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In this supplementary file, we present (i) the analysis of
skewness in different sources of traces, (ii) the proofs of
theorems and lemmas, and (iii) additional experimental results.

I. TRACE SKEWNESS

In addition to the CAIDA traces collected in the Internet (see
the main paper), we also consider two more real-world packet
traces from other types of networks. Table I summarizes their
details, and Figure 1 shows their skewness. We observe that
both UNI21 and ENT show high skewness, where the top 3%
of sources account for over 90% of total fan-outs. UNI2 and
ENT show a similar skewness property as in CAIDA traces.
We conduct evaluation results on UNI2 and ENT for different
sketches, and observe similar trends (we omit the results here).
Thus, we believe that the three CAIDA traces used in the main
paper are sufficiently representative.

Table I
SUMMARY OF ADDITIONAL TRACES.

Traces Description # unique
sources

# distinct
pairs

UNI2 [1] Traces from univer-
sity data centers

0.032K 1349.16K

ENT [3] Traces from an en-
terprise network

0.61K 5485.33K
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Figure 1. Cumulative fan-out ratios of the top-percentages of sources (i.e.,
the sum of fan-outs of the top-percentage of sources over the total fan-outs of
all sources) for three real-world IP traces.

II. PROOFS

We present the proofs of the theorems and lemmas presented
in the main paper. Note that the references in the section are
based on the main paper.

1We do not consider another trace, UNI1, in [1] as the size of the trace is
too small to be representative.

A. Proof of Theorem 1

Proof. SpreadSketch has rw buckets, each of which holds an m-
bit distinct counter (Vi, j), a logn-bit candidate source key (Ki, j),
and a loglogn-bit level counter (Li, j). Thus, the memory space
is O(rw(m+ logn+ log logn)) = O(m+logn+log logn

ε
log 1

δ
).

Each per-packet update takes one hash operation for cal-
culating the level, and then accesses log 1

δ
buckets to update

distinct counters. Thus, it takes O(log 1
δ
+1) = O(log 1

δ
) time.

SpreadSketch checks all buckets to identify all super-
spreaders and estimate their fan-outs. It traces at most rw
superspreaders, each of which checks r buckets for its fan-out
estimation. The detection time is O(r2w) = O( 1

w log2 1
δ
).

B. Proof of Theorem 2

Proof. For the lower bound, each distinct counter associated
with x is updated by at least S(x) times. Given an error factor
σ , the estimate returned by each distinct counter is at least
(1−σ)S(x). As Ŝ(x) takes the minimum estimate of all distinct
counters, we have Ŝ(x)≥ (1−σ)S(x).

For the upper bound, let Ri be the sum of fan-outs of all
sources excluding x in the bucket B(i,hi(x)) hashed by x in
row i, where 1≤ i≤ r. The expectation of Ri, denoted by E[Ri],
is given by E[∑z6=x,hi(z)=hi(x) S(z)] ≤ S−S(x)

w ≤ εS
2 , due to the

pairwise independence of hi and the linearity of expectation.
By Markov’s inequality,

Pr[Ri ≥ εS]≤ 1
2 . (1)

Given an error factor σ , we have Ŝ(x)≤ (1+σ)(Ri +S(x))
for each row i. Thus, Pr[Ŝ(x)≤ (1+σ)(S(x)+ εS)]

= 1−Pr[Ŝ(x)− (1+σ)S(x)≥ (1+σ)εS]
≥ 1−Pr[(1+σ)(Ri+S(x))− (1+σ)S(x)≥ (1+σ)εS,∀i]

= 1−Pr[Ri ≥ εS,∀i]≥ 1− ( 1
2 )

r = 1−δ .

The theorem follows.

