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Distributed Algorithms for Secure Multipath Routing in
Attack-Resistant Networks

Patrick P. C. Lee, Vishal Misra, and Dan Rubenstein

Abstract— To proactively defend against intruders from readily
jeopardizing single-path data sessions, we propose a distributed
secure multipath solution to route data across multiple paths so
that intruders require much more resources to mount successful
attacks. Our work exhibits several important properties that
include: (1) routing decisions are made locally by network
nodes without the centralized information of the entire network
topology, (2) routing decisions minimize throughput loss under
a single-link attack with respect to different session models,
and (3) routing decisions address multiple link attacks via
lexicographic optimization. We devise two algorithms termed the
Bound-Control algorithm and the Lex-Control algorithm, both of
which provide provably optimal solutions. Experiments show that
the Bound-Control algorithm is more effective to prevent the
worst-case single-link attack when compared to the single-path
approach, and that the Lex-Control algorithm further enhances
the Bound-Control algorithm by countering severe single-link
attacks and various types of multi-link attacks. Moreover, the
Lex-Control algorithm offers prominent protection after only a
few execution rounds, implying that we can sacrifice minimal
routing protection for significantly improved algorithm perfor-
mance. Finally, we examine the applicability of our proposed
algorithms in a specialized defensive network architecture called
the attack-resistant network and analyze how the algorithms
address resiliency and security in different network settings.

Index Terms— Resilience, security, multipath routing, op-
timization, maximum-flow problems, preflow-push, attack-
resistant networks.

I. INTRODUCTION

In conventional routing protocols such as OSPF [29] and
RIP [26], a network selects a least-cost path to route data
from a source to a sink. While these protocols deliver data
efficiently, the use of a single path is vulnerable to general
failures and security threats. For instance, intruders can disrupt
the data session simply by attacking one of the intermediate
links along the utilized path. This singularity enables intruders
to readily devote their resources to attacking the only path.

Such networks can be protected via a secure multipath
approach in which data are dispersed across multiple paths
destined for the sink. Each path conveys a portion of data
from the source, and the sink assembles the data fragments
received from the various paths. If some paths fail to deliver
data, then as long as the scale of failure is modest, the sink can
still recover all data using redundant routing [27] or threshold
secret sharing [25]. Therefore, to successfully compromise the
data session, intruders must subvert a sufficient number of
routing paths and hence require more resources than those

P. Lee and V. Misra are with the Dept of Computer Science, Columbia
University (emails: {pclee,misra}@cs.columbia.edu).

D. Rubenstein is with the Dept of Electrical Engineering, Columbia
University (email: danr@ee.columbia.edu).

A conference version of this paper appeared in IEEE INFOCOM ’05 [22].

needed to attack a single path. We point out that using multiple
paths can complicate the packet-reordering problem [31].
However, it can be remedied via sophisticated coding solutions
(e.g., [8]) for non-real-time data transfers or standard pre-
buffering techniques (e.g., [24]) for real-time data transfers.
In addition, more recent application-layer architectures such
as overlay networks (e.g., RON [3] and SOS [20]) provide a
more promising platform for deploying multipath routing as
compared to conventional layer-3 architectures. Therefore, it is
feasible to adopt the secure multipath approach to proactively
accomplish routing resilience.

One major challenge is to design a distributed solution that
implements the process of selecting the “best” data allocation
across multiple paths through a network. The distributed
solution enhances traditional centralized solutions for secure
multipath routing such as [4], [6], [18] in different ways. First,
it does not require any network node to have full knowledge
of the entire network topology. It is therefore adequate for
decentralized peer systems, such as RON [3], whose nodes
are located in different domains and are often administered
independently. In addition, it allows network nodes to locally
decide security costs, bandwidth constraints, and choices of
routes, and thus improves flexibility as compared to the
centralized approach.

