning, Ring [36] proposes Stretched Reed-Solomon (SRS)
codes (denoted by SRS(k,m, k′)). SRS codes differentiate
logical storage from physical storage: the former refers to the
k +m logical columns that store the RS(k,m) stripes, while
the latter refers to the k′ + m physical nodes that actually
store the stripes. Then, the block-to-node mapping and data
placement operate on physical storage. The idea of SRS codes
is to store the k data blocks of RS(k,m) in k′ > k nodes
(i.e., relaxing the tight coupling of the same block-to-node
mappings). SRS(k,m, k′) operates on a group of multiple
stripes. It first computes the least common multiple (LCM)
of k and k′, denoted by l = lcm(k, k′). It distributes l data
blocks into k columns (in logical storage) in column-major
order. It encodes every k data blocks into m parity blocks
via RS(k,m). It finally stores the l data blocks evenly over k′

nodes (in physical storage), while keeping the parity blocks
in m nodes. As the data blocks of SRS(k,m, k′) are now
stored in k′ nodes, transitioning from RS(k,m) to RS(k′,m)
has no data block relocation.

To illustrate, Figure 1 shows an example of SRS(2,1,3). Let
si (i ≥ 0) be a pre-transitioning stripe (before transitioning),
and let s′i (i ≥ 0) be a post-transitioning stripe (after transition-
ing). Before transitioning, there are l

k = 3 pre-transitioning
stripes (i.e., s0, s1, and s2) for RS(2,1). After transitioning,
there are l

k′ = 2 post-transitioning stripes (i.e., s′0 and s′1)
for RS(3,1). We can see that the data block distribution for
RS(3,1) is preserved, so data block relocation is eliminated.
However, the parity blocks need to be updated accordingly
(i.e., P ′

0 and P ′
1).

Challenges. While SRS codes eliminate data block relocation,
it is still challenging to realize efficient redundancy transition-
ing due to the expensive parity block updates. The reasons
are two-fold.

Challenge 1: The encoding matrices before and after
transitioning substantially differ. We elaborate this issue via
an example of transitioning from RS(4,3) to RS(5,3).

We first show the encoding process of the pre-
transitioning stripe, in which the encoding matrix G3×4

is multiplied by the four data blocks {D0, D1, D2, D3}:P0

P1

P2

 = G3×4 ×

D0

D1

D2

D3

 =

1 1 1 1
1 15 2 14
1 12 8 5

×
D0

D1

D2

D3

 . (2)

We next show the encoding process of the post-
transitioning stripe to generate {P ′

0, P
′
1, P

′
2}, formed by

multiplying the matrix G3×5 by {D0, D1, D2, D3, D4}:

P ′
0

P ′
1

P ′
2

 = G3×5 ×


D0

D1

D2

D3

D4

 =

1 1 1 1 1
1 3 6 10 14
1 10 4 15 11

×

D0

D1

D2

D3

D4

 . (3)

Since P0 = D0+D1+D2+D3 and P ′
0 = D0+D1+D2+

D3 +D4 (in Galois Field arithmetic), we can simply retrieve
D4 to update P0 into P ′

0. However, P1 = D0+15D1+2D2+
14D3 and P ′

1 = D0+3D1+6D2+10D3+14D4, so in order
to update P1 into P ′

1, we have to retrieve D1, D2, D3, and
D4. Similarly, updating P2 into P ′

2 also needs to retrieve D1,
D2, D3, and D4. Thus, in order to transition from RS(4, 3)
to RS(5, 3), we need to access D1, D2, D3, and D4 (i.e., four
data blocks) for parity block updates.

Challenge 2: The placement of data blocks also determines
the number of data blocks to be read during redundancy
transitioning. For example, in Figure 1, we can only find one
common data block D0 in s0 and s′0, as well as one common
data block D1 in s1 and s′1. If we use P0 and P1 to generate
P ′
0 and P ′

1, respectively, then P ′
0 = P0 +D2 +D3 +D4, and

P ′
1 = P1 + D3 + D4 + D5. Thus, we need to retrieve four

data blocks (i.e., D2, D3, D4, and D5) from other nodes to
generate the new parity blocks. The network I/O cost of
parity block updates is higher for larger coding parameters
(e.g., from RS(4, 3) to RS(5, 3)), where we have to retrieve
more data blocks.

2.3 Motivation

Definition. Our major goal is to mitigate the network I/Os
for parity block updates in redundancy transitioning, by
limiting the number of data blocks to be retrieved. We call a
data block an overlapping data block if its coefficients encoded
into the old parity blocks of the pre-transitioning stripe are
the same as its coefficients encoded into the new parity
blocks of the post-transitioning stripe; otherwise, we call it a
non-overlapping data block.
Main insight. Our main insight is that during redundancy
transitioning, we do not need to retrieve the overlapping
data blocks, as the old and new parity blocks share the same
encoding operations for the overlapping data blocks. We
only need to access the non-overlapping data blocks as their
encoding operations differ in the old and new parity blocks.
Our idea is to increase the number of overlapping data blocks
(or equivalently, decrease the number of non-overlapping
data blocks to be retrieved during redundancy transitioning).
We motivate our solutions via the following examples.
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Figure 2. Example of transitioning from RS(2,1) to RS(3,1) with the row-
major order data placement. The blocks of the same color form a stripe.

Motivation 1 (Using an enlarged encoding matrix). Instead
of directly using the encoding matrices of RS codes for the
pre-transitioning and post-transitioning stripes, we adopt
a large-sized encoding matrix before transitioning and add
dummy blocks for encoding. For example, in transitioning
from RS(4,3) to RS(5,3), the pre-transitioning encoding pro-
cess can be denoted by:

P0

P1

P2

 = G3×5 ×


D0

D1

D2

D3

0

 =

1 1 1 1 1
1 3 6 10 14
1 10 4 15 11

×

D0

D1

D2

D3

0

 . (4)

The key difference between the conventional and new
encoding mechanisms is that the conventional approach
employs an m× k encoding matrix Gm×k to encode k data
blocks, while we exploit an m× k′ encoding matrix Gm×k′

to encode k′ blocks (with k data blocks and k′ − k dummy
blocks). For example, the conventional approach uses G3×4

to encode D0-D3 (Equation (2)). We now adopt G3×5 to
encode D0-D3, and one dummy block (Equation (4)).

Recall that in the transitioning from RS(4, 3) to RS(5, 3)
using the conventional encoding matrix (i.e., Equation (2)),
there is only one overlapping data block D0 in the pre-
transitioning and post-transitioning stripes. Now, if we
use an enlarged matrix (i.e., Equation (4)), there are four
overlapping data blocks, i.e., D0-D3. To update P1 into P ′

1,
we now simply retrieve the only non-overlapping data block
D4. The transitioning between P2 and P ′

2 is similar.
Motivation 2 (Producing more overlapping data blocks).
Our insight is that even though we adopt an enlarged
encoding matrix, the conventional rigid data placement
in column-major order still leads to a limited number of
overlapping data blocks in both the pre-transitioning and
post-transitioning stripes. Thus, we aim to allow more
overlapping data blocks via a new data placement strategy.
For example, in Figure 2, we distribute the data blocks
logically in k nodes and physically in k′ nodes, both in
row-major order. In Figure 2, there are two overlapping data
blocks D0 and D1 in s0 and s′0, as well as two overlapping
data blocks D4 and D5 in s2 and s′1. We can compute
P ′
0 = P0 + D2 and P ′

1 = P2 + D3 = P2 + P1 + D2. Thus,
we need to access only D2 for parity block updates. Note
that in general, the row-major order does not necessarily
imply efficient data placement, and we still need to carefully
design a data placement strategy to increase the number of
overlapping data blocks.
Summary. The above examples suggest that we can explore
a new co-design of encoding matrix construction and data

placement, so as to increase the number of overlapping data
blocks. This allows the new parity blocks to be recomputed
from largely the old parity blocks plus a small number of
non-overlapping data blocks that need to be retrieved. This
mitigates the network I/Os of parity block updates.

3 ELASTIC REED-SOLOMON CODES

We present Elastic Reed-Solomon (ERS) codes, a new family
of erasure codes for efficient redundancy transitioning. ERS
codes exploit both new encoding matrix construction and
new data placement to increase the number of overlapping
data blocks, so as to mitigate the network I/Os for parity
block updates. We first present an overview of ERS codes
(Section 3.1). We then present the design details of the
encoding matrix of ERS codes to increase the number of
overlapping data blocks (Section 3.2). Next, we present our
data placement strategy based on our new encoding matrix
to further increase the number of overlapping data blocks
(Section 3.3). Furthermore, we discuss how to extend ERS
codes to handle objects with small sizes (Section 3.4). In this
section, we focus on forward transitioning, while we study
backward transitioning in Section 4.

