
IEEE/ACM TRANSACTIONS ON NETWORKING 1

A High-Performance Invertible Sketch for
Network-Wide Superspreader Detection

Lu Tang, Yao Xiao, Qun Huang, Patrick P. C. Lee

Abstract—Superspreaders (i.e., hosts with numerous distinct
connections) remain severe threats to production networks. How
to accurately detect superspreaders in real-time at scale remains
a non-trivial yet challenging issue. We present SpreadSketch, an
invertible sketch data structure for network-wide superspreader
detection with the theoretical guarantees on memory space,
performance, and accuracy. SpreadSketch tracks candidate
superspreaders and embeds estimated fan-outs in binary hash
strings inside small and static memory space, such that multiple
SpreadSketch instances can be readily merged to provide a
network-wide measurement view for recovering superspreaders
and their estimated fan-outs. We present formal theoretical
analysis on SpreadSketch in terms of space and time complexities
as well as error bounds. We further extend SpreadSketch with a
fast and small data structure that filters out the packets of high-
frequency connections from sketch processing, so as to improve
the update performance of SpreadSketch while maintaining
the accuracy guarantees. Trace-driven evaluation shows that
SpreadSketch achieves higher accuracy and performance over
state-of-the-art sketches and remains accurate in detecting real-
world worms and DDoS attacks. Furthermore, we prototype
SpreadSketch in P4 and show its feasible deployment in commodity
hardware switches.

I. INTRODUCTION

Identifying superspreaders (i.e., hosts with a large number of
distinct connections) in real-time is crucial in various network
management tasks, including hot-spot localization in peer-to-
peer networks [47] and detection of malicious attacks (e.g.,
DDoS attacks [19], port scanning [15], and worm propagation
[48]). For example, superspreaders may refer to the infected
hosts that connect to many other hosts for worm propagation
[48], or the servers overwhelmed by a botnet of zombie hosts
under DDoS attacks [19]. Despite many efforts in superspreader

The work was supported by Key-Area Research and Development Program
of Guangdong Province 2020B0101390001, Joint Funds of the National
Natural Science Foundation of China (U20A20179), National Natural Science
Foundation of China (62172007), the Fundamental Research Funds for the
Central Universities (20720210072), the Natural Science Foundation of Fujian
Province of China (2021J05002), and Research Grants Council of Hong Kong
(GRF 14204017).

An earlier version of this paper appeared at [51]. In this extended version,
we extend SpreadSketch with a small data structure, namely the HP-Filter, to
enhance its update performance. We also add new evaluation results on the
effectiveness of SpreadSketch in real-world attack detection.

L. Tang and Y. Xiao are with the Department of Computer Science and
Technology, Xiamen University, Xiamen, China (Emails: tanglu@xmu.edu.cn,
yaoxiao@stu.xmu.edu.cn).

Q. Huang is with the Department of Computer Science and Technology,
Peking University, Beijing, China (Email: huangqun@pku.edu.cn).

P. P. C. Lee is with the Department of Computer Science and En-
gineering, The Chinese University of Hong Kong, Hong Kong, China
(Email:pclee@cse.cuhk.edu.hk).

Corresponding author: Patrick P. C. Lee.

detection over decades, superspreaders (e.g., DDoS attacks)
remain widespread in modern production networks [19].

One challenge of superspreader detection is that super-
spreaders are distributed by nature, as their myriad connections
may span the entire network. A superspreader may appear
with only a small number of connections at a measurement
point (e.g., end-host or switch), but its aggregation across
multiple measurement points may have a significant number
of connections. Thus, it is essential to detect superspreaders in
real-time at scale, based on a network-wide view aggregated
from multiple measurement points [41]. A simple network-
wide detection approach is to maintain complete per-flow states
[42], [44], yet the memory consumption becomes prohibitive
in large-scale networks when a surge of active flows appear in
short timescales (e.g., under DDoS attacks).

The necessity of network-wide superspreader detection
motivates us to explore compact data structures that enable
memory-efficient measurement with provable accuracy guaran-
tees. In particular, we focus on invertible sketches, the summary
data structures that count the number of distinct connections
using fixed-size memory footprints with bounded errors, while
supporting the fast recovery of all superspreaders from the
data structures only (i.e., invertibility). Invertible sketches are
particularly critical for network-wide measurement, in which
we can aggregate multiple invertible sketches (which retain the
superspreader information) from various measurement points
across the network in order to recover all superspreaders in
a network-wide view. However, existing invertible sketches
for superspreader detection (e.g., [14], [23], [38], [40], [53],
[60]) often face different performance challenges. They either
incur high memory access overhead that slows down packet
processing, or incur high computational overhead that delays
the recovery of superspreaders (Section II-C). Thus, we pose
the following question: Can we design an invertible sketch
for network-wide superspreader detection that simultaneously
achieves (i) memory efficiency, (ii) high packet processing and
superspreader detection performance, as well as (iii) high
detection accuracy?

We present SpreadSketch, an invertible sketch for network-
wide superspreader detection with the theoretical guarantees on
memory space, performance, and accuracy. SpreadSketch maps
each observed connection (e.g., a source-destination pair) to a
binary hash string that estimates the fan-out (i.e., number of
distinct connections) of the host based on the length of the most
significant zero bits (as in Probabilistic Counting [21]). It tracks
candidate superspreaders in a fixed-size table of buckets, such
that multiple SpreadSketch instances can be merged to provide
a network-wide view for recovering all superspreaders and

IEEE/ACM TRANSACTIONS ON NETWORKING 2

their estimated fan-outs. In particular, SpreadSketch maintains
its sketch with small and static memory allocation and requires
only simple computations (e.g., multiplications, shifts, and
hashing). Such features not only improve packet processing
performance (without dynamic memory allocation), but also
enable SpreadSketch to be feasibly deployed in both software
and hardware and serve as a building block in current network-
wide measurement systems [27], [28], [37], [41], [43], [57],
[60]. In summary, this paper makes the following contributions:
• We design SpreadSketch, a new invertible sketch data struc-

ture for network-wide superspreader detection with memory
space, performance, and accuracy guarantees (Section III).

• We present formal theoretical analysis on SpreadSketch,
including its space complexity, update and detection time
complexities, as well as error bounds on superspreader
detection and fan-out estimation (Section IV).

• We extend SpreadSketch with a fast and small data structure,
called the HP-Filter, that filters out the packets of high-
frequency connections without processing the packets in the
sketch data structure. The HP-Filter improves the update
performance and maintains the accuracy of SpreadSketch,
with a trade-off of slightly increasing the memory usage. We
also present theoretical analysis on the extended design of
SpreadSketch with the HP-Filter (Section V).

• We show via trace-driven evaluation that SpreadSketch
achieves higher detection accuracy, higher update throughput,
and lower detection time than state-of-the-art sketches.
Adding the HP-Filter to SpreadSketch further increases
the update throughput by up to 54.5%. SpreadSketch also
achieves high accuracy in detecting real-world worms and
DDoS attacks (Section VI).

• We prototype SpreadSketch in P4 [4] and compile it in the
Barefoot Tofino chipset [1]. We present microbenchmark
results on SpreadSketch to justify its feasible deployment in
commodity hardware switches (Section VI).
The source code of our SpreadSketch prototype is available

at: http://adslab.cse.cuhk.edu.hk/software/spreadsketch.

II. BACKGROUND AND RELATED WORK

We formulate the superspreader detection problem and review
the related work. Table I summarizes the major notation in
this paper.

A. Superspreader Detection

We consider the processing of a stream of packets, each
of which is denoted as a source-destination pair (x,y) and is
allowed to be processed only once. The source x can refer
to any combination of packet header fields that identify the
source of the packet, such as the source IP address, or the pair
of source IP address and port; similar definitions apply to the
destination y. We assume that both source x and destination y
are the unique keys that are drawn from a key space represented
as an integer domain [n] = {0,1, · · · ,n−1}; in other words, a
key can be represented in dlog2 ne bits. Note that each (x,y)
can appear multiple times in a packet stream.

We formulate the superspreader detection problem as follows.
We conduct superspreader detection at regular time intervals

TABLE I
MAJOR NOTATION USED IN THE PAPER.

Notation Description
Defined in Section II

(x,y) a source-destination pair
[n] domain of a key
φ fraction threshold, where 0 < φ < 1

S(x) fan-out of a source key x (e.g., x represents a source IP)
S total fan-out of all sources in an epoch

Defined in Section III

r number of rows in a sketch
w number of buckets in each row in a sketch

B(i, j) bucket at i-th row and j-th column (1≤ i≤ r and 1≤ j ≤ w)
Vi, j sum of fan-out of all sources hashed to B(i, j)
ki, j candidate superspreader in B(i, j)
Li, j maximum level in B(i, j)
hi hash function of the i-th row
h∗ globle hash function
c number of bitmaps in multiresolution bitmap
b number of bits in the first c− 1 bitmaps of multiresolution

bitmap
b′ number of bits in the last bitmap of multiresolution bitmap
q number of measurement points

Defined in Section IV

ε approximation parameter of sketch, where 0 < ε ≤ φ

4 < 1
δ error probability of sketch, where 0 < δ < 1
σ error factor of distinct counter
m number of bits in each distinct counter
H maximum number of superspreaders in an epoch

Defined in Section IV

t number of units in HP-Filter
U(i) the i-th unit in HP-Filter (1≤ i≤ t)

Pi heavy repeating pair in U(i)
Ii indicator counter in U(i)

called epochs. We define the fan-out of a source as the
number of distinct destinations to which the source connects
over an epoch. We say that a source is a superspreader
if its fan-out exceeds a pre-defined threshold. Formally, let
φ (0 < φ < 1) be a pre-defined fractional threshold for
distinguishing superspreaders from a packet stream. A source
x is a superspreader if S(x)≥ φS, where S(x) is the fan-out
of x and S is the total fan-out of all sources appearing in the
epoch. In practice, we can obtain S with distinct counting (e.g.,
[17], [20], [21], [55]) that accurately estimates the number
of distinct source-destination pairs with small memory space.
We assume that both the epoch length and the threshold are
manually configured by network administrators.