To characterize the “best” data allocation across multiple
paths, our primary security objective is to minimize the
maximum damage incurred by a single-link attack (or failure),
i.e., an intruder compromises data along a single link in a
given network. There are two reasons to justify our preliminary
analysis on a single-link attack. First, there are many attack
and failure scenarios where a single-link failure is likely to
cause the majority of problems, as the network can often be
repaired, or routes are adjusted, to account for the failure be-
fore a subsequent outage occurs. Nevertheless, we still want to
mitigate the damage of a single-link failure since it can cause
severe throughput loss in a high-speed network within only a
few seconds. For example, a 10-second outage of an OC-48
link can incur a loss of 3 million 1-KB packets [23]. Second,
our experiments show that our solution that is designed for
preventing a single-link attack provides substantial resilience
to multiple simultaneous attacks as well. Thus, our analysis
can serve as a baseline for future work that focuses on multi-
link attacks.

Unlike traditional load-balancing solutions that minimize
the maximum link utilization (i.e., the maximum ratio of
the link throughput to the link bandwidth), our objective is
to guarantee resilience using all available network resources.
Given different session requirements, we seek to minimize
the worst-case single-link attack while attaining the desired
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throughput rates with the provisioned network bandwidth.
In this paper, we devise a distributed secure multipath

solution that determines the multipath routes to maximize
the security with respect to single-link attacks. Our work is
suitable for two session models, namely:

• Fixed-rate session: a session that wishes to send data from
the source to the sink at a pre-determined rate; and

• Maximal-rate session: a session that wishes to send data
from the source to the sink at the fastest rate allowed by
all available paths in the underlying network.

Given the above session models, we first propose a dis-
tributed solution called the Bound-Control algorithm, which
provably minimizes the maximum throughput loss when a link
is attacked. We formulate this solution as a maximum-flow
problem that can be solved in a distributed fashion based on
the extension of the Preflow-Push algorithm [16].

Using the Bound-Control algorithm as a building block,
we devise a higher-complexity, but more resilient distributed
solution called the Lex-Control algorithm. It defends not only
against the worst-case link attack, but also against link attacks
that do not cause the worst damage but are still severe (e.g.,
the second and third worst-case link attacks). To achieve this
property, the Lex-Control algorithm scatters the costs incurred
by the link attacks as evenly as possible over all the links in
a network, or equivalently solves a lexicographic-optimization
problem [13], in a distributed manner.

By simulation, we evaluate the resilience of the Bound-
Control and Lex-Control algorithms against different types of
attacks on single or multiple links. In comparison to single-
path alternatives, our results indicate that the Bound-Control
algorithm substantially decreases the cost of the worst-case
single-link attack (e.g., by 78% in a 200-node, 1000-link
network). Also, the Lex-Control algorithm can further reduce,
by more than 50%, the number of links that incur severe
damage due to single-link attacks, and such reduction is
realized after only three or four iterations. While the resilience
enhancement of the Lex-Control algorithm over the Bound-
Control algorithm comes at the expense of higher complexity,
our simulation results show that we can limit this increase in
complexity without much loss in resilience by executing only
the first few iterations of the Lex-Control algorithm.

Finally, we demonstrate the applicability of both Bound-
Control and Lex-Control algorithms in an attack-resistant
network (e.g., SOS [20]), a specialized network that protects
end hosts with a defensive architecture. Using [7] as our foun-
dation, we analyze how our proposed multipath algorithms can
be deployed to provide routing resilience and in the meantime
secure the network against malicious attacks.

The paper proceeds as follows. In Section II, we formulate
the secure multipath approach. Sections III and IV present
the Bound-Control and Lex-Control algorithms, respectively.
In Section V, we report several experiments that evaluate the
algorithms under different classes of link attacks. Section VI
discusses how to apply our algorithms in an attack-resistant
network and presents simulation results of their performance.
Section VII reviews related work. Section VIII discusses the
practical issues of our work and suggests future directions.
Section IX concludes.