C. Proof of Lemma 1

Proof. We first describe the idea of our proof. Consider the
bucket B(i,hi(x)) hashed by x in row i, where 1≤ i≤ r. We
partition the distinct source-destination pairs hashed to the
bucket into two groups. The first group contains S(x) distinct
pairs sharing the same source x, and the second group contains
the remaining Ri distinct pairs. Let MS(x) and MRi be the
maximum level values of the two groups, respectively. If
MS(x) > MRi , x is stored in Ki,hi(x). Our idea is to show that
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if x is a superspreader, then MS(x) ≤ MRi with a very small
probability. Let A denote the event MS(x) ≤ MRi . Then our
problem is to prove that the probability of A, Pr[A], is at most
δ . We prove this in several steps.

Step (i): Deriving the close-form expression of Pr[A]. Let Xt ,
where 1≤ t ≤ S(x), be a random variable that denotes the length
of the most significant 0-bits of a hash string for the t-th distinct
pair of the source x. Xt follows a geometric distribution with
the parameter 1

2 . Thus, we have Pr[Xt ≤ l] = 1− 1
2l+1 . Recall

that MS(x) is the maximum level value among the mutually
independent random variables {Xt}1≤t≤S(x), we have Pr[MS(x)≤
l] = ∏1≤t≤S(x) Pr[Xt ≤ l] = (1− 1

2l+1 )
S(x). Similarly, we obtain

Pr[MRi≤ l] = (1− 1
2l+1 )

Ri . Thus,

Pr[A] = ∑l≥0 Pr[MRi = l and MS(x)≤ l]

= ∑l≥0 Pr[MRi = l]Pr[MS(x)≤ l]

= ∑l≥0(Pr[MRi≤ l]−Pr[MRi≤ l−1])Pr[MS(x)≤ l]

= ∑l≥0((1− 1
2l+1 )

Ri − (1− 1
2l )

Ri)(1− 1
2l+1 )

S(x). (2)

Step (ii): Analyzing the upper bound of Pr[A]. Let Ri = λS(x)
for some constant λ > 0. Based on Equation (2), we rewrite
Pr[A] as a function of Ri and λ , denoted by F(Ri;λ ):

F(Ri;λ ) = ∑l≥0((1− 1
2l+1 )

Ri − (1− 1
2l )

Ri)(1− 1
2l+1 )

Ri/λ .

We can validate that F(Ri;λ ) is a decreasing function of Ri
and an increasing function of λ .

This helps us simplify Pr[A] and obtain a rough upper bound.
We split Ri into equal-length ranges Il = [ lS(x)

4 , (l+1)S(x)
4 ] for

integer l ≥ 0. Let P(l) = Pr[Ri∈ Il ] for l ≥ 0. Thus,

Pr[A] = ∑l≥0 Pr[A |Ri ∈ Il ]P(l)

< ∑l≥0 Pr[A |λ = (l+1)
4 ]P(l)

<F(Ri; 1
4 )P(0)+F(Ri; 1

2 )P(1)+Pr[Ri≥ S(x)
2 ]. (3)

To obtain the exact upper bound of Pr[A], we maximize the
right hand side of Inequality (3) by configuring its variables.
We first set P(0), P(1), and Pr[Ri ≥ S(x)

2 ], given the condition
that P(0)+P(1)+Pr[Ri ≥ S(x)

2 ] = 1. If x is a superspreader,
S(x)≥φS. By the assumption ε ≤ φ

4 and Inequality (1), we
have Pr[Ri ≥ S(x)

4 ] ≤ Pr[Ri ≥ φS
4 ] ≤ Pr[Ri ≥ εS] ≤ 1

2 ; in other
words, P(0)≥ 1

2 . Similarly, Pr[Ri ≥ S(x)
2 ]≤ 1

4 .
Since F(Ri;λ ) increases with λ , F(Ri; 1

4 ) < F(Ri; 1
2 ) < 1.

The right hand side of Inequality (3) is maximized when P(0)=
1
2 , P(1) = 1

4 , and Pr[Ri ≥ S(x)
2 ] = 1

4 . Thus,

Pr[A]< F(Ri; 1
4 )×

1
2 +F(Ri; 1

2 )×
1
4 +

1
4 .