We can also symmetrically estimate the number of distinct
sources with which a destination is connected over an epoch,
and a superspreader refers to a destination that is connected
by many distinct sources (e.g., under DDoS attacks). Without
loss of generality, we use the term “superspreader” to refer to
superspreader sources throughout the paper.

B. Design Requirements

Given the resource constraints of tracking all active flows in
large-scale networks (Section I), our primary goal is to design
a practical sketch data structure for superspreader detection,
with the following design requirements.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

• Invertibility: The sketch itself can readily return all super-
spreaders and their fan-outs at the end of an epoch.

• Network-wide detection: We can deploy the sketch at
multiple measurement points (e.g., end-hosts or switches)
across the network to perform network-wide superspreader
detection. Specifically, we can aggregate the local results at
multiple measurement points as if all network traffic was
measured at a big measurement point [41].

• Small and static memory usage: The sketch incurs small
memory footprints, which are essential for the deployment in
both software and hardware [28]. Also, its memory resources
can be statically allocated in advance to avoid dynamic
memory management overhead [50].

• Fast updates and detection: The sketch supports high-speed
per-packet updates. For example, a fully utilized 10 Gb/s link
with 64-byte packets implies that the sketch can be updated
with at least 14.88 million packets per second. Also, the
sketch should detect and return all superspreaders in real-
time to quickly react to any possibly ongoing attacks.

• High detection accuracy: The sketch achieves high detec-
tion accuracy with small memory footprints and provable
error bounds. Note that the accuracy guarantees should be
preserved even in the worst-case scenarios, such as malicious
attacks or traffic bursts.

C. Limitations of Existing Approaches

While superspreader detection has been extensively studied
in the literature, we argue that no existing approaches can
address all design requirements in Section II-B.

Per-source tracking. Traditional intrusion detection systems
(e.g., Snort [42] and FlowScan [44]) maintain all active
connections for each source to identify any port scans or
DDoS attacks. To improve memory efficiency, Estan et al.
[17] propose a small triggered bitmap that counts only the
sources with high fan-outs. However, per-source tracking incurs
tremendous resource usage, especially for high-speed links that
contain numerous active flows.

Sampling. To limit packet processing overhead, hash-based
flow sampling [11], [32], [52] is proposed to monitor (deter-
ministically) only a fraction of flows whose hashed flow IDs
are less than some pre-specified threshold (i.e., the sampling
probability). Thus, the superspreaders are likely to be sampled
as they have high fan-outs. However, sampling inherently has
low detection accuracy in short timescales [37]. Also, some
approaches [11], [32] maintain sampled flows in chained hash
tables, which have high memory access overhead over the
linked lists of buckets.

Streaming. Zhao et al. [62] combine sampling (which filters
hosts with small flow counts) and streaming (which estimates
the fan-out of each sampled source). Some approaches [30],
[36], [49], [59] estimate the fan-outs of sources in tight memory
space by sharing counter bits among sources. The above
solutions design compact data structures in fast memory (e.g.,
SRAM) for fan-out estimation. However, such data structures
are non-invertible and cannot directly return all superspreaders
from only the data structures in fast memory.

Sketches. Sketches are summary data structures that track all
packets in fixed-size memory footprints. Several sketches in
the literature aim for superspreader detection and also address
invertibility by design.

Distinct-Count Sketch [23] extends the idea of Probabilistic
Counting [21] to track the fan-outs. To track the list of
superspreaders, it also maintains a counter for every bit of
a source-destination pair, thereby resulting in high memory
usage and access overhead.

Some approaches encode the superspreader information
into a sketch, and later enumerate the entire source key
space to recover the candidate superspreaders. Connection
Degree Sketch [53] reconstructs host addresses associated
with large fan-outs based on the Chinese Remainder Theorem.
Vector Bloom Filter [38] improves update efficiency via
bit-extraction hashing, which extracts bits directly from the
source ID. However, the computational overhead of recovering
superspreaders is significant for very large key space.

Several studies propose cascaded sketches, whose idea is to
combine existing invertible frequency-based sketches (i.e., the
sketches that return high-frequency keys) and distinct counting,
so as to recover all source keys with high fan-outs. Count-Min-
Heap [14] extends Count-Min sketch [13] with an external
heap for tracking superspreaders and associates each bucket
with a distinct counter (e.g., [17], [20], [21], [55]). OpenSketch
[60] combines Reversible Sketch [46] with bitmap algorithms
[17], while Liu et al. [40] combine Fast Sketch [39] with
the optimal distinct counter [33], for superspreader detection.
However, existing invertible frequency-based sketches generally
have high processing overhead [50]: Count-Min-Heap not only
incurs high memory access overhead for heap updates, but also
needs to estimate the fan-out of the source key for each packet
update in order to determine if the source key should be kept
in the heap; Reversible Sketch and Fast Sketch incur an update
overhead that grows linearly with the key size.

D. Other Related Work

Detecting heavy hitters. Recent studies (e.g., [6], [24], [50])
focus on detecting heavy hitters (i.e., the sources whose frequen-
cies exceed a pre-defined threshold). Superspreader detection
can be viewed as a special case of heavy hitter detection
by identifying the sources with many distinct connections.
However, existing heavy hitter detection solutions cannot be
directly applied to superspreader detection as they cannot
distinguish duplicate connections in packet streams.
General network-wide measurement. Network-wide measure-
ment systems [27], [28], [37], [41], [43], [57], [60] propose
unified frameworks for general measurement tasks, and some of
them [27], [41], [43], [60] also address superspreader detection.
Our proposed sketch design (Section III) can be a building
block of the above network-wide measurement systems.
Stealthy spreaders. Some variants of the superspreader
detection problem are covered in the literature. Yoon et al.
[58] design a random aging streaming filter to find stealthy
spreaders that send low-rate malicious packets. Xiao et al. [56]
and Zhou et al. [64] study the estimation of persistent fan-outs
over a number of epochs. Huang et al. [26] further address the

IEEE/ACM TRANSACTIONS ON NETWORKING 4

0

25

50

75

100

0 25 50 75 100
Top percentage (%)

C
u
m

u
la

ti
ve

 p

e
rc

e
n
ta

g
e
 (

%
)

CAIDA16

CAIDA18

CAIDA19

Fig. 1. Cumulative fan-out ratios of the top-percentages of sources (i.e., the
sum of fan-outs of the top-percentage of sources over the total fan-outs of all
sources) for three real-world Internet traces.

estimation of the k-persistent fan-outs that appear in at least
k out of a fixed number of epochs. The above problems are
different with ours, and we pose them as future work.
Hardware solutions. Recent studies [12], [35], [54], [63]
customize general measurement solutions, including super-
spreader detection, for programmable switches. Elastic Trie [35]
iteratively tracks the IP prefixes in the data plane and adopts a
push-based approach to inform the controller about network
events. Martini [54] exports primitives for measurement tasks
and performs measurement and control decisions entirely in
the data plane to reduce the control-loop time. Newton [63]
allows operators to deploy measurement tasks on demand
by installing match-action rules dynamically. BeauCoup [12]
supports multiple heterogeneous distinct counting queries
directly in the data plane. In contrast, SpreadSketch’s design
targets the deployment in both software and hardware.

III. SPREADSKETCH DESIGN

SpreadSketch is a novel sketch data structure for super-
spreader detection that addresses all design requirements in
Section II-B. It incorporates invertibility and network-wide
detection by design, while providing the theoretical guarantees
on memory space, performance, and accuracy (Section IV).

A. Main Idea

SpreadSketch is a non-trivial extension of the classical Count-
Min Sketch [13]. Count-Min Sketch is initialized with multiple
rows of buckets, each of which is associated with a general
integer counter. For each item in a stream, Count-Min Sketch
hashes the item key into a bucket in each row and increments
the associated counter by the item value. It provides an estimate
for the value sum of an item key using the minimum counter
value of all buckets hashed by the item key.

SpreadSketch augments Count-Min Sketch by associating
each bucket with a distinct counter, a small fixed-size data
structure that counts the distinct items of a stream (e.g., [17],
[20], [21], [55]). Also, each bucket of SpreadSketch tracks the
key of a candidate superspreader that is estimated to have the
most fan-outs among all sources that are hashed to the bucket.
SpreadSketch’s design is motivated by two observations.
Highly skewed fan-out distributions. Fan-out distributions
in practice are often highly skewed [26], [29], [31], in which
a small fraction of sources have significantly higher fan-outs
than the remaining majority of sources. Figure 1 plots the
cumulative fan-out ratios of the top-percentage of sources

� buckets

� rows

Bucket �(�, �)

A table of buckets

�*,+:	total fan-out in �(�, �)

�*,+:	candidate superspreader

�*,+:	maximum level observed

�*,+ �*,+ �*,+

Fig. 2. Data structure of SpreadSketch.

(sorted by fan-outs in descending order) for three real-world
IP packet traces collected from the Internet (see Section VI
for trace details). We observe different degrees of skewness of
different traces. For example, the top 1% of sources account
for over 60% of total fan-outs in the most skewed CAIDA19;
the top 10% of sources account for over 67% of total fan-
outs in the moderately skewed CAIDA18; the top 10% of
sources account for over 38% of total fan-outs for the least
skewed CAIDA16. Thus, it is highly likely that the fan-out
of each bucket of SpreadSketch is dominated by at most one
superspreader, while we use multiple buckets to mitigate the
hash collisions of multiple superspreaders into the same bucket.
In addition to the Internet traces, we also observe skewness
in the traces from university data centers [22] and enterprise
networks [45] (see the digital supplementary file for details).
Accurate fan-out estimation via hash strings. Inspired by
Probabilistic Counting [21], we can construct a binary hash
string of 0’s and 1’s by hashing each source-destination pair.
We then use the hash string to estimate the fan-out of a source.
Suppose that the hash string is uniformly generated in the form
of 0l1∗, where l (called the level) denotes the length of the
most significant 0-bits and ∗ represents arbitrary bits. Then on
average 1/2l+1 of distinct pairs have the pattern 0l1∗. In other
words, the level l provides a rough estimation of the number
of distinct pairs. Given that each bucket is likely hashed by
at most one superspreader (see above), it can track the source
with the largest level as the candidate superspreader.