3.1 Design Overview

ERS codes (denoted by ERS(k,m, k′)) build on the decou-
pling of block-to-node mappings in SRS codes [36] by storing
the k data blocks of RS codes in k′ nodes, where k < k′.
Similar to SRS, ERS first computes the LCM of k and k′,
i.e., l = lcm(k, k′), and divides an object into l data blocks
denoted by D0, D1, · · · , Dl−1. It then arranges the l data
blocks into k logical columns, and encodes every k data
blocks with the same logical offset to calculate m parity
blocks. It finally distributes the l data blocks over k′ nodes
such that each node stores exactly l

k′ blocks, and distributes
the parity blocks on m nodes. For a group of l

k stripes, the
parity blocks are put on the same m nodes, while for different
groups of stripes, we put the parity blocks on different nodes
to balance the storage and I/O overhead for parity updates.
Like SRS codes, as the data blocks are distributed over k′

nodes, ERS codes also eliminate data block relocation when
objects are transitioned from RS(k,m) to RS(k′,m).

However, ERS coding differs from SRS coding in the
following aspects. First, ERS coding logically distributes
l data blocks into k nodes in row-major order, and hence
introduces a considerable number of overlapping data blocks
for redundancy transitioning (e.g., Figure 2). In addition, ERS
coding encodes every k data blocks using a novel encoding
matrix, and physically distributes l data blocks over k′ nodes
according to a novel data placement strategy, so as to increase
the number of overlapping data blocks. As a result, ERS
coding requires only a small number of non-overlapping data
blocks and reduces network I/Os for parity block updates.

Figure 2 shows an example of ERS(2, 1, 3) with the row-
major order data placement. As k = 2 and k′ = 3, we can
deduce that l = lcm(2, 3) = 6. We start by sequentially
arranging l = 6 data blocks (i.e., D0-D5) into k = 2 logical
columns in row-major order. Every k = 2 data blocks with
the same logical offset (i.e., same color in the figure) are
encoded into m = 1 parity block in logical storage. The l = 6
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Figure 3. Row-major order data placement for (k,m, k′) = (4, 3, 5).
The blocks of the same color constitute a stripe. The data blocks with
black check marks indicate the non-overlapping data blocks of the pre-
transitioning stripes.

data blocks are then physically stretched across k′ = 3 nodes
also in row-major order in physical storage. We can see that
the distribution of data blocks for RS(3, 1) is preserved, so
data block relocation is eliminated in the transitioning from
RS(2, 1) to RS(3, 1). We can also show that P ′

0 = P0+D2, and
P ′
1 = P2+D3 = P2+P1+D2. Thus, we only need to access

D2 for parity block updates in redundancy transitioning.

3.2 Encoding Matrix Design

Overall idea. We assume that the sequential data blocks are
placed on k′ nodes based on row-major order by default as
shown in Figure 3. In physical storage, all l data blocks form
a l

k′ × k′ array that is composed of the data blocks from l
k

pre-transitioning stripes. For each pre-transitioning stripe, we
exploit an m×k′ encoding matrix (i.e., Gm×k′ ) to encode the
k′ blocks, which comprise k data blocks and k′−k additional
dummy blocks; here, the dummy blocks can be zero blocks.
The new encoding matrix Gm×k′ is still constructed by
the Vandermonde matrix [31]. The key design is exploiting
the same encoding matrix (i.e., Gm×k′ ) before and after
transitioning, without depending on specific coefficients
inside the matrix. Thus, other matrix constructions, such
as the Cauchy matrix in Cauchy Reed-Solomon codes [31],
[32], are also applicable. Note that the dummy blocks
are not involved in the encoding operations, so they do
not incur extra computational overhead or memory space.
Our approach of utilizing an enlarged encoding matrix is
analogous to the shortening scheme [30]; here, we design an
enlarged encoding matrix for redundancy transitioning.
Algorithm details. We call the enlarged encoding matrix
(i.e., Gm×k′ ) an ERS encoding matrix. If a block is stored in
a node Xi, then we say the node id of this block is i. For
example, in Figure 3, D0 and D1 are stored in X0 and X1,
so the node ids of D0 and D1 are 0 and 1, respectively.
Algorithm 1 presents the detailed procedure to encode the
pre-transitioning stripes utilizing an ERS encoding matrix.
Specifically, we use Gm×k′ for encoding (Line 1). For each
data block in a pre-transitioning stripe si, we set its id in
the data vector as its node id in physical storage (Lines 3-5).
There are k data blocks in si and we add extra k′−k dummy
blocks to form k′ blocks (Line 6), and then encode the k′

blocks (Line 7).
For example, we show the encoding process of s1 in

ERS(4, 3, 5). The ERS encoding matrix we use is G3×5. The
node ids of the four data blocks D4, D5, D6, and D7 of s1 are
4, 0, 1, and 2, respectively (Figure 3). With one extra dummy
block, the encoding process is shown as follows.

Algorithm 1 Encoding using an ERS encoding matrix
1: Select Gm×k′ for encoding
2: for each stripe si (0 ≤ i ≤ l

k
− 1) do

3: for each data block Dj (0 ≤ j ≤ k − 1) do
4: Set its id in the data vector as its node id
5: end for
6: Add k′ − k dummy blocks into the remaining k′ − k

positions in the data vector to constitute k′ blocks
7: Encode the k′ blocks
8: end for

P3

P4

P5

 = G3×5 ×


D5

D6

D7

0
D4

 =

1 1 1 1 1
1 3 6 10 14
1 10 4 15 11

×

D5

D6

D7

0
D4

 . (5)

Analysis. For each stripe, multiplying the first row of Gm×k′

by the data vector incurs k − 1 additions in Galois Field,
while multiplying each of the remaining rows of Gm×k′

by the data vector needs k − 1 multiplications and k − 1
additions, both in Galois Field. Thus, the encoding of each
stripe costs (m − 1)(k − 1) multiplications and m(k − 1)
additions. This implies that using the ERS encoding matrix
and adding dummy blocks do not increase the number of
multiplications and additions (e.g., Equation (5)), so we do
not add additional computational cost. Also, as the dummy
blocks do not participate in calculation, the system does
not allocate memory space to store them (i.e., they do not
consume additional memory space).

We now show that the MDS property is preserved using
the ERS encoding matrix. In each stripe, if any m blocks are
lost, we can reconstruct the original data blocks by the k
remaining blocks and k′ − k dummy blocks. Thus, the MDS
property is preserved.
Forward transitioning process. As we employ an ERS
encoding matrix for encoding (i.e., Algorithm 1), we can
efficiently utilize the old parity blocks for parity block
updates. We now elaborate the forward transitioning pro-
cess (from RS(k,m) to RS(k′,m)) using an ERS encoding
matrix. Let pi (0 ≤ i ≤ l

k − 1) be the column vec-
tor composed of the old parity blocks of si, i.e., pi =
[Pi×m, Pi×m+1, · · · , Pi×m+m−1]

T , and p′
i (0 ≤ i ≤ l

k′ − 1)
be the column vector composed of the new parity blocks
of s′i, i.e., p′

i = [P ′
i×m, P ′

i×m+1, · · · , P ′
i×m+m−1]

T . Let gj

(0 ≤ j ≤ k′ − 1) be the j-th column of the ERS encoding ma-
trix Gm×k′ . For example, for ERS(4, 3, 5), p0 = [P0, P1, P2]

T ,
p′
0 = [P ′

0, P
′
1, P

′
2]

T and g4 = [1, 14, 11]T .
Algorithm 2 shows the forward transitioning process. We

first initialize all new parity blocks (Lines 1-3). For a pre-
transitioning stripe si, if it shares the most overlapping data
blocks with a post-transitioning stripe s′j , then the old parity
blocks in pi are used to generate the new parity blocks in
p′
j (Lines 5-7). We next retrieve only the non-overlapping

data blocks of si, i.e., the data blocks that are encoded into si
but not s′j (Line 8). A non-overlapping data block is encoded
into the old parity blocks in pi but not the new parity blocks
in p′

j , so we need to use it to update the new parity blocks
in p′

j . For each non-overlapping data block Dx, we find its
node id y (Line 10), so gy represents the coding coefficients
of Dx encoded into the parity blocks. We then use Dx and
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Algorithm 2 Forward transitioning from RS(k,m) to
RS(k′,m)

1: for j = 0 to l
k′ − 1 do

2: Initialize p′
j to be zero vector

3: end for
4: for each pre-transitioning stripe si (0 ≤ i ≤ l

k
− 1) do

5: Find the post-transitioning stripe s′j , such that si shares
the most overlapping data blocks with s′j

6: // pi is used to generate p′
j

7: Set p′
j = p′

j + pi

8: Retrieve the non-overlapping data blocks of si, i.e., the
data blocks encoded in si but not s′j

9: for each non-overlapping data block Dx do
10: y ← node id of Dx

11: // Use Dx to update p′
j

12: Set p′
j = p′

j + gy ×Dx

13: z ← id of post-transitioning stripe that includes Dx

14: // Use Dx to update p′
z

15: Set p′
z = p′

z + gy ×Dx

16: end for
17: end for

its coefficient vector gy to update the new parity blocks in
p′
j (Lines 11-12). Furthermore, such a non-overlapping data

block Dx will fall into another post-transitioning stripe s′z
(different from s′j) (Line 13), and Dx will be encoded into the
new parity blocks in p′

z . Thus, we finally use Dx to update
p′
z (Lines 14-15).