Step (iii): Quantifying the upper-bound of Pr[A]. Here, we
configure some practical values of S(x) to quantify the terms
F(Ri; 1

4 ) and F(Ri; 1
2 ). For example, suppose that S(x) > 10.

We have Pr[A]< 0.269× 1
2 +0.422× 1

4 +
1
4 = 0.49 < 1

2 .
By considering all r rows, we show that the probability that

a superspreader x is not tracked by all r hashed buckets is
Pr[MRi≥MS(x),∀1≤i≤r]<

1
2r = δ . The theorem follows.

D. Proof of Theorem 3

Proof. By Theorem 2, Ŝ(x)≥ (1−σ)S(x)≥ φS . Then x is not
reported as a superspreader if and only if it is not stored in
any of its hashed buckets. By Lemma 1, this happens with a
probability at most δ . Thus, x is reported as a superspreader
with a probability at least 1−δ .

E. Proof of Theorem 4

Proof. A source x is reported as a superspreader only if Ŝ(x)≥
φS and x is stored in one of its hashed buckets. We first consider
the probability Pr[Ŝ(x)≥ φS]. From the proof of Theorem 2, we
have Ŝ(x)≤ (1+σ)(Ri+S(x)) for each row i, where 1≤ i≤ r.
Thus,

Pr[Ŝ(x)≥ φS]≤ Pr[(1+σ)(Ri +
εS

1+σ
)≥ φS,∀i]

= Pr[Ri ≥ φ−ε

1+σ
S,∀i]

≤ Pr[Ri ≥ εS,∀i] (due to ε ≤ φ

4 and σ < 1)

≤ 1
2r = δ (by Inequality (1)).

We next consider the probability that x is stored in one of
its hashed buckets. By Lemma 1, this probability is less than
one. Combining both cases, the theorem follows.

F. Proof of Theorem 5

Proof. From the update operation of HP-SpreadSketch (Fig-
ure 5 in the main paper), a pair must be inserted into
SpreadSketch at its first appearance (Lines 5-11). Also, the
HP-Filter only filters out the repeating pairs, and such repeating
pairs do not alter the bucket states in SpreadSketch due
to distinct counting in the buckets. Thus, HP-SpreadSketch
maintains the same accuracy guarantee as SpreadSketch.

G. Proof of Theorem 6

Proof. We first quantify the number of packets, X , that belong
to the k′ non-colliding heavy pairs (denoted by P1, P2, · · · ,
Pk′) and are filtered by the HP-Filter (i.e., such packets will
not be processed by SpreadSketch). For 1≤ i≤ k′, let fi be the
number of packets belonging to the Pi, and ei be the number
of packets that do not belong to Pi or any of the top-K pairs
but are hashed to the same unit of the HP-Filter as Pi. Then Pi
needs at most ei +1 packets to be considered as the majority
pair, and hence at least fi−ei−1 packets of Pi are filtered by
the HP-Filter. We have X ≥ ∑

k′
i=1( fi− ei−1).

On expectation, we have E[X ]≥E[∑k′
i=1( fi−ei−1)] = p′N−

∑
k′
i=1 E(ei)− k′ = p′N− k′(1−p)N

t − k′.
We further analyze the amortized per-packet update cost

of HP-SpreadSketch. Let Y be the total number of packets
that are filtered by the HP-Filter (including all heavy and non-
heavy pairs). Thus, the amortized per-packet update cost of
HP-SpreadSketch is Y/N+(1−Y/N)(r+1). HP-SpreadSketch
has a lower per-packet update cost than SpreadSketch when
Y/N +(1−Y/N)(r+1)< r, or equivalently Y > N

r .
Note that Y ≥ E[X ] (as Y covers all packets from the heavy

and non-heavy pairs). If the lower bound of E[X ] is larger
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than N
r , then we ensure that HP-SpreadSketch has a lower

per-packet update cost. The condition means:

p′N− k′(1−p)N
t − k′ > N

r

p′ > k′
N + k′(1−p)

t + 1
r . (4)