Also, we can combine the hash strings of a particular source
from multiple measurement points and find the candidate
(network-wide) superspreader in each bucket. Even though a
superspreader has a small fan-out at each single measurement
point, as long as its total fan-out dominates its hashed buckets,
we can still identify it via its combined hash string with a
high probability. We show how we leverage this property for
tracking candidate superspreaders in SpreadSketch in network-
wide detection (Section III-F).

B. Data Structure

Figure 2 shows the data structure of SpreadSketch, which
comprises r rows with w buckets each. Let B(i, j) be the
bucket at the i-th row and the j-th column, where 1 ≤ i ≤ r
and 1 ≤ j ≤ w. Each bucket B(i, j) consists of three fields:
(i) Vi, j, which is the distinct counter that counts the sum of
fan-outs of all sources hashed to the bucket (let |Vi, j| denote the
value stored in Vi, j); (ii) Ki, j, which stores the key of the current
candidate source that has the maximum level in the bucket; and
(iii) Li, j, which stores the current maximum level observed in

IEEE/ACM TRANSACTIONS ON NETWORKING 5

1: procedure UPDATE(x,y)
2: l← length of most significant 0-bits of h∗(x,y)
3: for i = 1 to r do
4: COUNT(Vi,hi(x),x,y)
5: if Li,hi(x) ≤ l then
6: (Ki,hi(x),Li,hi(x))← (x, l)
7: end if
8: end for
9: end procedure

10: procedure QUERY(x)
11: return Ŝ(x)←min1≤i≤r{|Vi,hi(x)|}
12: end procedure
13: procedure COUNT(V,x,y)
14: l← length of most significant 0-bits of h∗(x,y)
15: if l < c−1 then
16: p← h∗(x,y) mod b
17: V [l][p]← 1
18: else
19: p← h∗(x,y) mod b′
20: V [c−1][p]← 1
21: end if
22: end procedure
23: procedure MERGE(q)
24: for i = 1 to r do
25: for j = 1 to w do
26: Vi, j←V 1

i, j ∪V 2
i, j · · ·∪V q

i, j
27: Ki, j← Kk∗

i, j, where k∗ = argmax1≤k≤q{Lk
i, j}

28: Li, j = max1≤k≤q{Lk
i, j}

29: end for
30: end for
31: end procedure
Fig. 3. Main operations of SpreadSketch.

the bucket. Note that we can pre-allocate static memory space
for SpreadSketch in advance before the measurement starts.

In addition, SpreadSketch is associated with two sets of hash
functions: (i) r pairwise-independent hash functions, denoted
by h1,h2, · · · ,hr, such that hi (1≤ i≤ r) hashes a source key
into one of the w buckets in row i; and (ii) the global hash
function h∗, which transforms each source-destination pair into
a hash string that closely resembles truly uniform independent
bits. Note that h∗ can be realized via many practical hash
schemes (e.g., standard multiplicative hashing) whose outputs
are indistinguishable from truly random bits [20], [34].

C. Basic Operations

SpreadSketch supports two basic operations (Figure 3): (i)
Update, which updates a source-destination pair (x,y) into the
sketch; and (ii) Query, which returns the estimated fan-out of
an input source key x.

The Update operation (Lines 1-9 of Figure 3) is invoked
for each arrival of (x,y) in a packet stream. We initialize the
variables of all buckets of SpreadSketch to zeros. Upon the
arrival of (x,y), we first compute the hash string of (x,y) via
the hash function h∗ and obtain the level l of the hash string
(i.e., the length of the most significant 0-bits). For each row
i (1≤ i≤ r), we hash the source x into the bucket B(i,hi(x))
and increment the distinct counter Vi,hi(x). We also compare l
with the current maximum level Li,hi(x): if Li,hi(x) ≤ l, then we
replace Ki,hi(x) with x and update Li,hi(x) to l, meaning that x

is now the source with the maximum level among all sources
hashed to the bucket.

The Query operation (Lines 10-12 of Figure 3) is invoked
for a given input source x. We extract the value of each distinct
counter associated with x for 1≤ i≤ r (denoted by |Vi,hi(x)|).
We return the minimum value of all the distinct counters as
the estimated fan-out of x (denoted by Ŝ(x)).

D. Distinct Counters

Both Update and Query operations of SpreadSketch depend
on the choice of the distinct counter (denoted by V) associated
with each bucket. In this paper, we choose the multiresolution
bitmap [17], which supports multiset operations for network-
wide detection (Section III-F) and can be readily implemented
in hardware (Section VI). Compared with other distinct counters
such as Linear Counting [55], HyperLogLog [20], and K-
Minimum Values [8], the multiresolution bitmap maintains
more stable accuracy for various counting ranges using a small
number of bits (see the digital supplementary file). Recent
work shows that short approximate counters can be combined
with sketches for faster and more space-efficient measurement
[7]; we pose the study of such a combination issue as future
work.

The Update operation calls the Count operation (Lines 13-
22 of Figure 3) for distinct counting, which we realize as
follows. We construct the distinct counter of each bucket as c
bitmaps V [0],V [1], · · · ,V [c−1], where the first c−1 bitmaps
V [0],V [1], · · · ,V [c− 2] have b bits each and are associated
with the hash strings 001∗,011∗, · · · ,0c−21∗, respectively, while
V [c−1] has b′ bits and is associated with the hash strings that
have at least c−1 most significant 0-bits; note that c, b, and
b′ are configurable parameters (see details below). Given the
hash string h∗(x,y), we map it to the corresponding bitmap
according to the number of most significant 0-bits, and set
the p-th bit to one, where p is the hash string modulo the
bitmap size. Based on the bitmap configuration, we expect
that half of the distinct items are mapped to V [0], a quarter of
the distinct items are mapped to V [1], and so on. To estimate
the distinct count of a multiresolution bitmap, we add all the
distinct counts of all bitmaps and multiply the sum with some
sampling factor [17].

The Query operation returns the minimum value of multiple
distinct counters associated with a source. We can estimate the
minimum value by combining multiple multiresolution bitmaps
via the bitwise AND operation and obtaining the distinct count
estimate of the combined bitmap.

We configure c, b, and b′ according to some pre-specified
relative error σ (0 < σ < 1) and the maximum possible distinct
count C [18]. Specifically, we fix b = 0.6367/σ2, and initialize
b′ = 2b and c = 2+ dlog2(C/2.6744b)e. We fine-tune both b′

and c for the minimum memory usage subject to the inputs
C and σ via the ComputeConfiguration algorithm. We refer
readers to [18] for details.

E. Identification of Superspreaders

To recover all superspreaders, we check all r×w buckets
of SpreadSketch at the end of each epoch. For each bucket

IEEE/ACM TRANSACTIONS ON NETWORKING 6

B(i, j) (1≤ i≤ r, 1≤ j ≤ w), if the value of Vi, j exceeds the
pre-specified threshold, then we call the Query operation on the
candidate source in Ki, j to estimate its fan-out. If the estimated
fan-out also exceeds the pre-specified threshold, we report the
candidate source as a superspreader.

F. Network-Wide Superspreader Detection

We can deploy SpreadSketch at multiple measurement
points in parallel to support network-wide superspreader
detection. Suppose that there are q measurement points and a
centralized controller. Each measurement point runs an instance
of SpreadSketch, where all instances share the same set of
parameters (e.g., r, w, and hash functions). At the end of each
epoch, each measurement point sends its sketch data structure
to the controller, which then merges all received sketches (via
a Merge operation) and recovers superspreaders based on the
merged sketch. Note that we do not make any assumptions on
the selection of measurement points or the traffic distributions
among the measurement points.

We elaborate the Merge operation as follows (Lines 23-31
of Figure 3). Let Bk(i, j) = (V k

i, j,K
k
i, j,L

k
i, j) be the bucket with

index (i, j) at the k-th measurement point, where 1 ≤ i ≤ r,
1≤ j ≤ w, and 1≤ k ≤ q. Upon receiving all q sketches, the
controller constructs a merged sketch whose bucket B(i, j) is
formed by all Bk(i, j)’s: (i) it sets Vi, j as the union of all V k

i, j’s
(for the multiresolution bitmap [17], the union is equivalent
to the bitwise OR operation); (ii) it sets Kk

i, j as the candidate
superspreader that has the maximum level among all Kk

i, j’s;
and (iii) it sets Li, j as the maximum value of all Lk

i, j’s.
After the Merge operation, the controller performs super-

spreader detection on the merged sketch as in Section III-E.
In essence, the merged sketch provides a network-wide view
as if all traffic were measured at a big measurement point.

IV. THEORETICAL ANALYSIS

We present theoretical (worst-case) analysis on SpreadSketch
in memory space, performance, and accuracy. We configure
SpreadSketch with three parameters: ε , δ , and σ (0 < ε,δ ,σ <
1), where ε and δ are the approximation parameter and the
error probability for the sketch configuration, respectively, and
σ is the error factor for the distinct counter configuration. We
set r = log 1

δ
and w = 2

ε
, where the logarithm base is 2. Our

analysis also assumes ε ≤ φ

4 to provide provable error bounds.
Given σ , we can derive the minimum memory space m (in
bits) for a distinct counter (Section III-D).

In the interest of space, we refer readers to the digital
supplementary file for the detailed proofs.

A. Space and Time Complexities

Theorem 1 shows the complexities of memory space, update
time, and detection time of SpreadSketch.

Theorem 1. The memory space is O(m+logn+log logn
ε

log 1
δ
). The

per-packet update time is O(log 1
δ
), while the detection time

of returning all superspreaders is O(1
ε

log2 1
δ
).

Note that our proof of Theorem 1 assumes that each distinct
counter has O(1) time complexities, including adding an item

to the distinct counter and estimating the distinct count. This
assumption holds for the multiresolution bitmap [17] that we
use and other distinct counters [33], [55].