TABLE I

MAJOR NOTATION USED IN THIS PAPER.

Defined in Section II:
N set of nodes
L set of links
G network (N ,L)
s source node
t sink node
L(u) set of outgoing links l∈L of node u ∈ N
X session throughput from source s to sink t
xl proportion of session data carried by link l ∈ L
x proportion vector (xl, l ∈ L)
cl security constant of link l ∈ L
al attack cost clxl of link l ∈ L
a∗ minimized worst-cast attack cost
cap(l) capacity of link l ∈ L in maximum-flow problems
fl flow of link l ∈ L in maximum-flow problems
f flow vector (f l, l∈L) in maximum-flow problems
f∗ resulting maximum-flow value
Bl bandwidth of link l ∈ L
bl fraction bound of link l ∈ L
a non-increasing attack-cost sequence
a
∗ lexicographically optimized a

Defined in Sections III and IV:
fs flow value broadcast by source s
U sufficiently large value
Gf∗ residual network with respect to f∗

Defined in Section VI:
A set of access points (APs)
T set of targets
P set of paths between APs and targets
Ga attack-resistant network (A, T ,P)
A(j) set of APs from which target j∈T is reachable
T (i) set of targets that can be reachable from AP i∈A
Cu event that node u∈A ∪ T is compromised
Du event that node u∈A ∪ T is under DoS attacks
P (E) probability that event E occurs
pi blocking probability of AP i∈A

II. PROBLEM FORMULATION

In this section, we formalize the secure multipath approach
as a minimax-optimization problem and hence its equivalent
maximum-flow problem. This formulation will also be used
later when we include link-bandwidth constraints and lexico-
graphic optimization. Note that the following formulation is
generally based on [1], [2], [4], [5], [13], [15], [16], [25]. To
aid our discussion, Table I summarizes the major notation that
we use in this paper.

Our discussion relies on the concepts of the maximum flow
and the minimum cut [2]. Given a network with a number of
nodes and links, the maximum-flow problem is to determine
the maximum flow that can be sent from a source node s to
a sink node t subject to the capacity constraints (i.e., each
link has flow bounded by the link capacity) and the flow-
conservation constraints (i.e., the net flow entering any node
except the source and the sink equals zero). Suppose that we
partition the nodes into two sets S and S, where s ∈ S and
t∈S. A cut refers to the set of links directed from S to S . A
minimum cut is the cut that has the minimum capacity (i.e.,
the minimum sum of capacities of all links in the cut). The
max-flow min-cut theorem states that the maximum-flow value
equals the capacity of the minimum cut.
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We are interested in a connected, directed, and acyclic
network that is viewed as a graph G = (N ,L), where N
is the set of nodes and L is the set of directed links. Our
analysis is based on a single data session with a source node
s and a sink node t. We emphasize that our analysis can be
generalized to a homogeneous class of multiple data sessions
by mapping source s and sink t to the ingress and egress points
of the network, respectively. Suppose that source s sends data
to sink t with a session throughput given by X (say, in Mb/s).
We let xl, 0≤xl ≤ 1, be the proportion of the entire session
data carried by link l∈L (i.e., xl equals the throughput of link
l divided by X) and let x= (xl, l∈L) be the corresponding
proportion vector.