We can further bound k′ in Inequality (4). After the top-K
heavy pairs are hashed to the HP-Filter, suppose that the top-K
heavy pairs occupy t ′ out of t units in the HP-Filter. Then there
are on expectation c=E[k−t ′] = k−E[t ′] = k−t[1−(1−1/t)k]
hash collisions. In the worst case, the number of colliding pairs
is at most twice the number of hash collisions (i.e., 2c). Then
we have k′ ≥ k− 2c = 2t[1− (1− 1/t)k]− k. Combining it
with Inequality (4), we obtain the new inequality in which
HP-SpreadSketch has a lower per-packet update cost.

p′ > 2t[1−(1−1/t)k]−k
N + {2t[1−(1−1/t)k]−k}(1−p)

t + 1
r . (5)

H. Proof of Theorem 7

Proof. Compared with SpreadSketch, HP-SpreadSketch has
an additional HP-Filter with t units, each of which holds a
log2n-bit candidate majority pair (recall that the key size is
logn bits) and a 32-bit indicator counter. Thus, the total mem-
ory space is O(rw(m + logn + log logn) + t(log2n + 32)) =
O(m+logn+log logn

ε
log 1

δ
+ t logn+ t).

In the worst case, each per-packet update has one hash
operation for the HP-Filter and has the same insertion cost in
SpreadSketch, so it takes O(1+ log 1

δ
+1) = O(log 1

δ
) time.

HP-SpreadSketch has the same detection procedure as
SpreadSketch, so its detection time is also the same as in
SpreadSketch.

III. ADDITIONAL EXPERIMENTS

(Experiment S1) SpreadSketch with different distinct coun-
ters. We evaluate the effectiveness of using the multiresolution
bitmap [7] in SpreadSketch. We consider four different distinct
counters, including Linear Counting (LC) [9], K-Minimum
Values (KMV) (with K = 4) [5], HyperLogLog (HLL) [8], and
the multiresolution bitmap (SS) [7]. We compare their accuracy
as well as performance.

We first fix the r and w of SpreadSketch and vary the memory
size of each type of distinct counter. Figure 2 shows the results.
We observe that the multiresolution bitmap is the only distinct
counter that achieves the stable accuracy for all three traces
in almost all the settings. Its F1-score is above 0.75 in all
cases except for the memory size of 32 bits for CAIDA16 and
CAIDA18. It also has the smallest relative error in most of the
cases among all types of distinct counters.

We further fix the memory size of each distinct counter
as 438 bits (as used in our implementation of SpreadSketch)
and vary w of SpreadSketch. Figure 3 shows the results. We
make the similar conclusion that the multiresolution bitmap
maintains the stable and highest accuracy among all types of
distinct counters.
(Experiment S2) KMV in superspreader detection. We
examine K-Minimum Values (KMV) [5] in detail and evaluate

the accuracy and performance of using KMV as the distinct
counter in SpreadSketch. We focus on the impact of K in KMV,
where K stands for the number of the smallest hash values used
for distinct counter estimation. Specifically, when K > 1, we
calculate the fan-out from KMV with the unbiased estimator
(K−1)×HASH MAX/H(K), where H(K) is the k-th smallest
hash value we have seen and HASH MAX is the maximum
value that the hash function can return; when K = 1, we estimate
the fan-out with the basic estimator K×HASH MAX/H(K).
A larger K implies more accurate estimation, at the expense
of more memory and computational overhead.