B. Accuracy for the Estimated Fan-Out

Theorem 2 shows the lower and upper bounds of the
estimated fan-out Ŝ(x) of a source x from the Query operation.
We bound Ŝ(x) with respect to S(x) (i.e., the true fan-out of
x) and S (i.e., the total fan-out of all sources) (Section II-A).

Theorem 2. For any source x, Ŝ(x) ≥ (1−σ)S(x); with a
probability at least 1−δ , Ŝ(x)≤ (1+σ)(S(x)+ εS).

C. Accuracy for Superspreader Detection

We first analyze the likelihood that a superspreader is tracked
by SpreadSketch. We then study the false positive and false
negative rates of SpreadSketch.

Lemma 1. A superspreader x is stored in one of its hashed
buckets with a probability at least 1−δ .

Theorems 3 and 4 bound the false negative and false positive
rates of SpreadSketch, respectively.

Theorem 3. For source x with S(x) ≥ φS
1−σ

, SpreadSketch
reports x as a superspreader with a probability at least 1−δ .

Theorem 4. For source x with S(x) ≤ εS
1+σ

, SpreadSketch
reports x as a superspreader with a probability at most δ .

D. Analysis for Network-Wide Superspreader Detection

We briefly discuss the memory space, performance, and
accuracy of network-wide superspreader detection. Suppose
that we deploy q measurement points, each of which runs a
SpreadSketch instance with the same configuration parameters
as in a single-sketch case. Since there are q SpreadSketch
instances, the memory space is O(q(m+logn+log logn)

ε
log 1

δ
) (i.e.,

q times the single-sketch case). The per-packet update time
at each measurement point remains O(log 1

δ
). To recover all

superspreaders, the controller takes O(qrw) = O(q
ε

log 1
δ
) time

to merge q sketches and O(rw) = O(1
ε

log2 1
δ
) time to traverse

all the buckets of the merged sketch, so the total detection
time for returning all superspreaders is O(1

ε
log 1

δ
(q+ log 1

δ
)).

Finally, our network-wide detection operates on a r×w merged
sketch, so its false negative and false positive rates follow
Theorems 3 and 4 as in the single-sketch case, respectively.

E. Comparison with Existing Approaches

We compare SpreadSketch with several state-of-the-art
sketches on superspreader detection (Section II-C), including
Distinct-Count Sketch (DCS) [23], Connection Degree Sketch
(CDS) [53], Vector Bloom Filter (VBF) [38], Count-Min-Heap
(CMH) [14], RevSketch (REV) with distinct counting [46],
[60], and Fast Sketch (FAST) [39], [40] with distinct counting.
Table II shows the space and time complexities of all sketches
in terms of ε , δ , n, m, and H (the maximum number of
superspreaders that appear in an epoch). We assume that the
distinct counters and bit arrays used in the sketches all have

IEEE/ACM TRANSACTIONS ON NETWORKING 7

TABLE II
COMPARISON OF SPREADSKETCH WITH STATE-OF-THE-ART SKETCHES.

Sketches r w Memory space Per-packet update time Detection time

DCS log 1
δ

H
ε2 log((1+ logn)/δ) O(H

ε2 log2 n log((2+ logn)/δ)) O(logn log 1
δ
) O(H

ε2 log2 n log((2+ logn)/δ))

CDS log 1
δ

2
ε

O(m
ε

log 1
δ
) O(log 1

δ
) O(H log(1/δ))

VBF loglogn n1/ log logn O(m(log logn)n1/ log logn) O(log logn) O(H log logn)

CMH log 1
δ

2
ε

O(m
ε

log 1
δ
+H logn) O(log H

δ
) O(H)

REV O(logn
log logn) (logn)Θ(1) O(m(logn)Θ(1)

log logn) O(logn) O(Hn
3

loglogn log logn)

FAST 4H log 4
δ

1+log n
4H log(4/δ) O(Hm log 1

δ
log n

H log(1/δ)) O(log 1
δ

log n
H log(1/δ)) O(H log3 1

δ
log(n

H log(1/δ)))

SpreadSketch log 1
δ

2
ε

O(m+logn+log logn
ε

log 1
δ
) O(log 1

δ
) O(H log 1

δ
)

O(1) time complexities. For CDS [53], the original paper does
not discuss the table configuration with respect to accuracy
parameters, so we set the numbers of rows and buckets of CDS
as in SpreadSketch.

Space. DCS has high memory space as it includes the term
log2 n

ε2 . CMH, REV, FAST, and SpreadSketch all contain a logn
term. However, the term refers to logn bits in CMH and
SpreadSketch, while it refers to logn distinct counters in FAST
and REV. It is not obvious whether SpreadSketch has smaller
memory space than CDS and VBF. However, our evaluation
(Section VI) shows that SpreadSketch achieves higher accuracy
than both CDS and VBF under the same memory space.

Per-packet update time. CMH incurs log 1
δ

memory accesses
to update the sketch and takes O(logH) time to access its heap
if the source is a superspreader. DCS, REV, and FAST all have
high update time complexities, which are proportional to logn
(i.e., the key length). VBF extracts consecutive bits of each
source key (in O(1) time) to locate O(log logn) hashed buckets.
Both CDS and SpreadSketch have the same low per-packet
update time.

Detection time. DCS, CDS, VBF, REV, and FAST all have high
detection time complexities; in particular, the detection times of
both CDS and VBF increase exponentially with the number of
rows. CMH takes only O(H) time to return all superspreaders
and their estimated fan-outs from its heap. SpreadSketch takes
O(log 1

δ
) time to estimate the fan-out of each superspreader,

and hence O(H log 1
δ
) time in total.

V. UPDATE IMPROVEMENTS OF SPREADSKETCH

Reducing the per-packet update time in sketches is critical for
superspreader detection, especially in high-speed networks. If
the update speed cannot match up with the line-rate, there
will be packet drops in on-path sketch processing. While
SpreadSketch can achieve the 10 Gb/s line-rate (Section VI-B),
its update time may become the performance bottleneck in
networks with higher bandwidth (e.g., 100 Gb/s [25]). In this
section, we propose an additional data structure to improve the
update performance of SpreadSketch for high-speed networks.
We also perform theoretical analysis on the update performance
of the new SpreadSketch design. Note that since modern switch
ASICs (e.g., Tofino [1]) already guarantee line-rate packet
processing for the deployment of SpreadSketch in the data
plane (see Experiment 7), our improved design is mainly for
the deployment on CPU-based server platforms.

A. Heavy-Pair Filter (HP-Filter)

Design overview. Recall that SpreadSketch updates a packet
stream of source-destination pairs into its sketch structure. Our
insight is that we can further improve its update performance
by filtering out the redundant pairs that appear more than
once. Specifically, we refer to a pair as a new pair if it has
never appeared in the stream before, or as a repeating pair
otherwise. Repeating pairs do not contribute to the counting
of the fan-out of a source, but are instead treated as noises.
Currently, SpreadSketch differentiates the new and repeating
pairs based on the distinct counter in each bucket. This causes
SpreadSketch to spend non-negligible time to process repeating
pairs. Thus, our idea is to filter out most repeating pairs at
the input of SpreadSketch and pass the remaining pairs to
SpreadSketch for further processing.

A straightforward way to filter out the repeating pairs is to
use the Bloom filter [9], a space-efficient probabilistic bitmap
structure that tests whether an element is present in a set. In the
Bloom filter, each new pair is hashed into a subset of bits and
sets the hashed bits; if all bits are already set, it implies that the
pair is a repeating pair. However, we argue that Bloom filter
is not well suited for superspreader detection in SpreadSketch,
with two reasons. First, the Bloom filter has false positives due
to hash collisions. It can falsely treat a new pair as a repeating
pair, causing SpreadSketch to miss the new pair. Second, to
minimize the false positive rate, the Bloom filter size should
be pre-configured to be linear with the number of distinct
pairs. This requires the knowledge of the number of distinct
pairs in a stream a priori, which is infeasible in practice. For
example, when a DDoS attack happens, a large number of
distinct pairs emerge in a short period of time. If we do not
address the attack scenario and the Bloom filter is configured
with an underestimated size, it is easily saturated and causes
SpreadSketch to miss many new pairs.

Our idea is to filter out repeating pairs from a heavy hitter
detection perspective (Section II-D). Prior studies show that a
small number of large flows (i.e., flows with significant amounts
of traffic) dominate in IP traffic [16], [61], implying that a small
number of source-destination pairs appear with high frequencies.
We refer to the high-frequency pairs as the heavy pairs; note
that a heavy pair is also a repeating pair since it must appear
more than once in order for being treated as a heavy pair. If we
can identify and filter the heavy pairs, we can eliminate a large
fraction of repeating pairs from being updated in SpreadSketch.
To this end, we propose a filter structure called the HP-Filter,

IEEE/ACM TRANSACTIONS ON NETWORKING 8

Unit 𝑈(𝑖)

SpreadSketch

𝑃!: Majority pair in 𝑈(𝑖)

𝐼! : Indicator counter

𝑃! 𝐼!

Packet stream

HP-Filter

Filtered packet stream

Fig. 4. Integration of the HP-Filter with SpreadSketch.

1: procedure OPTUPDATE(x,y)
2: if Pg(x,y) = (x,y) then
3: Ig(x,y)← Ig(x,y)+1
4: return
5: else
6: UPDATE(x,y)
7: Ig(x,y)← Ig(x,y)−1
8: if Ig(x,y) < 0 then
9: Ig(x,y)← 1

10: Pg(x,y)← (x,y)
11: end if
12: end if
13: end procedure
Fig. 5. The new update operation of HP-SpreadSketch.

which applies the majority voting algorithm (MJRTY) [10] to
find the heavy pairs. MJRTY is a streaming method that is
proven to always find the majority item whose frequency is
more than half the total frequencies in a stream. It has been
used in detecting heavy hitters [50], and we extend its idea to
filter heavy pairs.