For example, in Figure 3, in transitioning from RS(4, 3)
to RS(5, 3), we show the update mechanisms for p′

0 and
p′
1. Since s0 shares the maximum number of overlapping

data blocks with s′0, the old parity blocks in p0 are used
to generate the new parity blocks in p′

0. There is no non-
overlapping data block in s0. We can also find that the non-
overlapping data block D4 of s1 will fall into s′0. We then
use D4 and its coefficient vector g4 (the node id of D4 is 4)
to update p′

0. P ′
0

P ′
1

P ′
2

 =

P0

P1

P2

+

 1
14
11

×D4. (6)

Since both s1 and s2 share the most overlapping data
blocks with s′1, both p1 and p2 are added into p′

1. The non-
overlapping data blocks of s1, and s2 are D4 (with node id
4), and D10 and D11 (with node ids 0 and 1), respectively.
We then use D4 (and g4), D10 (and g0), and D11 (and g1) to
update p′

1.

P ′
3

P ′
4

P ′
5

 =

P3

P4

P5

+

 1
14
11

×D4 +

P6

P7

P8

+

1 1
1 3
1 10

× [
D10

D11

]
. (7)

Recall that the main overhead in redundancy transition-
ing is to read the non-overlapping data blocks of the pre-
transitioning stripes across the network (Line 8). We show
how using an ERS encoding matrix reduces the number of
non-overlapping data blocks and hence mitigates network
I/Os. For example, in Figure 3, in the transitioning from
RS(4, 3) to RS(5, 3) using the ERS encoding matrix, we only
need to retrieve four non-overlapping data blocks (i.e., D4,
D10, D11, and D15) for parity block updates. However, in
SRS(4, 3, 5), there are very few overlapping data blocks, so
we need to access nearly all data blocks.

3.3 Data Placement Design

In Section 3.2, we utilize an ERS encoding matrix to increase
the number of overlapping data blocks under the row-
major order data placement. However, the row-major order
does not always imply efficient data placement. In this
subsection, we design efficient data placement to further
increase the number of overlapping data blocks based on an
ERS encoding matrix.
Overall idea. We attempt to put the data blocks of l

k pre-
transitioning stripes into a l

k′ × k′ array, such that the
number of overlapping data blocks of the pre-transitioning
stripes is maximized. As the number of data blocks in
a pre-transitioning stripe is k, we can deduce that the
maximum number of overlapping data blocks between a pre-
transitioning stripe and a post-transitioning stripe is k. Note
that a row in the array maps to a post-transitioning stripe.
Thus, if we place a pre-transitioning stripe entirely in one
row, then the number of overlapping data blocks between
this pre-transitioning stripe and a post-transitioning stripe
is maximized to k. To this end, we first place the maximum
number of pre-transitioning stripes such that each of them
is entirely put in one row (i.e., the number of overlapping
data blocks is k). As a row can accommodate at most ⌊k′

k ⌋
pre-transitioning stripes and there are l

k′ rows, we can place
α = ⌊k′

k ⌋ ×
l
k′ stripes such that each of them is entirely put

in one row (i.e., the number of overlapping data blocks is k).
Since there remain r = k′ mod k empty positions in each

row after filling ⌊k′

k ⌋ pre-transitioning stripes, the maximum
number of overlapping data blocks between each of the
remaining β = l

k − α pre-transitioning stripes and a post-
transitioning stripe (i.e., a row) is at most r. We then place r
data blocks of each remaining stripe in the empty positions of
a row, so as to make the number of overlapping data blocks
of this stripe equal to r, and also place k − r data blocks in
other rows.

To place each pre-transitioning stripe, we must make
sure that the k data blocks are distributed into k nodes to
maintain node-level fault tolerance.
Algorithm details. We call our data placement ERS-aware
data placement. We call a pre-transitioning stripe a same-row
stripe if it is entirely put in one row; otherwise, we call it a
cross-row stripe. Algorithm 3 shows the design of the ERS-
aware data placement. In each of the first β rows, we put ⌊k′

k ⌋
same-row stripes in it, and the starting node id of the stripes
is (i×(k−r)) mod k′ (0 ≤ i ≤ β−1) (Lines 2-4). In each of
the remaining l

k′ −β rows, we also put ⌊k′

k ⌋ same-row stripes
in it, and the starting node id of the stripes is ((i−β+1)×r)
mod k′ (β ≤ i ≤ l

k′ − 1) (Lines 5-7). In total, we put α
same-row stripes (with number of overlapping data blocks
of k). Note that the same-row stripes have different starting
node ids in different rows, which is to guarantee node-level
fault tolerance. For the i-th (0 ≤ i ≤ β − 1) cross-row stripe,
we place r data blocks in the empty positions of the i-th row
such that the number of overlapping data blocks of it is r
(Line 10), and k − r data blocks on other rows (Line 11).

Figure 4 shows the ERS-aware data placement for
(k,m, k′) = (4, 3, 5). In the first row (i.e., β = 1), we put
⌊k′

k ⌋ = 1 same-row stripe in it, and the starting node id of
the stripe is 0 (Line 3). In each of the remaining three rows
(i.e., l

k′ − β = 3), we also put ⌊k′

k ⌋ = 1 same-row stripe in it,
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Algorithm 3 ERS-aware data placement
1: // Put α same-row stripes
2: for the i-th (0 ≤ i ≤ β − 1) row do
3: Put ⌊ k

′

k
⌋ same-row stripes in it, with starting node id

(i× (k − r)) mod k′

4: end for
5: for the i-th (β ≤ i ≤ l

k′ − 1) row do
6: Put ⌊ k

′

k
⌋ same-row stripes in it, with starting node id

((i− β + 1)× r) mod k′

7: end for
8: // Locate the remaining β cross-row stripes
9: for the i-th (0 ≤ i ≤ β − 1) cross-row stripe do

10: Put r data blocks in the r empty positions of the i-th row
11: Put k− r data blocks sequentially in the empty positions

of the β-th to ( l
k′ − 1)-th rows

12: end for

D0 D2

X1 X2 X3 X4

D1 D3 D16

D5D4 D6 D7

D8D18 D9 D10

X0

D17

D11

D19D15 D12 D13D14

Before transitioning

s0
D0 D2

X1 X2 X3 X4

D1 D3 D16

D5D4 D6 D7

D8D18 D9 D10

X0

D17

D11

D19D15 D12 D13D14

After transitioning

s′0

s′1

s′2

s′3√

√

√

s4

s1

s2

s3

Figure 4. ERS-aware data placement for (k,m, k′) = (4, 3, 5). We omit
the placement of the parity blocks as it does not affect the number of
overlapping data blocks. The data blocks of the same color constitute
a stripe. Note that s0-s3 are α = 4 same-row stripes, and s4 is β = 1
cross-row stripe. The data blocks with black check marks indicate the
non-overlapping data blocks of the pre-transitioning stripes.

and the starting node ids of the stripes in the second, third,
and fourth rows are r = 1, 2r = 2, and 3r = 3, respectively
(Line 6). In total, we put α = 4 same-row stripes, and the
number of overlapping data blocks between each such pre-
transitioning stripe and a post-transitioning stripe (i.e., a
row) is maximized to k = 4.

The remaining β = 1 cross-row stripe has r = 1 data
block in the first row and k− r = 3 data blocks in the second
to fourth rows, such that the number of overlapping data
blocks between it and a post-transitioning stripe (i.e., a row)
is r = 1.
Analysis. In ERS-aware data placement, the placement of
each same-row stripe or cross-row stripe is determined
(Line 3, Line 6, and Lines 10-11). The calculation of the
placement of each stripe costs O(1) time. This means that
we do not introduce additional computational cost under
ERS-aware data placement.