We first fix the number of rows (i.e. r) and the number of
buckets in each row (i.e., w) of the sketch, and vary K in KMV.
We use the same threshold as in Experiment 1. Figure 4 shows
the results. We observe that the F1-score of KMV shows an
increasing trend as K increases. However, it is below 0.55 for
the less skewed trace CAIDA16 in all settings (Figure 4(c)).
We also observe a dip in K = 2 for the F1-score. The reason is
that when the estimator changes from K×HASH MAX/H(K)

for K = 1 to (K − 1)×HASH MAX/H(K) for K = 2, the
estimation of fan-out drops and hence causes an increasing
number of false negatives (Figure 4(b)). The throughput of
KMV drops as K increases, and is below 14.88 MPPS for
K ≥ 7 (Figure 4(e)).

We then fix the total memory usage at 2 MiB and vary K.
Specifically, we fix r = 4. Given K, we infer the memory size
of each bucket, and vary w such that the total memory usage is
at 2 MiB. Thus, a larger K implies fewer buckets in each row
for the sketch. Figure 5 shows the results. We observe that the
F1-score of KMV on CAIDA16 and CAIDA18 increases first
and decreases later as K increases (Figure 5(c)). The reason
is that when K is large, the error is mainly attributed to the
sketch with fewer buckets. The throughput of KMV shows a
decreasing trend as K increases (Figure 5(e)).

(Experiment S3) Comparisons between SpreadSketch with
BeauCoup. We compare SpreadSketch with BeauCoup [6] in
accuracy and performance versus the memory usage. BeauCoup
is a sampling-based approach designed to support multiple
distinct counting queries simultaneously with a small constant
number of memory accesses per packet. It counts the fan-out
of each source with a 32-bit bitmap. We reproduce the imple-
mentation of BeauCoup in C++. Our current implementation
supports only a single query for superspreader detection. As
the configuration of BeauCoup depends on the exact threshold
value, we need to calculate the exact threshold value based on
the fraction threshold φ and the total fan-outs in each epoch. We
then configure BeauCoup subject to the exact threshold value
via the procedure for the configuration described in its original
paper (Section 3.2 in [6]). Figure 6 shows the results. Compared
with BeauCoup, SpreadSketch achieves higher F1-score and
reduces the relative error by more than 66%. The throughput
of BeauCoup is much higher than that of SpreadSketch, as
it is based on sampling while SpreadSketch needs to update
multiple rows of the sketch structure for every packet.

(Experiment S4) Throughput of SpreadSketch with different
memory settings. We evaluate the update throughput of
SpreadSketch versus the memory usage on an Intel i7-10700
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Figure 2. (Experiment S1) Impact of distinct counters on SpreadSketch versus the memory size of a distinct counter.
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Figure 3. (Experiment S1) Impact of distinct counters on SpreadSketch versus the memory size of SpreadSketch.
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Figure 4. (Experiment S2) KMV in superspreader detection, where we fix r and w of sketch and vary K.
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Figure 5. (Experiment S2) KMV in superspreader detection, where we fix the total memory and vary K.
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Figure 6. (Experiment S3) Comparisons between SpreadSketch and BeauCoup.
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Figure 7. (Experiment S4) Throughput of SpreadSketch with different memory
settings.

processor with 8 cores, 64 KiB of L1 cache per core, 256 KiB
of L2 cache per core, and 16 MiB of shared L3 cache. We vary
the memory usage of SpreadSketch from 32 KiB to 32 MiB, so
that the memory allocation can cover all cache levels. Figure 7
shows the results. We observe that the update throughput
of both SpreadSketch and HP-SpreadSketch decreases as the
memory usage increases. The reason is that the working sets
of SpreadSketch and HP-SpreadSketch cannot fit in cache
with large memory usage. Thus, both schemes need more
CPU cycles to fetch data into cache, thereby increasing the
delay for packet processing. Although the performance of
SpreadSketch degrades when the cache size is insufficient, we
can mitigate the degradation by performing extensive system-
level optimization [4], such as using DPDK [2] to read packets
with kernel-bypass and adopting Single Instruction Multiple
Data (SIMD) instructions to enable instruction-level parallelism
across packets.
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