Algorithm details. Figure 4 shows the data structure of the
HP-Filter and its integration with SpreadSketch. The HP-Filter
comprises t units. Each unit U(i) (1≤ i≤ t) contains two fields:
(i) Pi, which stores the current heavy pair in U(i); and (ii) Ii,
which is an indicator counter for checking whether Pi should
be updated via MJRTY. We hash each pair in a packet stream
to one of the t units in the HP-Filter. Our idea is to apply
MJRTY to track the heavy pair in each unit, assuming that
the heavy pair dominates in the traffic among all pairs that are
hashed to the same unit.

Figure 5 describes the update process of SpreadSketch cou-
pled with the HP-Filter, which we refer to as HP-SpreadSketch.
The idea is that if we find that a pair is determined to be a
heavy pair according to the HP-Filter, we do not insert it into
SpreadSketch. Initially, all units in the HP-Filter are set to
zeros. For each pair (x,y), we hash it into one of the units U(i)
in the HP-Filter with some hash function g. We check if the
pair should be filtered via MJRTY: if Pi equals (x,y), meaning
that (x,y) is a candidate heavy pair in U(i), we increment Ii
by one and return (Lines 2-4); otherwise, we decrement Ii by
one and insert (x,y) into SpreadSketch (Lines 5-7). If Ii is less
than zero, meaning that the pair in Pi is no longer a heavy pair
in U(i) according to MJRTY, we reset Ii to one and set Pi to
(x,y) (Lines 8-11).

B. Theoretical Analysis on HP-SpreadSketch

We present the theoretical analysis on HP-SpreadSketch.
We show that HP-SpreadSketch maintains the accuracy of
SpreadSketch (Theorem 5) and improves the throughput of
SpreadSketch when the traffic is highly frequency-skewed
(Theorem 6). We further show the complexities of memory
space, update time, and detection time of HP-SpreadSketch
(Theorem 7). The proofs are in the digital supplementary file.

Theorem 5. HP-SpreadSketch has the same theoretical guar-
antee on accuracy as SpreadSketch.

We study the per-packet update cost of HP-SpreadSketch
under skewed traffic. Suppose that in an IP packet stream, the
top-k heavy pairs account for at least a fraction p of the total
number of packets N, where the parameters k and p determine
the skewness of the packet stream. For example, for a fixed k,
a larger p implies that the stream is more frequency-skewed.
For the HP-Filter with t units, suppose that k′ out of k heavy
pairs (k′ < k) have no hash collision with each other after
the top-k heavy pairs are hashed to HP-Filter, while the k′

heavy pairs account for a fraction p′ of the total number of
packets (p′ < p). Also, suppose that the per-packet update cost
in the HP-Filter is the same as the cost of updating a bucket in
SpreadSketch. Let the per-packet update cost of the HP-Filter
be one. Then the per-packet update cost of SpreadSketch is r.

Theorem 6 shows the condition when HP-SpreadSketch
has a lower per-packet update cost than SpreadSketch. Our
analysis assumes that each of the k′ non-colliding heavy pairs
is the majority pair in its hashed unit in the HP-Filter. Such an
assumption can be justified for a sufficiently large number t of
units in the HP-Filter, as the non-heavy pairs are spread across
all the units and have limited contribution in the number of
packets to each unit.

Theorem 6. HP-SpreadSketch has a lower per-packet up-
date cost than SpreadSketch when p′ > 2t[1−(1−1/t)k]−k

N +
{2t[1−(1−1/t)k]−k}(1−p)

t + 1
r .

We briefly discuss the likelihood when the inequality in
Theorem 6 holds. Suppose that the parameters r, t, N, and
k are fixed. When p increases (i.e., the traffic becomes
more frequency-skewed), the right-hand side of the inequality
decreases while the left-hand side p′ increases. Thus, the
likelihood that the inequality holds increases with p.

Theorem 7 summarizes the worst-case complexity of HP-
SpreadSketch in terms of memory space, update time, and
detection time.

Theorem 7. The memory space of HP-SpreadSketch is
O(m+logn+log logn

ε
log 1

δ
+ t logn + t). The per-packet update

time is O(log 1
δ
), while the detection time of returning all

superspreaders is O(1
ε

log2 1
δ
).

HP-SpreadSketch significantly improves the update per-
formance over SpreadSketch, with a trade-off of (slightly)
increasing the memory usage due to the addition of the HP-
Filter atop SpreadSketch. From our evaluation (Section VI-B),
HP-SpreadSketch improves the update throughput up to at least
50%, while the HP-Filter itself accounts for less than 5% of the

IEEE/ACM TRANSACTIONS ON NETWORKING 9

total memory usage of HP-SpreadSketch. On the other hand,
increasing the size of the HP-Filter can degrade the accuracy,
as less memory will be allocated for SpreadSketch.

VI. EVALUATION

We conduct trace-driven evaluation on real-world Internet
traces and compare SpreadSketch with state-of-the-art sketches.
We show that SpreadSketch achieves (i) high detection accuracy
(Experiment 1), (ii) high update and detection performance
(Experiment 2), and (iii) accurate network-wide superspreader
detection (Experiment 3). We also demonstrate the update
throughput gain of HP-SpreadSketch (Experiments 4-5) and
the accurate detection of SpreadSketch in real-world attacks
(Experiment 6). We further implement SpreadSketch in P4 [4]
and present its microbenchmark performance on a Barefoot
Tofino switch [1] (Experiment 7).

In the digital supplementary file, we report additional
evaluation results on (i) using different distinct counters,
including: Linear Counting [55], HyperLogLog [20], and K-
Minimum Values [8], and the multiresolution bitmap [17];
(ii) using K-Minimum Values [8] for the distinct counters;
and (iii) the comparisons with BeauCoup [12], a framework
that supports multiple distinct counting queries (including
superspreader detection) with constant memory accesses per
packet.

A. Setup

Traces. We consider two sets of packet traces in our evaluation.
We consider three one-hour real-world IP packet traces,

namely CAIDA16, CAIDA18, and CAIDA19, captured by
CAIDA [2] on 10 GigE backbone links in the Internet in
years 2016, 2018, and 2019, respectively. We divide each
trace into 60 one-minute epochs. We focus on the source-
destination address pairs of IPv4 traffic only. The three
traces have highly different statistical properties as well as
skewness (Figure 1 in Section III-A): CAIDA16 (least skewed),
CAIDA18 (moderately skewed), and CAIDA19 (most skewed)
contain 0.46K, 1.31K, and 0.35K unique sources, as well as
0.74K, 5.28K, and 2.58K distinct pairs per epoch on average,
respectively. We evaluate superspreader detection in each epoch
and obtain averaged results over all epochs.

We also consider two real-world attack traces to evaluate
SpreadSketch in real-time attack detection. The first one is the
Witty Internet Worm trace [5], which is monitored by the UCSD
Network Telescope in year 2004 and contains the packets from
the computers being infected by the Witty worm. The second
one is the CAIDA DDoS attack trace [3], which is captured by
CAIDA in year 2007 and contains packets from a DDoS attack.
We divide each trace into one-minute epochs and evaluate
superspreader detection in each epoch.
Parameter configurations. We compare SpreadSketch with the
state-of-the-art sketches listed in Table II. For fair comparisons,
we use the multiresolution bitmap [17] as the distinct counter
in CMH, REV, and FAST. We fix a multiresolution bitmap as
438 bits, so that it can count up to 10,000 distinct items with
σ = 0.1 (Section III-D). Also, we configure the same memory
usage for all sketches. For SpreadSketch, we fix r = 4 rows

and vary the number of buckets per row (i.e., w) for each
given memory size. For other sketches, we tune r and w under
the given memory size and choose the setting that maximizes
the accuracy (F1-score). We tune the threshold for each trace
to keep the number of true superspreaders in each epoch as
100. In particular, we fix the heap size of CMH as 256 source
keys, so as to provide sufficient space for storing candidate
superspreaders.

Metrics. We consider the following metrics.

• Precision: the ratio of true superspreaders detected over all
superspreaders reported;

• Recall: the ratio of true superspreaders detected over all true
superspreaders reported;

• F1-score: the harmonic average of precision and recall;
• Relative error: 1

|D| ∑x∈D
|Ŝ(x)−S(x)|

S(x) , where D is the set of true
superspreaders detected;

• Throughput: the number of packets processed per second;
• Detection time: the time for recovering all superspreaders.

B. Results

(Experiment 1) Accuracy. Figure 6 compares the accuracy of
SpreadSketch (SS) with that of other sketches on all three traces
versus the memory size (varied from 1 MiB to 3 MiB). We
make several observations. First, CDS has the highest F1-score
on CAIDA16, yet its precision drops greatly for CAIDA18 and
CAIDA19 when the memory is no more than 1.5 MiB (e.g.,
near zero in Figure 6(e)). The reason is that both CAIDA18
and CAIDA19 have much more distinct pairs than CAIDA16,
and CDS needs more buckets to distinguish the sources with
large fan-outs. With insufficient buckets, CDS returns many
false positives. Similar observations apply to VBF, which has
a precision of near zero on CAIDA18 and below 0.56 for
CAIDA19. Second, CMH, FAST, and REV all have a higher
F1-score for more skewed traces (e.g., the lowest F1-score for
CAIDA16, and the highest F1-score for CAIDA19). The reason
is that with higher skewness of fan-outs, they can distinguish
more readily superspreaders from normal sources. Third, DCS
has a nearly zero F1-score on all traces, as it requires more
memory to report all superspreaders.

SpreadSketch achieves the highest F1-score in most cases. Its
F1-score is 0.86-0.96, 0.82-0.93, and 0.96-0.97 for CAIDA16,
CAIDA18, and CAIDA19, respectively; it is the only sketch
that achieves an F1-score above 0.9 when the memory size is
at least 1.5 MiB. Although it has a lower F1-score than CDS
for CAIDA16, SpreadSketch is generally much more robust
than CDS and the other sketches on accuracy on all traces.
Also, SpreadSketch achieves the lowest relative errors among
all sketches on all traces.