Our analysis mainly focuses on a single-link attack, but we
also address a single-node attack in Section VI. In this paper,
we focus on a threat model in which the damage due to the
attack on link l∈L not only is proportional to the throughput
sent over link l, but also depends on other factors such as the
likelihood that an attack can successfully bring down link l. We
characterize such damage as an attack cost al = clxl, where
cl, which we term the security constant of link l, specifies
the vulnerability of link l. Intuitively, the attack cost is used
to measure the scale of throughput loss due to a single-link
attack. Note that cl can have several physical interpretations,
such as the probability that link l is successfully attacked
given that the intruder attempts to attack link l [5], the failure
probability of link l [4], or the proportion of loss of data
traversing link l when it is attacked. To ensure that every
link l has a consistent interpretation of cl, every node has
to calibrate cl with respect to an agreed-upon definition of an
attack. Also, to enable us to interpret cl as a probability or
proportion, we require that 0 ≤ cl ≤ 1 for every link l ∈ L.
With an agreed-upon attack model, every node u can then
determine in advance cl for each of its own outgoing links
l∈L(u), where L(u) is the set of all outgoing links of node
u, using vulnerability modeling [10], statistical measurements
of reliability indexes [15], or security monitoring systems [25].
We point out that if an accurate estimate of cl is not available,
we can set cl = 1, meaning that link l has all its data lost
when it is under attack, and our analysis still applies to this
worst-case scenario.

A. Minimax Optimization

To mitigate the worst damage due to a single-link attack,
our objective is to decide a feasible proportion vector x

that minimizes the maximum attack cost over all links in
the network. This can be viewed as the following minimax
optimization problem1:

a∗ = min
x

max
l∈L

al = min
x

max
l∈L

clxl

subject to 0 ≤ xl ≤ 1, ∀l ∈ L. (1)

Problem 1 can be solved in polynomial time via linear
programming, but this is a centralized solution and requires
the information of the entire network topology. To implement

1All problems presented in this paper are under flow-conservation con-
straints, although the convention is omitted for brevity.

a distributed solution, we can first transform the problem into a
maximum-flow problem by setting the capacity of every link
l, denoted by cap(l), as the reciprocal of cl [1], and then
solve for the maximum flow using the distributed Preflow-Push
algorithm [16], which is summarized as follows. Source s first
initiates the algorithm by pushing the maximum possible flow
to its neighbor nodes. All nodes except source s and sink t
then attempt to push the flow toward sink t along the estimated
shortest paths until the resulting maximum flow reaches sink
t. Any excess flow is pushed back to source s. In [16], it
explains how to implement the Preflow-Push algorithm in a
distributed and asynchronous fashion. We refer readers there
for a detailed discussion. For completeness, we include the
pseudo-code of the Preflow-Push algorithm in Appendix I.

Let f =(fl, l∈L) be the flow vector where fl denotes the
flow of link l, and f be the net flow entering sink t. Problem 1
can thus be mapped to the following maximum-flow problem:

f∗ = max
f

f

subject to 0 ≤ fl ≤ 1/cl, ∀l ∈ L, (2)

where the solutions to Problems 1 and 2 are related by a∗ =
1/f∗ and xl = fl/f

∗, ∀l ∈ L.
To illustrate both problems, Figure 1(a) depicts a network

where cl =1 for all links l. From the Preflow-Push algorithm,
we know the maximum flow is f∗ = 2 and thus the worst-
case attack cost is minimized at a∗=0.5. Also, the algorithm
returns the corresponding vectors f and x.

B. Minimax Optimization with Bandwidth Constraint

One limitation of Problem 1 is that every link is assumed to
have infinite bandwidth so that it can accommodate the entire
session data. To incorporate the link-bandwidth constraints,
we assume that each node u specifies a priori a bandwidth Bl

(say, in Mb/s) for its outgoing links l ∈ L(u). We let bl =
min(Bl/X, 1), where 0≤bl≤1, denote the fraction bound of
link l that bounds from above the proportion of data that can
be sent through link l for a given session throughput X . We
then incorporate the fraction bound into Problem 1 as:

a∗ = min
x

max
l∈L

al = min
x

max
l∈L

clxl

subject to 0 ≤ xl ≤ bl, ∀l ∈ L. (3)

The corresponding maximum-flow problem becomes:

f∗ = max
f

f

subject to 0 ≤ fl ≤ min(1/cl, blf), ∀l ∈ L. (4)

For clarity, the term bandwidth (i.e., Bl) represents the
maximum amount of data that can be sent across a link, and
the term capacity (i.e., cap(l) = min(1/cl, blf)) denotes the
upper bound of the link flow in the transformed maximum-
flow problem. While the bandwidth Bl is fixed, the capacity
cap(l) varies depending on the flow value f that reaches sink
t.