We now analyze how ERS-aware data placement im-
proves network I/O efficiency. We maximize the number of
overlapping data blocks of the first α same-row stripes to
be k, and then maximize the number of overlapping data
blocks of the remaining β cross-row stripes to be r, subject to
the condition that the number of overlapping data blocks of
the α same-row stripes is maximized. The non-overlapping
data blocks now only exist in the β cross-row stripes, and the
number of non-overlapping data blocks retrieved for parity
block updates is thus ( l

k − ⌊k′

k ⌋ ×
l
k′ )× (k − r).

For example, in the forward transitioning from RS(4, 3)
to RS(5, 3) using ERS-aware data placement, we need three
non-overlapping data blocks (i.e., D17, D18, and D19) for

parity block updates (Figure 4). Recall that the row-major
order data placement needs four data blocks (Section 3.2).
Thus, ERS-aware data placement decreases the number of
non-overlapping data blocks to further save network I/Os.
Fault tolerance guarantee. Each of the α same-row stripes
is spread over k nodes, so it follows the fault tolerance
requirement. We can readily calculate that the node ids of the
k data blocks of the first cross-row stripe are ⌊k′

k ⌋×k, ⌊k′

k ⌋×
k + 1, · · · , k′ − 1 and 0, 1, · · · , k − r − 1. By induction, the
node ids of the (i+1)-th cross-row stripe are right rotated by
k− r based on the i-th cross-row stripe. Thus, each cross-row
stripe is sequentially spread across k different nodes.

3.4 Discussion
Handling small objects. Some workloads have objects with
small sizes (e.g., tens of bytes [10], [12]). We can extend our
ERS codes to store such small-sized objects. Specifically, we
can organize the objects with the same demands into blocks,
and collect l blocks for encoding. For example, the objects
that are stored on the same device groups have the same
reliability demands [22], [23], so we can store them into ERS
codes. When the demands change, redundancy transitioning
in ERS codes still incurs limited network I/Os.
Applicability of ERS codes on KV stores. ERS codes
eliminate data block relocation, and require limited network
I/Os for parity block updates, so they are suitable for KV
stores that need high elasticity [2], [29]. In contrast, traditional
redundancy transitioning schemes still require substantial
network I/Os for both data block relocation and parity
block updates [20], [50], so they are not applicable to KV
stores. On the other hand, ERS codes can also be applied to
distributed storage systems under dynamic workloads [44]
or with varied reliability requirements [22], [23].
Data updates. When a data block is updated, the parity
blocks in the same stripe will be updated accordingly [13],
[14], [47]. Data deletion is treated the same as updating a
data block into zero bytes. The redundancy level of the data
keeps unchanged when data updates happen.

4 BACKWARD TRANSITIONING IN ERS CODES

In this section, we address backward transitioning from
RS(k′,m) to RS(k,m) in ERS codes, where k < k′. Note that
RS(k′,m) is derived from RS(k,m) by forward transitioning.

4.1 New Challenges And Motivation
Differences from forward transitioning. In forward tran-
sitioning, there are m × l

k old parity blocks, and we need
to generate m× l

k′ new parity blocks. There are l
k′ update

equations (i.e., Equations (6) and (7)), and each equation is
used to generate m new parity blocks. Thus, we can use the
old parity blocks (and the update equations) to generate all
new parity blocks (Section 3).

In backward transitioning, there are now m× l
k′ old parity

blocks (i.e., the new parity blocks in forward transitioning),
and we need to generate m× l

k new parity blocks (i.e., the
old parity blocks in forward transitioning). We can utilize the
reverse of the update equations in forward transitioning to
generate the new parity blocks. However, the total number
of new parity blocks (i.e., m× l

k ) is larger than the number
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Figure 5. Backward transitioning in ERS(k,m, k′) = (2, 1, 3) with row-
major order data placement. The data and parity blocks of the same color
constitute a stripe.

of new parity blocks (i.e., m× l
k′ ) that can be generated by

the reverse equations (i.e., the reverse of Equations (6) and (7)).
Thus, in order to successfully compute all new parity blocks,
we need to first recalculate m× ( l

k − l
k′ ) new parity blocks

based on their corresponding encoding data blocks. We then
use the old parity blocks to generate the remaining m× l

k′

new parity blocks based on the reverse equations.
New challenges. There are many possible choices for the set
of m×( l

k −
l
k′ ) new parity blocks that need to be recalculated

from their encoding data blocks. We show that the choice
affects the network I/O cost for parity block updates.

For example, in Figure 5, we show the backward transi-
tioning from RS(3, 1) to RS(2, 1) in ERS(2, 1, 3) with the row-
major order data placement. Note that data block relocation is
also eliminated in backward transitioning. There are two old
parity blocks (i.e., P0 and P1) and we need to compute three
new parity blocks (i.e., P ′

0, P ′
1, and P ′

2). Taking the reverse
of the update equations in forward transitioning gives the
following equations: P ′

0 = P0 +D2 and P ′
2 + P ′

1 = P1 +D2.
Thus, we need to recalculate one new parity block and
generate two other new parity blocks via these equations.

If we recalculate P ′
2, then P ′

2 = D4 +D5, P ′
0 = P0 +D2,

and P ′
1 = P1 + D2 + P ′

2 = P1 + D2 + D4 + D5. In total,
we need to access three data blocks D2, D4, and D5 for
parity block updates. For larger coding parameters, a naı̈ve
selection of the set of new parity blocks to be recalculated
can result in substantial network I/O overhead for parity
block updates.
Motivation. In the above example, there are two overlapping
data blocks between s1 and s′2, but there is only one
overlapping data block between s1 and s′1. If we recalculate
P ′
2 (or equivalently, using P1 to update P ′

1), then the network
I/O cost is high because there are limited overlapping data
blocks between s1 and s′1.

Alternatively, we can recalculate P ′
1 first (or equivalently,

using P1 to update P ′
2). Then, P ′

1 = D2 +D3, P ′
0 = P0 +D2,

and P ′
2 = P1 + D2 + P ′

1 = P1 + D3. Thus, the number of
data blocks accessed for parity block updates is reduced
to two (i.e., D2 and D3). The reason is that there are more
overlapping data blocks between s1 and s′2, and they can be
exploited to save the network I/Os for parity block updates.

The above example motivates us to carefully choose the
new parity blocks to be recalculated, such that the remaining
new parity blocks can be updated from the old parity blocks
with more overlapping data blocks. This saves the network
I/Os for parity block updates in backward transitioning.

4.2 Algorithm Design

Main idea. Note that data block relocation is also eliminated
when transitioning from RS(k′,m) to RS(k,m) in backward

Algorithm 4 Backward transitioning from RS(k′,m) to
RS(k,m)

1: // Obtain reverse equations
2: Record the l

k′ update equations of forward transitioning
3: for i = 0 to l

k′ − 1 do
4: Reverse the i-th update equation
5: end for
6: // Recalculate m× ( l

k
− l

k′ ) new parity blocks
7: for i = 0 to l

k′ − 1 do
8: if there are more than one post-transitioning stripe

involved in the i-th reverse equation then
9: Find the post-transitioning stripe s′j , such that si

shares the most overlapping data blocks with s′j
10: for each remaining post-transitioning stripe s′z do
11: Recalculate p′

z from its encoding data blocks
12: end for
13: end if
14: end for
15: // Update m× l

k′ remaining new parity blocks
16: for i = 0 to l

k′ − 1 do
17: Use pi and the i-th reverse equation to update p′

j , where
si shares the most overlapping data blocks with s′j

18: end for

transitioning. As RS(k′,m) is derived from RS(k,m) in
forward transitioning, we can record the l

k′ update equations
in forward transitioning. Reversing the update equations
produces l

k′ equations that can be used to update some new
parity blocks in backward transitioning. For parity block
updates, we choose m × ( l

k − l
k′ ) new parity blocks to

be recalculated from their encoding data blocks, such that
the other m × l

k′ new parity blocks can be updated from
the old parity blocks and the reverse equations with the
maximum number of overlapping data blocks. Thus, the key
requirement of backward transitioning is to select the proper
order of new parity blocks to update, so as to minimize the
network I/Os for parity block updates.
Algorithm details. Algorithm 4 shows the detailed approach
for backward transitioning in ERS codes. First, we record
all l

k′ update equations in forward transitioning (Line 2),
and obtain l

k′ reverse equations that will be utilized in
backward transitioning (Lines 3-5). We next recalculate
m × ( l

k − l
k′ ) new parity blocks from their encoding data

blocks. For the i-th reverse equation, if there are more than
one post-transitioning stripe involved (i.e., the old parity
blocks in pi are encoded into the new parity blocks from
more than one post-transitioning stripe), then we select the
post-transitioning stripe s′j such that si shares the maximum
number of overlapping data blocks with s′j (Line 9). For a
remaining post-transitioning stripe s′z that is involved in the
i-th reverse equation, we recalculate its new parity blocks
(i.e., p′

z) via the encoding data blocks (Lines 10-12). Lastly,
we use the old parity blocks and reverse equations to update
the remaining m× l

k′ new parity blocks. Specifically, based
on the i-th reverse equation, we use pi to update p′

j , where
si shares the maximum number of overlapping data blocks
with s′j (Lines 16-18). In summary, we select the order of new
parity blocks to update by first determining m × ( l

k − l
k′ )

new parity blocks to be recalculated (Lines 8-13), followed
by updating the remaining m× l

k′ new parity blocks from
the old parity blocks (Lines 16-18).