We further compare the accuracy of all sketches by varying
the skewness in the fan-out of each source. Specifically, we
extract each source IP in CAIDA19 and randomly generate
its destination addresses to construct a set of synthetic traces.
In each synthetic trace, the fan-out of each source IP follows
a Zipf distribution with some skewness parameter, which we
vary in our evaluation. As the skewness parameter increases
(i.e., a more skewed distribution), there exist a smaller number

IEEE/ACM TRANSACTIONS ON NETWORKING 10

●SS DCS CDS VBF CMH REV FAST

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

P
re

ci
si

on

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

R
ec

al
l

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

F
1

sc
or

e

● ● ● ● ●

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

E
rr

or
 (

%
)

(a) Precision for CAIDA16 (b) Recall for CAIDA16 (c) F1-score for CAIDA16 (d) Relative error for CAIDA16

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

P
re

ci
si

on

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

R
ec

al
l

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

F
1

sc
or

e

● ● ● ● ●

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

E
rr

or
 (

%
)

(e) Precision for CAIDA18 (f) Recall for CAIDA18 (g) F1-score for CAIDA18 (h) Relative error for CAIDA18

● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

P
re

ci
si

on

● ● ● ● ●
0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

R
ec

al
l

● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

1 1.5 2 2.5 3
Memory (MiB)

F
1

sc
or

e

● ●

0

25

50

75

100

1 1.5 2 2.5 3
Memory (MiB)

E
rr

or
 (

%
)

(i) Precision for CAIDA19 (j) Recall for CAIDA19 (k) F1-score for CAIDA19 (l) Relative error for CAIDA19

Fig. 6. (Experiment 1) Accuracy on CAIDA traces. We do not plot the relative errors for the settings with a zero recall.

●SS DCS CDS VBF CMH REV FAST

● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Fan−out skewness

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Fan−out skewness

R
ec

al
l

(a) Precision (b) Recall

● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Fan−out skewness

F
1

sc
or

e

0

25

50

75

100

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Fan−out skewness

E
rr

or
 (

%
)

(c) F1-score (d) Relative error

Fig. 7. (Experiment 1) Accuracy on synthetic traces. We do not plot the relative errors for the settings with a zero recall.

of sources with very large fan-outs. We fix the threshold as
0.001 and the memory as 2 MiB.

Figure 7 shows the results versus the skewness parameter.
SpreadSketch maintains stable accuracy and has the highest
F1-score in most cases. Its F1-score is over 0.75 in all cases
and increases with the skewness parameter. CDS has a recall
higher than 0.98, yet its precision drops below 0.2 when the
skewness parameter is 0.9. The reason is that at that point,
there exist many sources with large fan-outs that are within
the threshold, so CDS cannot effectively remove such sources,
which lead to a high false positive rate. VBF, CMH, and REV
all have an F1-score below 0.5 for the skewness smaller than
1.3. DCS and FAST fail to detect any superspreader in all cases
(i.e., zero recall).

(Experiment 2) Performance. We benchmark the performance
of all sketches on a server equipped with an eight-core Intel
Xeon E5-1630 3.70 GHz CPU and 16 GiB RAM. The server
runs Ubuntu 14.04.5. Before running each experiment on a

trace, we load the whole trace into memory to exclude any
disk I/O overhead. We present only the results for CAIDA16,
while the same observations are made on other traces. We fix
the memory size of all sketches as 1 MiB. Our plots omit the
error bars as the variances across epochs are negligible.

Figure 8(a) shows the update throughput of adding the source-
destination pairs of a packet stream into a sketch (in million
packets per second (MPPS)). SpreadSketch, CDS, and VBF all
achieve throughput above 14.88 MPPS, implying that they can
match the 10 Gb/s line-rate in software. VBF has the highest
throughput as it uses the consecutive bits of a source key to
locate buckets, while other sketches including SpreadSketch
perform multiple hash computations to map a source to buckets.
In particular, CMH has the lowest throughput, as it performs
fan-out estimation for each packet update (Section II-C). We
find that CMH has less than 4% of packets traversing the heap
structure, so its major overhead is mainly on fan-out estimation.

Figure 8(b) shows the detection time of returning all

IEEE/ACM TRANSACTIONS ON NETWORKING 11

22.92

2.66

20.24

30.34

0.29
3.48 3.40

0

10

20

30

SS DCS CDS VBF CMH REV FAST

T
hr

ou
gh

pu
t (

M
P

P
S

)

451 us
50 us

8618.91 s

29.9 s

16 us

31.6 s

579 us

100

102

104

106

108

1010

1012

SS DCS CDS VBF CMH REV FAST

R
ec

ov
er

y
tim

e
(u

s)

(a) Update throughput (b) Detection time

Fig. 8. (Experiment 2) Performance.

SS CMH Univ

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12
Number of measurement points

P
re

ci
si

on

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12
Number of measurement points

R
ec

al
l

(a) Precision (b) Recall

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12
Number of measurement points

F
1

sc
or

e

0

25

50

75

100

2 4 6 8 10 12
Number of measurement points

E
rr

or
 (

%
)

(a) F1-score (b) Relative error

Fig. 9. (Experiment 3) Network-wide detection.

superspreaders. SpreadSketch returns superspreaders in few
milliseconds, while DCS, CMH and FAST return in microsec-
onds, yet the difference is not that significant in practice
compared with the epoch length of one minute. CMH has
the smallest detection time as it outputs superspreaders from
its heap structure directly. In contrast, VBF and REV take
around 30 s to recover superspreaders from their data structures,
and CDS even takes over two hours. Overall, SpreadSketch
achieves both high update and detection performance.

(Experiment 3) Network-wide detection. We now study
network-wide detection, and also include the sketch-based
network-wide measurement system UnivMon [41] in com-
parisons. For UnivMon, we replace all integer counters with
multiresolution bitmaps for superspreader detection. We sim-
ulate a network-wide scenario (Section III-F) by partitioning
the packets in an epoch of a trace to a given number of
measurement points (i.e., the same source may appear in
multiple measurement points). We present only the results
for CAIDA19, while the results are similar for other traces.
Also, among state-of-the-art sketches, we show only the results
for CMH; for others, the accuracy remains identical as in
single-point detection. We again fix the memory space of each
sketch at each measurement point as 1 MiB.

Figure 9 shows the accuracy versus the number of mea-
surement points. The accuracy of SpreadSketch is maintained
regardless of the number of measurement points. In contrast,
the F1-score of CMH varies with the number of measurement
points and generally shows a downtrend. The reason is that
CMH only keeps (in its heap structure) the source keys whose
fan-outs exceed a pre-specified threshold at each measurement
point, but it may likely miss the superspreaders that show
small fan-outs at most measurement points. UnivMon achieves

almost a zero F1-score in all cases, as it maintains information
for different traffic statistics and hence requires much more
memory to achieve high accuracy.

(Experiment 4) Update throughput of HP-SpreadSketch.
We study the update throughput gain of HP-SpreadSketch.
We fix the total memory sizes of both HP-SpreadSketch and
SpreadSketch as 2 MiB. In HP-SpreadSketch, we vary the
number of units in the HP-Filter from 0 to 217, where each
unit takes 96 bits (i.e., a 64-bit source-destination pair and a
32-bit counter). When the number of units is zero, it refers to
SpreadSketch without the HP-Filter. For SpreadSketch, we fix
r = 4 rows and change the number of buckets per row (i.e.,
w), so that the total memory size is 2 MiB (Section VI-A).

Figure 10(a) first shows the update throughput of HP-
SpreadSketch versus the number of units in the HP-Filter.
The throughput increases with the number of units in the
HP-Filter units for all traces. With 213 and 215 units in the HP-
Filter (i.e., 4.69% and 18.75% of the total memory size 2 MiB,
respectively), HP-SpreadSketch increases the update throughput
of SpreadSketch by up to 52.8% and 83.8%, respectively, with
no accuracy degradation. The throughput gain is more notable
for CAIDA16 and CAIDA19, as they are more skewed than
CAIDA18 (Figure 1 in Section III-A). Figures 10(b)-10(d)
show the precision, recall, and F1-score of HP-SpreadSketch,
respectively. Given the same memory size, HP-SpreadSketch
maintains almost the same accuracy as SpreadSketch when
the HP-Filter contains no more than 215 units. However, the
accuracy of HP-SpreadSketch drops when the HP-Filter has at
least 216 units, as less memory is allocated for SpreadSketch.
Given the memory constraint, we suggest the HP-Filter should
be allocated with no more than 15% of the total memory usage
of HP-SpreadSketch.

We also compare HP-SpreadSketch with a variant where
the Bloom filter is used instead of the HP-Filter (i.e., BF-
SpreadSketch). For comparison purposes, we configure the
memory usage of Bloom filter in units of 96 bits (i.e., the size
of one unit in the HP-Filter). We vary the memory size of the
Bloom filter from 0 to 217 96-bit units. Figures 10(e)-10(h)
show the throughput, precision, recall, and F1-score of BF-
SpreadSketch, respectively. Compared with HP-SpreadSketch,
BF-SpreadSketch has higher update throughput for all traces,
yet its F1-score is below 0.25 for CAIDA18 in most cases.
The reason is that for a small memory size, the Bloom filter is
almost saturated (i.e., all bits are set) and mistakenly classifies
new pairs as repeating pairs that will not be processed by
SpreadSketch. Thus, BF-SpreadSketch has almost the same
update cost as the Bloom filter, but its accuracy significantly
degrades.