Figure 1(b) depicts the case where we assign the fraction
bound bl = 0.4 to the link from node f to sink t and
bl = 1 to the rest. Similar to Problem 1, we can solve
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Fig. 1. Optimal solutions to the three optimization problems: (a) minimax optimization, (b) minimax optimization with the bandwidth constraints, and (c)
lexicographic optimization. Every link l has cl =1 and is associated with a triple (xl, fl, bl), where xl and fl are the solutions after the optimization problems
are solved, and bl (defined for (b) and (c) only) denotes the initial fraction bound assigned to link l. Note that bl is different from its initial value after the
lexicographic-optimization problem is solved (see Section IV and Figure 3 for details).

Problem 3 in a centralized manner via linear programming. To
implement a distributed approach, in Section III, we develop
the Bound-Control algorithm, which is built upon the Preflow-
Push algorithm to solve Problem 4 and hence Problem 3.

C. Lexicographic Optimization

A limitation of the previous problems is that they are
concerned only with how to minimize the worst-case attack
cost, but do not attempt to reduce the costs of severe link
attacks. For example, in Figures 1(a) and 1(b), the attack costs
are unevenly distributed. Specifically, in Figure 1(b), there are
six links whose attack costs are at least 0.4 each. By evenly
distributing the costs as shown in Figure 1(c), only two such
links exist. Thus, we reduce the number of links where the
single-link attacks can lead to severe damage.

To formalize the concept of the even distribution of at-
tack costs, we let a = 〈cl1xl1 , cl2xl1 , · · ·, cl|L|

xl|L|
〉, where

l1, l2, · · · , l|L| ∈ L, be a non-increasing attack-cost sequence.
The distribution of the attack costs is said to be the most even
if the associated attack-cost sequence a is lexicographically
minimized, i.e., for any other non-increasing attack-cost se-
quence a

′ = 〈cl1x
′
l1

, cl2x
′
l2

, · · · , clLx′
l|L|

〉 6= a, there exists i,
where 1 ≤ i < |L|, such that clj xlj = clj x

′
lj

for j < i and
clixli <clix

′
li

. Let lexmin (.) be the function that returns the
lexicographically minimum sequence a

∗. We then express the
lexicographic-optimization problem as:

a
∗ = lexmin

x
a = lexmin

x
〈cl1xl1 , · · · , clLxlL〉

subject to x = arg min
x

max
l∈L

clxl,

0 ≤ xl ≤ bl, ∀l ∈ L. (5)

Hence, the corresponding maximum-flow problem is:

a
∗ = lexmin

f

a = lexmin
f

〈
cl1fl1

f
, · · · ,

clLflL

f
〉

subject to f = arg max
f

f,

0 ≤ fl ≤ min(1/cl, blf), ∀l ∈ L. (6)

In Section IV, we propose the Lex-Control algorithm to
address this problem. By extending the Bound-Control algo-
rithm and setting the fraction bounds of the links appropriately,
the Lex-Control algorithm can determine the lexicographically

optimal solutions for Problems 5 and 6 in a distributed fashion.
This type of lexicographic-optimization problem was first
analyzed in [13], from which our Lex-Control algorithm has
two main distinctions. First, while the analysis in [13] assumes
no link-bandwidth constraint, we explicitly incorporate this
constraint into our algorithm. Furthermore, our algorithm
allows distributed implementation, while the solution in [13] is
centralized and requires the knowledge of the whole network
state.