We now exemplify the backward transitioning from
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RS(5, 3) to RS(4, 3) (i.e., (k,m, k′) = (4, 3, 5)).
In SRS(4, 3, 5), since it generally has a limited number of

overlapping data blocks, we need to recalculate almost all
new parity blocks by accessing almost all data blocks.

In ERS(4, 3, 5) with the row-major order data placement
(i.e., Figure 3), we show the update mechanisms for p′

1

and p′
2. Note that p1 is encoded into both p′

1 and p′
2 (by

Equation (7)). Since s1 shares the most overlapping data
blocks with s′1, the new parity blocks of s′2 (i.e., p′

2) should
be recalculated. Afterwards, we use the reverse equation and
p1 to update p′

1, which results in

P ′
3

P ′
4

P ′
5

 =

P3

P4

P5

+

 1
14
11

×D4 +

 1 1
10 14
15 11

× [
D8

D9

]
. (8)

Overall, we need to access six data blocks (i.e., D4, D8, D9,
D10, D11, and D15) for parity block updates.

In ERS(4, 3, 5) with ERS-aware data placement (i.e.,
Figure 4), we show the update mechanisms of p′

0 and p′
4.

We can calculate that p0 is encoded into both p′
0 and p′

4. By
Algorithm 4, p′

4 is recalculated using its encoding data blocks,
while p′

0 is updated from p0. Overall, four data blocks D16,
D17, D18, and D19 are retrieved for parity block updates.

As Algorithm 4 exploits the overlapping data blocks to
save the network I/Os for parity block updates and ERS has
more overlapping data blocks than SRS, ERS shows higher
network I/O efficiency than SRS in backward transitioning.
Analysis. The main overhead in backward transitioning lies
in two parts. The first part is to read the data blocks to
recalculate m× ( l

k −
l
k′ ) new parity blocks (Lines 10-12). The

second part is to read the non-overlapping data blocks to
update the remaining m × l

k′ new parity blocks (Lines 16-
18). Algorithm 4 aims to recalculate a set of m × ( l

k − l
k′ )

new parity blocks, such that the remaining m × l
k′ new

parity blocks are updated from the old parity blocks with the
maximum number of overlapping data blocks. In this way,
we save the network I/Os for backward transitioning.

We now analyze the network I/O efficiency of Algo-
rithm 4. For example, in ERS(4, 3, 5) with the row-major
order data placement, backward transitioning using Algo-
rithm 4 needs to access six data blocks. However, if we
recalculate p′

1 and use p1 to update p′
2, then the number of

data blocks accessed increases to seven.
In ERS(4, 3, 5) with ERS-aware data placement, backward

transitioning using Algorithm 4 needs to access four data
blocks. However, if we recalculate p′

0 and use p0 to update
p′
4, then the number of data blocks accessed increases to

seven. Thus, Algorithm 4 effectively saves the network I/Os.
In particular, in ERS codes with ERS-aware data place-

ment (Section 3.3), each pre-transitioning stripe shares the
most overlapping data blocks with one same-row post-
transitioning stripe. There are k′ − k non-overlapping
data blocks in each pre-transitioning stripe, and a total of
l
k′ × (k′− k) = l× (1− k

k′ ) non-overlapping data blocks. We
can see that recalculating the set of m× ( l

k − l
k′ ) new parity

blocks and updating the remaining m× l
k′ new parity blocks

need to access exactly these non-overlapping data blocks.
Thus, the number of data blocks accessed for parity block
updates is l × (1− k

k′ ).

Proxy
Client Server

ERS coding

Transitioning

Figure 6. Architecture of the distributed KV store prototype for ERS.

5 SYSTEM DESIGN AND IMPLEMENTATION

We prototype a distributed KV store that realizes ERS codes.
We present the architecture (Section 5.1) and metadata
management of our prototype (Section 5.2). We discuss how
to maintain consistency during redundancy transitioning
(Section 5.3). We finally show the implementation details of
our prototype atop Libmemcached [5] (Section 5.4).

5.1 Architecture

Figure 6 shows the architecture of our distributed KV store
prototype, which mainly comprises multiple clients, multiple
servers, and a proxy. The clients interact with the foreground
user applications, while the servers store the object data. The
proxy acts as an interface for the clients to access the objects
in the servers. It implements multiple redundancy strategies
(including RS codes [35], SRS codes [36], and ERS codes).
It also realizes the basic I/O operations (e.g., PUT, GET,
UPDATE, etc.) and the redundancy transitioning processes.
In particular, the transitioning processes are coordinated by
the proxy in that the proxy downloads the old parity blocks
and a subset of data blocks, recomputes the new parity
blocks, and finally uploads the new parity blocks. To avoid
the proxy being the single-point-of-failure, we can deploy
multiple proxies for fault tolerance. It is worth mentioning
that the proxy-based design can be seen in other cloud
storage systems (e.g., BlueSky [37] and OpenStack [7]).

When first storing objects, users can specify the coding
parameters k, m, and k′. Then the objects are stored using
ERS(k,m, k′). If the reliability requirements change, users
can trigger the executions of redundancy transitioning to up-
date the redundancy schemes from RS(k,m) into RS(k′,m),
and from RS(k′,m) back to RS(k,m).

5.2 Metadata Management

For each object, the distributed KV store prototype divides
and encodes it into l data blocks and m × l

k parity blocks,
each of which is stored as a new KV pair. The metadata (e.g.,
the key length, the value length) of each new KV pair is
maintained by each server.

For each set of coding parameters k, m, and k′, the proxy
maintains two lists: (i) a list of keys of the objects under
transitioning and (ii) a list of keys of the objects that have
been transitioned into RS(k′,m). Also, the proxy avoids the
I/O requests to the objects that are currently under transi-
tioning. It ensures that the I/O requests are processed based
on RS(k′,m) when the objects are transitioned from RS(k,m)
to RS(k′,m); similarly, the I/O requests are processed based
on RS(k,m) when the objects are transitioned from RS(k′,m)
back to RS(k,m).

We show that the metadata storage overhead is negligible
in the proxy side. We focus on objects with regular-size keys
(e.g., around 20 bytes [14]) and large-size values (e.g., 1 MB in
our evaluation). For a distributed KV store with 100 GB data
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K V

Split

Encode

Generate keys

Figure 7. Implementation of ERS(2, 1, 3) on a KV pair. The original KV
pair is transitioned into 9 new KV pairs (e.g., ⟨K0, D0⟩, ⟨K6, P0⟩).

volume, the total key size accounts for around 2 MB. Even
if we record all keys into the two lists, it only costs a few
Megabytes of memory in the proxy side. Thus, the metadata
storage is not a bottleneck.

5.3 Consistency

We discuss one open issue in our prototype, i.e., maintain-
ing consistency during redundancy transitioning. During
transitioning, we need to update the parity blocks in the
servers that store the parity blocks. We must guarantee that
all parity blocks are consistently and successfully updated.
A solution to maintain consistency is to incorporate the
two-phase commit protocol [11] into the update process.
Specifically, in the first phase, the proxy sends the new parity
blocks, and the servers store the new parity blocks in their
temporarily allocated buffers and respond acknowledgments
to indicate whether the parity blocks have been successfully
received and buffered. In the second phase, if the proxy
receives the acknowledgements from all servers that buffer
the new parity blocks, it notifies all servers to commit
and store the new parity blocks; otherwise, it notifies all
servers to discard the buffered parity blocks. To reduce the
communication overhead of the two-phase commit protocol,
we can leverage the piggybacking approach to reduce two
rounds of communication into one round [13].