(Experiment 5) Update throughput of HP-SpreadSketch
versus frequency skewness. Based on the setting in Exper-
iment 4, we further evaluate the update throughput of HP-
SpreadSketch by varying the skewness in the frequency of the
pairs in different traces (note that we consider the skewness
in fan-outs in Experiment 1, while we consider the skewness
in frequency here). For each CAIDA trace, we extract all
pairs and generate a set of synthetic traces. In each synthetic
trace, the number of packets belonging to each pair (i.e., the

IEEE/ACM TRANSACTIONS ON NETWORKING 12

● ● ● ● ● ● ● ● ● ●

●

0

20

40

60

80

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

T
hr

ou
gh

pu
t (

M
P

P
S

)

●

CAIDA16
CAIDA18
CAIDA19

● ● ● ● ● ● ● ● ●

●

●

0.00

0.25

0.50

0.75

1.00

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

P
re

ci
si

on

●

CAIDA16
CAIDA18
CAIDA19

● ● ● ● ● ● ● ● ●

●

●

0.00

0.25

0.50

0.75

1.00

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

R
ec

al
l

●

CAIDA16
CAIDA18
CAIDA19

● ● ● ● ● ● ● ● ●

●

●

0.00

0.25

0.50

0.75

1.00

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

F
1

sc
or

e

●

CAIDA16
CAIDA18
CAIDA19

(a) Throughput of HP-SpreadSketch (b) Precision of HP-SpreadSketch (c) Recall of HP-SpreadSketch (d) F1-score of HP-SpreadSketch

● ● ● ●
●

● ● ● ●
●

●

0

50

100

150

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

T
hr

ou
gh

pu
t (

M
P

P
S

)

●

CAIDA16
CAIDA18
CAIDA19

● ● ● ● ● ●

● ● ●

●

●0.00

0.25

0.50

0.75

1.00

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

P
re

ci
si

on

●

CAIDA16
CAIDA18
CAIDA19

● ● ● ● ● ● ● ●
●

●

●0.00

0.25

0.50

0.75

1.00

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

R
ec

al
l

●

CAIDA16
CAIDA18
CAIDA19

● ● ● ● ● ● ●
●

●

●

●0.00

0.25

0.50

0.75

1.00

0 28 29 210 211 212 213 214 215 216 217

Number of HP−Filter units (96 bits/unit)

F
1

sc
or

e

●

CAIDA16
CAIDA18
CAIDA19

(e) Throughput of BF-SpreadSketch (f) Precision of BF-SpreadSketch (g) Recall of BF-SpreadSketch (h) F1-score of BF-SpreadSketch

Fig. 10. (Experiment 4) Update throughput of HP-SpreadSketch.

● ● ● ● ● ● ● ● ● ● ●
●

●
● ● ●

0

25

50

75

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Frequency skewness

T
hr

ou
gh

pu
t (

M
P

P
S

)

●CAIDA16 CAIDA18 CAIDA19

Fig. 11. (Experiment 5) Update throughput of HP-SpreadSketch versus
frequency skewness.

frequency of each pair) follows a Zipf distribution with some
skewness parameter. A larger skewness parameter means a
more skewed distribution; when the skewness parameter is
zero, the distribution reduces to a uniform distribution (i.e.,
each pair in the trace has exactly the same frequency). We fix
the total memory usage as 2 MiB and set the number of units
in the HP-Filter as 2,048.

Figure 11 shows that HP-SpreadSketch keeps the through-
put above 17 MPPS for all cases. The throughput of HP-
SpreadSketch increases significantly when the skewness in
pair frequency is above 0.9.

(Experiment 6) Real-world attack detection. We study the
effectiveness of SpreadSketch in real-world attack detection.
We first consider worm detection using the Witty worm trace
[5]. We fix the threshold as 0.001 and the memory size of
SpreadSketch as 0.5 MiB. We also plot the results of HP-
SpreadSketch (HPSS) and CMH. Note that we do not plot the
results for other sketches (i.e., DCS, CDS, VBF, REV, and
FAST), as their F1-scores are below 0.45.

Figure 12 shows the results, and we first consider
SpreadSketch. Figure 12(a) shows that the number of super-
spreaders that are detected by SpreadSketch in each epoch
rises suddenly at time 04:46:00, which is also the actual start
time of the attack. We further study the accuracy by comparing
the detected superspreaders with the ground truth in each
epoch. Figure 12(b) shows that SpreadSketch can track the
superspreaders with an F1-score at least 0.96. Figure 12(c)
shows that the average relative error of the estimation about
the fan-out of each superspreader in SpreadSketch is 0.056.
Finally, we observe that both HPSS and CMH have almost
identical results to SpreadSketch, yet CMH has much lower
throughput than SpreadSketch (Experiment 2).

We also consider the DDoS attack detection using the CAIDA

0

100

200

300

400

05:00 08:00 11:00 14:00 17:00 20:00 23:00
Time

#d
et

ec
te

d
 s

up
er

sp
re

ad
er

s CMH SS HPSS

(a) Number of detected superspreaders per epoch

0.00

0.25

0.50

0.75

1.00

05:00 08:00 11:00 14:00 17:00 20:00 23:00
Time

F
1

sc
or

e

CMH SS HPSS 0

25

50

75

100

05:00 08:00 11:00 14:00 17:00 20:00 23:00
Time

E
rr

or
 (

%
)

CMH SS HPSS

(b) F1-score (c) Relative error

Fig. 12. (Experiment 6) Witty worm detection.

DDoS attack trace [3]. As the trace contains only the attack
traffic, we focus on the sub-trace in between the 23-th and 32-th
minutes and generate a synthetic DDoS attack trace based on
the sub-trace. In particular, we mix the sub-trace with the first
ten minutes of the CAIDA16 trace on a per-minute basis. Note
that the DDoS attack happens in the middle of the sub-trace.
We set the threshold as 3,000 and monitor all hosts that have
the number of distinct connections above the threshold.

Figure 13 shows the number of distinct connections of
each detected superspreader under SpreadSketch. SpreadSketch
reports all four superspreaders (denoted by Hosts A, B, C,
and D). Hosts A, B, and D keep a relatively stable and large
number of connections over time, while Host C has a surge in
the number of connections at the sixth minute. It indicates that
Hosts A, B, and D may represent hotspots, while Host C is
under a DDoS attack since the sixth minute. The conclusion is
consistent with the CAIDA DDoS trace where Host C is indeed
the victim and the DDoS attack starts at the sixth minute. We
also apply other sketches in DDoS detection. Given the same
memory size, HPSS, CMH, REV, and VBF (but not DCS, CDS
and FAST) can also detect Host C at the sixth minute (we
omit the presentation of the results here).

(Experiment 7) SpreadSketch in hardware. We implement
SpreadSketch in P4 [4] (with less than 500 lines of code)
and compile it in the Barefoot Tofino chipset [1]. Our
implementation realizes each row of SpreadSketch as an array

IEEE/ACM TRANSACTIONS ON NETWORKING 13

● ● ● ● ● ● ● ● ● ●

0

2500

5000

7500

10000

1 2 3 4 5 6 7 8 9 10
Epoch

#d
is

tin
ct

 c
on

ne
ct

io
ns

● A B C D

Fig. 13. (Experiment 6) DDoS attack detection.

TABLE III
(EXPERIMENT 7) SWITCH RESOURCE USAGE (PERCENTAGES IN BRACKETS

ARE FRACTIONS OF TOTAL RESOURCE USAGE).
SpreadSketch

SRAM (KiB) No. stages No. actions No. ALUs PHV size (bytes)
256 (1.67%) 6 (50%) 20 (nil) 6 (12.5%) 108 (14%)

HP-SpreadSketch
SRAM (KiB) No. stages No. actions No. ALUs PHV size (bytes)
304 (1.98%) 8 (66.7%) 23 (nil) 7 (14.6%) 110 (14.3%)

of registers that can be directly updated in the switch data
plane via stateful ALUs. We generate the hash string of each
source-destination pair in a dedicated match-action table. We
then count the number of leading zeros of the hash string
using a longest-prefix-match table. If a hash string matches
one entry of the table, the action of that entry will return
the corresponding level value. To fit SpreadSketch in limited
switch memory, we set r = 3, w = 2048, and m = 128. We
find that SpreadSketch achieves an F1-score of over 0.9 for an
epoch length of one second on all CAIDA traces.

Table III shows the switch resource usage of SpreadSketch
in SRAM consumption, the numbers of physical stages, actions,
and stateful ALUs (all of which measure computational
resources), as well as the packet header vector (PHV) size
(which measures the message size across stages). SpreadSketch
uses 256 KiB of SRAM, which accounts for only 1.67% of
the total SRAM. We can place all the tables, registers, and
ALU operations for managing SpreadSketch in the data plane
in six physical stages (half of the total stages of the Tofino
chipset). However, SpreadSketch still leaves sufficient resources
in each occupied stage for other applications since its overall
consumptions of SRAM and ALUs are limited. Our prototype
contains 20 actions in total to process packets, including hash
computations and the updates of register arrays. To perform
transactional read-test-write operations on multiple buckets for
each source-destination pair, SpreadSketch consumes only six
(12.5% of total) stateful ALUs. The PHV size in our prototype
is 108 bytes (14% of total PHV resources), nearly half of
which are needed to store packet header information for packet
forwarding. We also validate that SpreadSketch can process
packets at line-rate on a Tofino switch.

We also implement HP-SpreadSketch in P4 and run it on
the Tofino switch, so as to demonstrate the feasibility of
deploying HP-SpreadSketch in hardware. We set t = 256
units for the HP-Filter and keep the same configuration as
above for SpreadSketch. Table III shows that HP-SpreadSketch
only slightly increases the hardware resource usage over
SpreadSketch. Since SpreadSketch can already process packets
at line-rate on our switch, HP-SpreadSketch does not further
increase the throughput over SpreadSketch. Nevertheless, we
conjecture that HP-SpreadSketch can show its performance
benefits as faster switch ASICs evolve in the future.

VII. CONCLUSIONS

Network-wide superspreader detection is a critical task in
network management and attack prevention in production
networks. This paper designs a new invertible sketch data
structure called SpreadSketch for network-wide superspreader
detection. We show via theoretical analysis and trace-driven
evaluation that SpreadSketch achieves high memory efficiency,
high update and detection performance, as well as high
detection accuracy. To improve the update performance, we
extend SpreadSketch with a fast and small data structure, called
the HP-Filter, to filter out the heavy pairs and prevent them
from being further processed by SpreadSketch. We further
implement SpreadSketch in P4 and demonstrate its feasible
deployment in commodity hardware switches.