III. BOUND-CONTROL ALGORITHM

This section presents the Bound-Control algorithm, which
solves Problems 3 and 4, in which a fraction bound bl is
imposed on every link l ∈ L. We describe how it operates
and how it supports both fixed-rate and maximal-rate session
models described in Section I. We refer readers to Appendix II-
A for the proof of its correctness.

Here, we let fs be the flow value that source s broadcasts
to the network in the Bound-Control algorithm. We also let
U be a sufficiently large value that approximates infinity. For
instance, U can be the largest value that can be processed by
the implementation.

A. Description of the Bound-Control Algorithm

The idea of the Bound-Control algorithm is to repeatedly
solve a maximum-flow problem via the Preflow-Push algo-
rithm and adjust the link capacities until the maximum-flow
result converges to the optimal solution. The Bound-Control
algorithm is presented in Algorithm 1.

In Algorithm 1, source s first broadcasts a sufficiently
large value fs = U to initiate the Bound-Control algorithm
(line 1). Next, all network nodes execute the Preflow-Push
algorithm subject to the link-capacity constraint cap(l) =
min(1/cl, blfs) = 1/cl for every link l ∈ L (lines 2-5). By
checking the amount of flow that has been sent out, source
s can determine the maximum-flow result. Source s then
broadcasts the computed maximum-flow result represented by
fs to the network (lines 7-8) so that every network node
can adjust the capacities of its outgoing links (lines 9-11).
Afterward, all nodes execute again the Preflow-Push algorithm
under the new link capacities (line 12). The algorithm iterates
in the repeat-until loop (lines 7-12), and terminates if the
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Fig. 2. Example of the Bound-Control algorithm in Algorithm 1 for the network shown in Figure 1. Every link l has cl =1 and is associated with a triple
(xl, fl, bl). The figures illustrate: (a)-(c) the flow values after the first three executions of the Preflow-Push algorithm (lines 5 and 11) and (d) the optimal
solution returned from the Bound-Control algorithm.

Algorithm 1 Bound-Control
1: source s broadcasts fs = U to all nodes u ∈ N
2: for all u ∈ N do
3: for all l ∈ L(u) do
4: node u sets cap(l) = min(1/cl, blfs)
5: all nodes run Preflow-Push
6: repeat
7: source s sets fs to be the maximum-flow result
8: source s broadcasts fs to all nodes u ∈ N
9: for all u ∈ N do

10: for all l ∈ L(u) do
11: node u sets cap(l) = min(1/cl, blfs)
12: all nodes run Preflow-Push
13: until source s finds that fs equals the maximum-flow result

maximum flow obtained from the Preflow-Push algorithm
equals the flow value fs that has just been broadcast (line
13). The optimal value f∗ is given by fs. Figure 2 illustrates
how the Bound-Control algorithm works.

B. Discussion of the Bound-Control Algorithm

In actual implementation, we can support both fixed-rate and
maximal-rate session models (see Section I) by determining
the feasible session throughput X and hence the fraction bound
bl in a distributed fashion. Source s first initiates the Preflow-
Push algorithm to decide the feasible session throughput X
subject to the bandwidth constraint Bl for all l∈L, and then
broadcasts X to all the nodes in the network so that they
can specify the fraction bound bl for their associated links
l. The fixed-rate session model is thus provided by sending
data at the fixed rate X . If X is the maximum flow returned
from the Preflow-Push algorithm, then we can achieve the

maximum security under the maximum session throughput
using the Bound-Control algorithm. Thus, the maximal-rate
session model is supported.

We can further enhance the efficiency of the implementation
of the Bound-Control algorithm via bisection search to locate
the optimal value f∗ in the Bound-Control algorithm as fol-
lows. Suppose that flow and fhigh denote the lower and upper
bounds, respectively. Source s first initializes flow to be zero
and fhigh to be twice the maximum-flow result determined
by the first execution of the Preflow-Push algorithm (i.e., line
5 of Algorithm 1). It then broadcasts fs = (flow +fhigh)/2
to the network. If the next execution of the Preflow-Push
algorithm returns the maximum flow less than fs, then source
s assigns the maximum-flow result to fhigh. Otherwise, the
result is assigned to flow instead. Source s repeatedly searches
for fs, and the algorithm terminates if the most recently
broadcast value fs and the latest maximum-flow result are
equal (or different by some tolerance value depending on the
implementation).