5.4 Implementation

We implement ERS codes atop Libmemcached 1.0.18 [5]
that acts as the proxy, by adding about 4,800 SLoC. We
deploy multiple Memcached servers [6] for object storage.
We leverage the Jerasure Library [32] to realize ERS codes.
To show the improvements of ERS codes over SRS codes, we
also implement SRS codes into Libmemcached.
Implementation of ERS coding. We take ERS(2, 1, 3) as
an example to show the detailed implementation of ERS
codes (Figure 7). For each KV pair, we separate the key
from the value. We then generate 9 keys (by adding unique
suffixes to the original key), among which there are 6 keys
(i.e., K0,K1, · · · ,K5) for the data blocks and 3 keys (i.e.,
K6,K7,K8) for the parity blocks. Next, we split the value to
obtain 6 data blocks, and encode them to get 3 parity blocks.
Thus, we transition the original KV pair into 9 new KV pairs
(e.g., ⟨K0, D0⟩, ⟨K6, P0⟩).
Distribution of data and parity blocks. To distribute the
data and parity blocks, we first locate a server by applying
consistent hashing [5] on the original key (i.e., K). Starting
from this server, we select l+m successive servers along the
clockwise direction on the hash ring. Finally, we distribute
the data and parity blocks to the l +m servers according to

D0

D3

D1 D4

D2

D5

P0 P1 P2

Server0

Server1

Server2Server3

Server4

Figure 8. Distribution of ERS(2, 1, 3) with row-major order data placement.
D0, D3; D1, D4; D2, D5; and P0, P1, P2 are stored on four successive
servers on the hash ring.

the specific data placement policy. For example, in Figure 8,
we show the distribution of ERS(2, 1, 3) with the row-major
order data placement. We locate Server4 by hashing K , then
select Server4, Server0, Server1, and Server2, and finally
distribute D0 and D3, D1 and D4, D2 and D5, and P0-P2 to
the four servers, respectively.

6 EVALUATION

We present evaluation results on ERS codes using our
distributed KV store prototype in three aspects: numerical
analysis, local cluster experiments, and cloud experiments.
We show the performance gain in redundancy transitioning
of ERS codes over SRS codes, the state-of-the-art erasure
codes for redundancy transitioning used by Ring [36].

6.1 Numerical Analysis
We analyze the number of data and parity blocks read for
parity block updates when an object is transitioned from
RS(k,m) to RS(k′,m), or from RS(k′,m) to RS(k,m).
SRS. In both forward transitioning from RS(k,m) to
RS(k′,m) and backward transitioning from RS(k′,m) to
RS(k,m), if we exploit the old parity blocks to generate
the new parity blocks, then we have to read all old parity
blocks and almost all data blocks. To save the storage I/Os,
we resort to reading all data blocks and calculating the new
parity blocks directly without using any old parity block.
Hence, the number of blocks read is l.
ERS. We consider two variants of ERS: (i) ERS-1, the ERS
codes using the ERS encoding matrix and row-major order
data placement, and (ii) ERS-2, the ERS codes with the ERS
encoding matrix and ERS-aware data placement; ERS-2 is
our complete design. In forward transitioning, we read the
old parity blocks and the non-overlapping data blocks of the
pre-transitioning stripes to generate the new parity blocks.
In particular, the number of blocks read of ERS-2 is m× l

k +

( l
k −⌊k′

k ⌋×
l
k′ )× (k− r), where r = k′ mod k. In backward

transitioning, we read part of the data blocks to recalculate a
subset of new parity blocks, and read the old parity blocks
to update the remaining new parity blocks. The number of
blocks accessed of ERS-2 is m× l

k + l × (1− k
k′ ).

Analysis of representative parameters. We consider param-
eters with small k, m, and k′, such as (k,m, k′) = (2, 1, 3),
and (k,m, k′) = (4, 1, 5). We also consider parameters that
are practically deployed, for example (k,m) = (6, 3) (used
by Google ColossusFS [4]), (k,m) = (8, 3) (used by Yahoo
Object Store [8]), (k,m) = (10, 4) (used by Facebook HDFS
[34]), and (k,m) = (12, 4) (used by Microsoft Azure [19]).
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Figure 9. Numerical results of number of blocks read for parity block updates when transitioning from RS(k,m) to RS(k′,m).
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Figure 10. Numerical results of number of blocks read for parity block updates when transitioning from RS(k′,m) back to RS(k,m).

Figure 9 shows the results of forward transitioning from
RS(k,m) to RS(k′,m) for 23 sets of coding parameters. We
summarize the observations as follows.

• ERS-1 significantly outperforms SRS in terms of the num-
ber of blocks read, while ERS-2 further reduces the I/Os
of ERS-1. For example, for (k,m, k′) = (6, 2, 7), ERS-1
reduces the number of blocks read of SRS by 45.2%, while
ERS-2 further reduces the number of blocks read of ERS-1
by 17.4%.

• In some cases (e.g., (k,m, k′) = (2, 1, 3)), ERS-1 has the
same number of blocks read as ERS-2.

• When m increases, the number of blocks read of SRS
(i.e., l) stays unchanged, while those of both ERS-1 and
ERS-2 increase. Therefore, ERS-1 and ERS-2 have better
improvements over SRS with smaller m. For example,
for (k,m, k′) = (12, 3, 14), ERS-1 (ERS-2) saves the num-
ber of blocks read of SRS by 53.6% (63.1%), while for
(k,m, k′) = (12, 4, 14), ERS-1 (ERS-2) saves the read I/Os
of SRS by 45.2% (54.8%). Note that m = 3, 4 are enough
for data protection in practical deployment.

Figure 10 shows the results of backward transitioning
from RS(k′,m) to RS(k,m). We can see that ERS-1 outper-
forms SRS in terms of the read I/Os, while ERS-2 further
outperforms ERS-1, also in backward transitioning. For
example, for (k,m, k′) = (4, 1, 5), ERS-1 reduces the number
of blocks read of SRS by 50.0%, while ERS-2 further reduces
the number of blocks read of ERS-1 by 20.0%.
Analysis of general parameters. We now consider more
parameters and see how ERS-1 and ERS-2 behave under
general parameters. We set 3 ≤ k′ ≤ 14, 2 ≤ k ≤ k′ − 1, 1 ≤
m ≤ 4 and m < k, and there are 244 sets of parameters.

Table 1 compares SRS, ERS-1, and ERS-2 in four aspects: (i)
the number of improved sets (i.e., the number of parameters
where ERS-1 (resp. ERS-2) outperforms SRS (resp. ERS-1)); (ii)
average ratio (i.e., the average reduction ratio of the number
of blocks read of ERS-1 (resp. ERS-2) over SRS (resp. ERS-
1)); (iii) best ratio (i.e., the maximum reduction ratio of the
number of blocks read of ERS-1 (resp. ERS-2) over SRS (resp.
ERS-1)); and (iv) best parameters, the parameters (k,m, k′)

Table 1
Parametric analysis of SRS, ERS-1, and ERS-2.

# im-
proved

average
ratio

best
ratio

best pa-
rameters

ERS-1 over SRS 221 46.2% 73.8% (6, 1, 14)
ERS-2 over ERS-1 123 14.8% 53.6% (13, 1, 14)
ERS-1 over SRS
(back)

222 36.2% 65.9% (13, 1, 14)

ERS-2 over ERS-1
(back)

121 20.2% 58.1% (13, 1, 14)

corresponding to the best ratio.
In forward transitioning from RS(k,m) to RS(k′,m),

there are 221 sets of parameters where ERS-1 outperforms
SRS, and ERS-1 reduces the number of blocks read of SRS
by 46.2% on average, and up to 73.8% under (k,m, k′) =
(6, 1, 14). Note that in the remaining 23 sets of parameters, k′

is divisible by k, and both SRS and ERS codes only require
the old parity blocks to generate the new parity blocks, so
SRS equals ERS-1 in the number of blocks read. There are 123
sets of parameters where ERS-2 further outperforms ERS-1.
ERS-2 can save the I/Os of ERS-1 by 14.8% on average, and
up to 53.6% under (k,m, k′) = (13, 1, 14). In the remaining
98 cases, ERS-1 equals ERS-2 in the number of blocks read,
as the row-major order data placement (in ERS-1) already
produces a considerable number of overlapping data blocks.

In backward transitioning from RS(k′,m) to RS(k,m),
ERS-1 outperforms SRS under 222 sets of parameters. On
average, ERS-1 reduces the I/Os of SRS by 36.2%. For
(k,m, k′) = (13, 1, 14), ERS-1 can save the I/Os of SRS by
up to 65.9%. Also, ERS-2 outperforms ERS-1 under 121 sets
of parameters. ERS-2 reduces the I/Os of ERS-1 by 20.2% on
average, and up to 58.1% for (k,m, k′) = (13, 1, 14).

6.2 Local Cluster Experiments
Setup. We deploy the distributed KV store prototype on a
local cluster comprising 18 physical nodes, each of which
runs CentOS version 7.9.2009 with 2 dodeca-core 2.20 GHz
Intel(R) Xeon(R) E5-2650 v4 CPUs, 64 GB RAM, and a Seagate



IEEE/ACM TRANSACTIONS ON NETWORKING 12

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1K
B

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

Object Size

W
rit

e 
T

im
e 

(s
) Rep

SRS
ERS-1
ERS-2

0.000

0.004

0.008

0.012

0.016

0.020

1K
B

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

Object Size

R
ea

d 
T

im
e 

(s
) Rep

SRS
ERS-1
ERS-2

(a) Normal write time (b) Normal read time

Figure 11. Exp#1: Normal write/read time.