REFERENCES

[1] Barefoot’s Tofino. https://barefootnetworks.com/products/brief-tofino/.
[2] CAIDA. http://www.caida.org/data/passive/trace stats/.
[3] The CAIDA UCSD ”DDoS Attack 2007” dataset. https://www.caida.org/

catalog/datasets/ddos-20070804 dataset.
[4] P4 language. https://p4.org.
[5] Witty Internet worm. http://www.caida.org/data/passive/trace stats/.
[6] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner. Heavy hitters in

streams and sliding windows. In Proc. of IEEE INFOCOM, 2016.
[7] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Faster and

more accurate measurement through additive-error counters. In Proc. of
IEEE INFOCOM, pages 1251–1260. IEEE, 2020.

[8] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On
synopses for distinct-value estimation under multiset operations. In Proc.
of the ACM SIGMOD, pages 199–210, 2007.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
ACM Magazine Communications, pages 422–426, 1970.

[10] R. S. Boyer and J. S. Moore. MJRTY - a fast majority vote algorithm.
In Automated Reasoning, pages 105–117. Springer, 1991.

[11] J. Cao, Y. Jin, A. Chen, T. Bu, and Z.-L. Zhang. Identifying high
cardinality internet hosts. In Proc. of IEEE INFOCOM, 2009.

[12] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford. BeauCoup:
Answering many network traffic queries, one memory update at a time.
In Proc. of ACM SIGCOMM, pages 226–239, 2020.

[13] G. Cormode and S. Muthukrishnan. An improved data stream summary:
The Count-Min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[14] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph
streams. In Proc. of ACM PODS, 2005.

[15] Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-wide view
of Internet-wide scanning. In Proc. of USENIX Security Symposium,
2014.

[16] C. Estan and G. Varghese. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice. ACM Trans.
on Computer Systems, 21(3):270–313, 2003.

[17] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting
active flows on high speed links. In Proc. of ACM IMC, 2003.

[18] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting
active flows on high speed links. Technical report, UCSD technical
report CS2003-0738, 2003.

[19] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible and
elastic DDoS defense. In Proc. of USENIX Security Symposium, 2015.

[20] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: The
analysis of a near-optimal cardinality estimation algorithm. In Analysis
of Algorithms, 2007.

[21] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base applications. Journal of Computer and System Sciences, 31(2):182–
209, 1985.

[22] D. S. for IMC 2010 Data Center Measurement. https://pages.cs.wisc.
edu/∼tbenson/IMC10 Data.html.

[23] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani. Streaming
algorithms for robust, real-time detection of DDoS attacks. In Proc. of
IEEE ICDCS, 2007.

[24] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden, and
X. Li. HeavyKeeper: An accurate algorithm for finding top-k elephant
flows. In Proc. of USENIX ATC, pages 909–921, 2018.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

[25] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn.
RDMA over commodity ethernet at acale. In Proc. of ACM SIGCOMM,
pages 202–215, 2016.

[26] H. Huang, Y.-E. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang.
You can drop but you can’t hide: K-persistent spread estimation in
high-speed networks. In Proc. of IEEE INFOCOM, 2018.

[27] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang.
SketchVisor: Robust network measurement for software packet processing.
In Proc. of ACM SIGCOMM, 2017.

[28] Q. Huang, P. P. Lee, and Y. Bao. SketchLearn: Relieving user burdens in
approximate measurement with automated statistical inference. In Proc.
of ACM SIGCOMM, 2018.

[29] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and
G. Varghese. Network monitoring using traffic dispersion graphs (TDGs).
In Proc. of ACM IMC, 2007.

[30] P. Jia, P. Wang, Y. Zhang, X. Zhang, J. Tao, J. Ding, X. Guan, and
D. Towsley. Accurately estimating user cardinalities and detecting super
spreaders over time. IEEE Trans. on Knowledge and Data Engineering,
2020.

[31] X. Jing, Z. Yan, H. Han, and W. Pedrycz. ExtendedSketch: Fusing
network traffic for super host identification with a memory efficient
sketch. IEEE Transactions on Dependable and Secure Computing, 2021.

[32] N. Kamiyama, T. Mori, and R. Kawahara. Simple and adaptive
identification of superspreaders by flow sampling. In Proc. of IEEE
INFOCOM, 2007.

[33] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for
the distinct elements problem. In Proc. of ACM PODS, 2010.

[34] D. E. Knuth. The Art of Computer Programming, Volume 4. Addison-
Wesley Professional, 2015.

[35] J. Kučera, D. A. Popescu, H. Wang, A. Moore, J. Kořenek, and G. Antichi.
Enabling event-triggered data plane monitoring. In Proc. of ACM SOSR,
pages 14–26, 2020.

[36] T. Li, S. Chen, W. Luo, M. Zhang, and Y. Qiao. Spreader classification
based on optimal dynamic bit sharing. IEEE/ACM Trans. on Networking,
21(3):817–830, 2013.

[37] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A better NetFlow for
data centers. In Proc. of USENIX NSDI, 2016.

[38] W. Liu, W. Qu, J. Gong, and K. Li. Detection of superpoints using a
vector Bloom filter. IEEE Trans. on Information Forensics and Security,
11(3):514–527, 2016.

[39] Y. Liu, W. Chen, and Y. Guan. A fast sketch for aggregate queries over
high-speed network traffic. In Proc. of IEEE INFOCOM, 2012.

[40] Y. Liu, W. Chen, and Y. Guan. Identifying high-cardinality hosts from
network-wide traffic measurements. IEEE Trans. on Dependable and
Secure Computing, 13(5):547–558, 2016.

[41] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon. In Proc. of ACM SIGCOMM, 2016.

[42] R. Martin. Snort: Lightweight intrusion detection for networks. In Proc.
of USENIX LISA, 1999.

[43] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. SCREAM: Sketch
resource allocation for software-defined measurement. In Proc. of ACM
CoNEXT, 2015.

[44] D. Plonka. FlowScan: A network traffic flow reporting and visualization
tool. In Proc. of USENIX LISA, 2000.

[45] L. E. T. Project. http://www.icir.org/enterprise-tracing/.
[46] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda,

M. Y. Kao, and G. Memik. Reversible sketches: Enabling monitoring and
analysis over high-speed data streams. IEEE/ACM Trans. on Networking,
15(5):1059–1072, 2007.

[47] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
In Proc. of ACM SIGCOMM, 2002.

[48] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. In Proc. of USENIX OSDI, 2004.

[49] Y.-E. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao. Online spread
estimation with non-duplicate sampling. In Proc. of IEEE INFOCOM,
pages 2440–2448. IEEE, 2020.

[50] L. Tang, Q. Huang, and P. P. Lee. A fast and compact invertible sketch
for network-wide heavy flow detection. IEEE/ACM Trans. on Networking,
28(5):2350–2363, 2020.

[51] L. Tang, Q. Huang, and P. P. Lee. SpreadSketch: Toward invertible and
network-wide detection of superspreaders. In Proc. of IEEE INFOCOM,
pages 1608–1617. IEEE, 2020.

[52] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New streaming
algorithms for fast detection of superspreaders. In Proc. of NDSS, 2005.

[53] P. Wang, X. Guan, T. Qin, and Q. Huang. A data streaming method for
monitoring host connection degrees of high-speed links. IEEE Trans. on
Information Forensics and Security, 6(3):1086–1098, 2011.

[54] S. Wang, C. Sun, Z. Meng, M. Wang, J. Cao, M. Xu, J. Bi, Q. Huang,
M. Moshref, T. Yang, et al. Martini: Bridging the gap between network
measurement and control using switching ASICs. In Proc. of IEEE
ICNP, pages 1–12. IEEE, 2020.

[55] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A linear-time
probabilistic counting algorithm for database applications. ACM Trans.
on Database Systems, 15(2):208–229, 1990.

[56] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen. Estimating the persistent
spreads in high-speed networks. In Proc. of IEEE ICNP, 2014.

[57] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig. Elastic Sketch: Adaptive and fast network-wide measurements.
In Proc. of ACM SIGCOMM, 2018.

[58] M. Yoon and S. Chen. Detecting stealthy spreaders by random aging
streaming filters. IEICE Trans. on communications, 94(8):2274–2281,
2011.

[59] M. Yoon, T. Li, S. Chen, and J.-K. Peir. Fit a compact spread estimator in
small high-speed memory. IEEE/ACM Trans. on Networking, 19(5):1253–
1264, 2011.

[60] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with
OpenSketch. In Proc. of USENIX NSDI, 2013.

[61] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics
and origins of Internet flow rates. In Proc. of ACM SIGCOMM, 2002.

[62] Q. Zhao, A. Kumar, and J. Xu. Joint data streaming and sampling
techniques for detection of super sources. In Proc. of ACM SIGCOMM,
2005.

[63] Y. Zhou, D. Zhang, K. Gao, C. Sun, J. Cao, Y. Wang, M. Xu, and
J. Wu. Newton: Intent-driven network traffic monitoring. In Proc. of
ACM CoNEXT, pages 295–308, 2020.

[64] Y. Zhou, Y. Zhou, M. Chen, and S. Chen. Persistent spread measurement
for big network data based on register intersection. Proc. of ACM on
Measurement and Analysis of Computing Systems, 1(1):15, 2017.

Lu Tang received the Ph.D. degree in Computer Science and Engineering
from the Chinese University of Hong Kong in 2020. She is now an Assistant
Professor of the Department of Computer Science and Technology at Xiamen
University. Her research interests are in network measurement and data center
networks.

Yao Xiao is pursuing his Master degree in Computer Science and Technology
at Xiamen University. His research interests are in network measurement and
sketch algorithms.

Qun Huang received the Ph.D. degree in Computer Science and Engineering
from the Chinese University of Hong Kong in 2015. He is now an Assistant
Professor of the Department of Computer Science and Technology at Peking
University. His research interests are in distributed stream processing and
network measurement.

Patrick P. C. Lee received the Ph.D. degree in Computer Science from
Columbia University in 2008. He is now a Professor of the Department of
Computer Science and Engineering at the Chinese University of Hong Kong.
His research interests are in various applied/systems topics including storage
systems, distributed systems and networks, and cloud computing.