With bisection search, the complexity of the Bound-Control
algorithm is O(pT ), where p is the number of precision digits
describing all possible flow values and T is the complexity
of executing the Preflow-Push algorithm. For instance, if
the Bound-Control algorithm implements the distributed and
asynchronous version of the Preflow-Push algorithm [16], it
introduces O(p|N |2|L|) messages and takes O(p|N |2) time
to converge.

IV. LEX-CONTROL ALGORITHM

In this section, we present the Lex-Control algorithm, which
solves the lexicographic optimization specified in Problems 5
and 6. We explain how the Lex-Control algorithm is extended
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Fig. 3. Example of the Lex-Control algorithm in Algorithm 2 for the network shown in Figure 1. Every link l has cl = 1 and is associated with a triple
(xl, fl, bl). After every execution of the Bound-Control algorithm (lines 1 and 11), the nodes identify the critical links (in dashed arrows) and adjust the
fraction bounds bl accordingly (lines 6-10).

from the Bound-Control algorithm. Its proof of correctness
can be found in Appendix II-B.

A. Description of the Lex-Control Algorithm

To understand the Lex-Control algorithm, suppose that
for a particular maximum-flow problem, we have found the
maximum flow f∗ and the minimized worst-case attack cost
a∗ = 1/f∗. The network will then constitute a set of critical
links, defined as the links l ∈ L whose attack costs cannot
be further decreased without increasing a∗. The idea of the
Lex-Control algorithm is to iteratively solve a maximum-
flow problem using the Bound-Control algorithm and identify
additional critical links until the lexicographically optimal
solution a

∗ is obtained.
Before describing the algorithm, we define the residual

network Gf∗ =(N ,Lf∗) with respect to the maximum flow f∗

as follows [2]. Suppose that the maximum flow f ∗ is solved
and each link l∈L carries a flow fl. To construct Lf∗ , for each
link l∈L directed from node u to node v, where u, v∈N , if
cap(l) − fl > 0, we include a forward link from u to v into
Lf∗ , and if fl > 0, we include a backward link from v to u
into Lf∗ .

Algorithm 2 Lex-Control
1: all nodes run Bound-Control
2: source s sets f∗ to be the computed maximum flow
3: while f∗ < U do
4: source s broadcasts f∗ to all nodes u ∈ N
5: for all u ∈ N do
6: node u runs a connectivity-checking algorithm on Gf∗

7: for all l ∈ L(u) do
8: if l is a critical link then
9: node u sets cl = 1/U

10: node u sets bl = fl/f∗

11: all nodes run Bound-Control
12: source s sets f∗ to be the computed maximum flow

Algorithm 2 summarizes the Lex-Control algorithm. All
nodes first run the Bound-Control algorithm to minimize
the worst-case attack cost subject to the capacity constraint
cap(l) = min(1/cl, blf) for all l ∈ L in the transformed
maximum-flow problem (line 1). Source s then broadcasts
the computed maximum flow f∗ (line 4). Each node runs a
connectivity-checking algorithm (e.g., the breadth-first search)

on Gf∗ (lines 6-8). If its neighbors in G are not reachable
in Gf∗ , then the corresponding links between itself and its
neighbors in G are lying on a minimum cut and hence are
critical (see Appendix II-B). It modifies cl and bl for each
spotted critical link l (lines 9-10) so that cap(l) is adjusted
to bound only the proportion of flow currently carried. Here,
we set 1/cl to be a sufficiently large value U (defined in
Section III) so that it does not affect cap(l). The algorithm
iteratively identifies the critical links (lines 3-12, collectively
defined as a lexicographic iteration), and terminates when the
maximum flow computed from the Bound-Control algorithm
equals U . Figure 3 depicts how the Lex-Control algorithm
computes the lexicographically optimal solution.