ST1000NM0023 7200 RPM 1 TB SATA hard disk. Each node
has 10 Gbps of network bandwidth. We deploy the proxy in
one node, and the servers in the remaining nodes.
Methodology. We assume the following default configura-
tions. We adopt transitioning between RS(4, 1) and RS(5, 1).
We consider various object sizes from 1 KB to 4 MB. We set
the network bandwidth as 10 Gbps. We vary different settings
in our experiments. We measure the normal read and write
time and the transitioning time of an object. The results of
each experiment are averaged over ten runs.
Experiment 1 (Normal read/write latency under different
object sizes). We first evaluate the normal I/O performance
of the distributed KV store prototype and the vanilla Mem-
cached (denoted by Rep), which uses replication for fault
tolerance. We consider (k,m, k′) = (4, 1, 5) for SRS/ERS-
1/ERS-2. We set the replication factor of Rep as two, so that
Rep can tolerate the same number of failures as SRS/ERS-
1/ERS-2. We evaluate the write time and read time under
different object sizes. Figure 11 shows the results.

From Figure 11(a), the write time increases with a larger
object size. According to the theoretical analysis, both SRS
codes and ERS codes divide an object into l data blocks,
and encode them to produce m × l

k parity blocks. Thus,
SRS codes should have similar write latency to ERS codes.
From Figure 11(a), the experimental results comply with the
theoretical analysis. Also, SRS codes and ERS codes have
higher write latency than Rep. The reasons are two-fold. First,
SRS and ERS codes generate l +m× l

k requests for writing,
while Rep only requires two requests. Second, SRS and ERS
codes connect to k′ +m servers when sending the requests,
while Rep only connects to two servers. Thus, SRS and ERS
codes have more connection overhead.

From Figure 11(b), the read time also increases with a
larger object size. The read latency of SRS/ERS-1/ERS-2 is
also higher than that of Rep (e.g., object size ≥ 1 MB).
Experiment 2 (Transitioning latency under different object
sizes). We evaluate the transitioning time under different
object sizes. We consider transitioning between RS(4, 1) and
RS(5, 1). Figure 12 shows the results (the error bars show the
maximum and minimum results across ten runs).

Forward transitioning: From Figure 12(a), we can see that
the transitioning time increases with a larger object size, and
ERS-1 and ERS-2 constantly outperform SRS. Note that ERS
codes not only reduce the transitioning I/Os, but also connect
to fewer servers during transitioning (e.g., SRS connects to
six servers while ERS-1 connects to only four servers). For
example, ERS-1 reduces the forward transitioning time of
SRS from 8.7% to 31.3%, while ERS-2 reduces the forward
transitioning time of SRS from 10.8% to 38.7%, across all
object sizes. We can also see that the improvements of ERS-1

and ERS-2 over SRS become more prominent with larger
object sizes, since the network now dominates the overall
performance. ERS-2 has smaller transitioning time than ERS-
1, which is consistent with the numerical results.

Backward transitioning: From Figure 12(b), ERS-1 reduces
the backward transitioning time of SRS from 4.7% to 15.2%,
while ERS-2 reduces the backward transitioning time of SRS
from 10.8% to 26.5%, across all object sizes. This validates
the efficiency of ERS codes in backward transitioning under
different object sizes.
Experiment 3 (Transitioning latency under different cod-
ing parameters). We next evaluate the transitioning time
under different coding parameters. We consider six sets
of (k,m, k′), i.e., (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10),
(10, 3, 12), and (12, 3, 14). We consider two object sizes: 1 MB
and 4 MB. Figure 13 shows the results (the error bars show
the maximum and minimum results across ten runs).

Forward transitioning: From Figure 13(a), ERS-1 and ERS-2
reduce the forward transitioning time of SRS by 27.4% and
33.2%, 27.6% and 31.2%, 41.7% and 49.6%, 36.7% and 47.3%,
48.4% and 54.9%, and 43.8% and 51.2%, under the object size
of 1 MB for (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10), (10, 3, 12),
and (12, 3, 14), respectively. From Figure 13(b), ERS-1 and
ERS-2 reduce the forward transitioning time of SRS by 31.3%
and 38.7%, 27.4% and 39.4%, 51.2% and 56.0%, 44.3% and
61.4%, 53.8% and 61.2%, and 55.4% and 65.8%, under the
object size of 4 MB for (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10),
(10, 3, 12), and (12, 3, 14), respectively. We can see that ERS-
1 greatly reduces the transitioning time of SRS due to the
effect of ERS encoding matrix. ERS-2 can further lower the
transitioning time of ERS-1 via designing ERS-aware data
placement with more overlapping data blocks. Moreover,
ERS codes achieve larger gains with a larger object size
under larger coding parameters, and the actual improvement
ratios are comparable to the theoretical improvement ratios.
For example, ERS-2 reduces the read I/Os of SRS by 68.9%
and 63.1%, under the parameters (9, 2, 10) and (12, 3, 14),
respectively (Figure 9). In our experiments, ERS-2 reduces
the transitioning time of SRS by 61.4% and 65.8%, with the
object size of 4 MB for (9, 2, 10) and (12, 3, 14), respectively.

Backward transitioning: From Figure 13(c), ERS-1 and ERS-
2 save the backward transitioning time of SRS by 13.5% and
22.7%, 12.4% and 23.1%, 34.1% and 42.1%, 30.9% and 44.5%,
36.4% and 52.0%, and 36.1% and 48.9%, under the object size
of 1 MB for parameters (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10),
(10, 3, 12), and (12, 3, 14), respectively. From Figure 13(d),
ERS-1 and ERS-2 save the backward transitioning time of
SRS by 15.2% and 26.5%, 14.5% and 35.7%, 38.8% and 50.4%,
36.5% and 59.4%, 41.4% and 56.1%, and 45.0% and 60.9%,
under the object size of 4 MB for parameters (4, 1, 5), (5, 1, 6),
(8, 2, 10), (9, 2, 10), (10, 3, 12), and (12, 3, 14), respectively.
Thus, ERS-1 and ERS-2 greatly improve the backward
transitioning efficiency as we can exploit more overlapping
data blocks for parity block updates (Algorithm 4). Also,
ERS-2 shows notable improvement over ERS-1.
Experiment 4 (Transitioning latency under different band-
width). We now evaluate the transitioning performance
under different bandwidth. We configure the bandwidth
to be 10 Gbps, 1 Gbps, 500 Mbps, and 200 Mbps, respectively.
We consider (k,m, k′) = (4, 1, 5) and (k,m, k′) = (5, 1, 6)
with the object size of 1 MB. Figure 14 shows the results.
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Figure 12. Exp#2: Transitioning time under different object sizes.
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Figure 13. Exp#3: Transitioning time under different coding parameters.

Forward transitioning: From Figure 14(a), ERS-1 and ERS-
2 reduce the forward transitioning time of SRS by 43.0%
and 47.0%, 38.9% and 43.0%, 34.5% and 39.6%, and 27.4%
and 33.2%, for parameter (k,m, k′) = (4, 1, 5) under the
bandwidth of 200 Mbps, 500 Mbps, 1 Gbps, and 10 Gbps,
respectively. From Figure 14(b), ERS-1 and ERS-2 reduce
the forward transitioning time of SRS by 47.3% and 53.4%,
41.1% and 48.0%, 36.1% and 42.7%, and 27.6% and 31.2%, for
parameter (k,m, k′) = (5, 1, 6) under different bandwidth.
We can see that the improvements of ERS-1 and ERS-2 over
SRS are greater with more limited bandwidth.

Backward transitioning: From Figure 14(c), ERS-1 and ERS-
2 reduce the backward transitioning time of SRS by 36.5%
and 44.5%, 29.9% and 39.0%, 23.9% and 34.0%, and 13.5%
and 22.7%, for parameter (k,m, k′) = (4, 1, 5) when the
bandwidth is 200 Mbps, 500 Mbps, 1 Gbps, and 10 Gbps,
respectively. From Figure 14(d), ERS-1 and ERS-2 reduce
the backward transitioning time of SRS by 38.8% and 51.0%,
32.1% and 44.8%, 26.1% and 41.9%, and 12.4% and 23.1%, for
parameter (k,m, k′) = (5, 1, 6) under different bandwidth.
This again validates that ERS-1 and ERS-2 have larger
performance gains with more limited network bandwidth.
Experiment 5 (Impact of selecting the order of parity
blocks to update in backward transitioning). We now
evaluate the effectiveness of Algorithm 4, whose key novelty
is to select the proper order of new parity blocks to update.
We compare ERS-2 with order selection to ERS-2 without
order selection in backward transitioning. We consider six
sets of (k,m, k′), i.e., (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10),
(10, 3, 12), and (12, 3, 14), and two object sizes, i.e., 1 MB and
4 MB. Under each (k,m, k′), there is one reverse Equation
with two post-transitioning stripes (labeled by s′j and s′z)
involved. If ERS-2 with order selection recalculates p′

j and
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Figure 14. Exp#4: Transitioning time under different network bandwidth.

updates p′
z , then we enforce ERS-2 without order selection

to recalculate p′
z and update p′

j . Figure 15 shows the results
(the error bars show the maximum and minimum results
across ten runs).

From Figure 15(a), ERS-2 with order selection reduces
the backward transitioning time of ERS-2 without order
selection by 17.3%, 13.2%, 18.0%, 7.4%, 20.3%, and 11.3%,
under the object size of 1 MB for (4, 1, 5), (5, 1, 6), (8, 2, 10),
(9, 2, 10), (10, 3, 12), and (12, 3, 14), respectively. From Fig-
ure 15(b), ERS-2 with order selection reduces the backward
transitioning time of ERS-2 without order selection by 21.5%,
26.0%, 24.9%, 16.9%, 23.6%, and 23.7%, under the object size
of 4 MB for (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10), (10, 3, 12),
and (12, 3, 14), respectively. This verifies that Algorithm 4
can be executed with small amount of network I/Os, by



IEEE/ACM TRANSACTIONS ON NETWORKING 14

0.000

0.005

0.010

0.015

0.020

(4,1,5) (5,1,6) (8,2,10) (9,2,10) (10,3,12) (12,3,14)
Coding Parameter

T
ra

ns
iti

on
in

g 
T

im
e 

(s
)

ERS-2 w/o order selection ERS-2 w order selection

0.00

0.01

0.02

0.03

0.04

0.05

(4,1,5) (5,1,6) (8,2,10) (9,2,10) (10,3,12) (12,3,14)
Coding Parameter

T
ra

ns
iti

on
in

g 
T

im
e 

(s
)

ERS-2 w/o order selection ERS-2 w order selection

(a) Backward transitioning, object size 1 MB (b) Backward transitioning, object size 4 MB

Figure 15. Exp#5: Impact of selecting the order of new parity blocks to update in backward transitioning.

selecting the proper order of new parity blocks to update in
backward transitioning.

6.3 Cloud Experiments
Setup. We conduct experiments on Alibaba Cloud (ECS) [1]
to evaluate ERS codes in a cloud environment. We deploy our
ERS KV store prototype on 18 instances in different Zones
in Beijing China. Specifically, we deploy one ecs.g6.8xlarge
instance in Zone K to act as the proxy. This instance is
equipped with 32 vCPU and 128 GiB memory and runs
CentOS 7.9 64-bit. We deploy 17 ecs.r6e.xlarge instances in
Zones I, J, and L to act as the servers. Each of such instances
is equipped with 4 vCPU and 32 GiB memory and runs
CentOS 7.9 64-bit.
Experiment 6 (Transitioning latency under different object
sizes in cloud setting). We repeat Experiment 2 in cloud
setting. Figure 16 shows the results (the error bars show the
maximum and minimum results across ten runs).

From Figure 16(a), ERS-1 reduces the forward transi-
tioning time of SRS from 18.9% to 48.4%, while ERS-2
reduces the forward transitioning time of SRS from 20.6%
to 52.3%, across all object sizes. From Figure 16(b), ERS-1
reduces the backward transitioning time of SRS from 10.9%
to 41.5%, while ERS-2 reduces the backward transitioning
time of SRS from 11.2% to 49.7%, across all object sizes. The
improvements in cloud setting are more significant than in
local setting, since the cloud has less available bandwidth
than the local setting.
Experiment 7 (Transitioning latency under different cod-
ing parameters in cloud setting). Figure 17 repeats Experi-
ment 3 in cloud setting (the error bars show the maximum
and minimum results across ten runs).

From Figure 17(a), ERS-1 and ERS-2 reduce the forward
transitioning time of SRS by 43.5% and 48.5%, 46.1% and
47.7%, 36.2% and 37.5%, 29.3% and 31.1%, 31.8% and
34.2%, and 26.0% and 29.8%, under the object size of
1 MB for (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10), (10, 3, 12), and
(12, 3, 14), respectively. From Figure 17(b), ERS-1 and ERS-2
reduce the forward transitioning time of SRS by 48.4% and
52.3%, 51.5% and 57.5%, 38.7% and 48.6%, 39.5% and 51.4%,
51.3% and 57.1%, and 43.7% and 52.9%, under the object size
of 4 MB for (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10), (10, 3, 12),
and (12, 3, 14), respectively.

From Figure 17(c), ERS-1 and ERS-2 save the backward
transitioning time of SRS by 38.4% and 45.0%, 42.7% and
47.6%, 32.0% and 33.8%, 29.4% and 31.2%, 28.0% and 30.9%,
and 24.2% and 26.1%, under the object size of 1 MB for
parameters (4, 1, 5), (5, 1, 6), (8, 2, 10), (9, 2, 10), (10, 3, 12),
and (12, 3, 14), respectively. From Figure 17(d), ERS-1 and
ERS-2 save the backward transitioning time of SRS by 41.5%

and 49.7%, 44.7% and 55.9%, 38.0% and 47.7%, 40.3% and
48.7%, 42.5% and 45.6%, and 21.1% and 40.7%, under the
object size of 4 MB for parameters (4, 1, 5), (5, 1, 6), (8, 2, 10),
(9, 2, 10), (10, 3, 12), and (12, 3, 14), respectively.

Under small parameters (e.g., (4, 1, 5) and (5, 1, 6)), the
improvements in cloud setting are greater than in local
setting. However, under large parameters (e.g., (8, 2, 10),
(9, 2, 10), (10, 3, 12), and (12, 3, 14)), the improvements in
cloud setting are not as significant as in local setting. The
reason is that in cloud setting, redundancy transitioning
under large parameters is more likely to be bottlenecked by
stragglers, which may offset the gains brought by reduced
I/Os in ERS codes.

7 RELATED WORK

Redundancy transitioning. Several studies address efficient
redundancy transitioning for different storage architectures.
AutoRAID [39], DiskReduce [17], and EAR [26] study the
transitioning from replication to RAID or erasure coding.
Some studies propose efficient data redistribution approaches
for RAID [40], [48], [50] and erasure-coded distributed
storage systems [20], [42], [43], [44], [49]. In this work, we
specifically focus on redundancy transitioning for KV objects
in in-memory KV stores, which pose high elasticity demands
in real-world deployment [2], [29].

Some studies [27], [28], [46] apply stripe merging for re-
dundancy transitioning in erasure-coded storage. They focus
on limited setting that changes from (k,m) to (xk,m), while
our work considers a more general setting that transitions
between (k,m) and (k′,m).
Erasure coding in KV stores. Erasure coding has been
extensively studied in modern KV stores for low-cost fault
tolerance [3], [25], data availability [13], [47], and tail latency
mitigation [33]. In particular, prior studies [14], [36], [45],
[51] address the elasticity of erasure-coded in-memory KV
stores. PaRS [51] adjusts the replication factor of the data
blocks that have varying popularity, yet it requires data block
relocation and incurs expensive parity block updates. TEA
[45] realizes the transitioning from replication to erasure
coding in in-memory stores. ECHash [14] avoids parity
block updates via a new fragmented erasure coding model
with node additions or removals, while keeping coding
parameters unchanged; in contrast, our work addresses the
change of coding parameters. The closest work to ours is Ring
[36], which also addresses redundancy transitioning for KV
objects. In contrast to Ring, our work puts specific emphasis
on mitigating I/Os during redundancy transitioning via a
co-design of encoding matrix and data placement.
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Figure 16. Exp#6: Transitioning time under different object sizes in cloud setting.
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Figure 17. Exp#7: Transitioning time under different coding parameters in cloud setting.

8 CONCLUSION

We study how to enable efficient redundancy transitioning
with small network I/Os in erasure-coded distributed KV
stores. We propose a new class of erasure codes, ERS codes,
to mitigate network I/Os for redundancy transitioning. ERS
codes eliminate data block relocation and reduce network
I/Os for parity block updates via a co-design of the ERS en-
coding matrix and ERS-aware data placement. We show that
ERS codes can be applied in both forward transitioning and
backward transitioning cases. We implement a distributed
KV store that realizes ERS codes atop Memcached to allow
redundancy transitioning. Evaluation with numerical studies,
local cluster, and cloud experiments validates the efficiency
of ERS codes in redundancy transitioning.
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