B. Discussion of the Lex-Control Algorithm

The complexity of the Lex-Control algorithm is dominated
by the executions of the Bound-Control algorithm. Since each
lexicographic iteration discovers at least one critical link, the
Lex-Control algorithm has a complexity that is O(|L|T ′),
where T ′ is complexity of the Bound-Control algorithm.

Instead of locating all critical links, we can simply perform
a pre-determined number, say k, of lexicographic iterations to
identify a subset of critical links in order to gain performance
benefits in actual implementation. Since the later lexicographic
iterations attempt to identify the critical links with modest
attack costs, the most substantial security improvements occur
during earlier lexicographic iterations. With this modification,
the complexity of the Lex-Control algorithm is reduced to
O(kT ′).

V. EXPERIMENTS

In this section, we perform an extensive experimental study
on the proposed algorithms via simulation. We consider three
network settings, each of which contains 200 nodes, connected
by 600, 800, and 1000 links, respectively. We use BRITE
[28], a network topology generator, to construct 50 experi-
mental topologies for each network setting. All nodes within
a topology are randomly connected and placed in a rectangular
two-dimensional plane. We dedicate the nodes closest to and
farthest from the origin (i.e., the bottom left-hand corner of
the plane) to be source s and sink t, respectively. To construct
a directed acyclic topology, for each link between any two



7

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
in

im
iz

ed
 w

or
st

-c
as

e 
at

ta
ck

 c
os

t

Proportion of the maximum possible session throughput

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
um

be
r 

of
 e

xe
cu

tio
ns

 o
f 

th
e 

P
re

flo
w

-P
us

h 
al

go
rit

hm

Proportion of the maximum possible session throughput

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
ou

tin
g 

ov
er

he
ad

Proportion of the maximum possible session throughput

200 nodes, 600 links
200 nodes, 800 links

200 nodes, 1000 links

(a) Minimized worst-case attack cost (b) Number of executions of the
Preflow-Push algorithm

(c) Routing overhead

Fig. 4. Experiment 1: Analysis of the Bound-Control algorithm at different session throughputs.

nodes u and v, we direct it from node u to node v if node u’s
Euclidean distance to the origin is less than that of node v.
Moreover, each link l is uniformly assigned a security constant
cl between 0 and 1 and a bandwidth Bl between 1 and 5. We
then analyze the average performance of the algorithms over
the 50 topologies.

Our experiments focus on three metrics, namely: (1) attack
cost (defined in Section II), which measures the resilience of
the proposed algorithms toward various types of link attacks,
(2) number of executions of the Preflow-Push algorithm, which
measures the message complexity and the convergence time
of the proposed algorithms. (3) routing overhead, which is
defined as the ratio of the average hop count from source s to
sink t in our multipath approach to the minimum hop count in
single-path routing. We can compute the routing overhead as
follows. Let r(u) be the hop count from node u to sink t and
luv ∈L be the link directed from node u to node v. Recall that
xl denotes the proportion of the session data carried by link l.
The average hop count of the multipath routing is thus given
by the recursive equation r(s) =

∑
u:lsu∈L

xlsu∑
u:lsu∈L

xlsu

[1 +

r(u)], where r(t) is initialized to be zero. We then divide r(s)
by the minimum hop-count in single-path routing to obtain the
routing overhead.

Experiment 1 (Analysis of the Bound-Control algorithm
at different session throughputs): This experiment studies
how the Bound-Control algorithm protects against the worst-
case single-link attack at various session throughputs. For each
topology, we use the Preflow-Push algorithm to determine
the maximum possible session throughput subject to the link-
bandwidth constraints. We then calculate the throughput rates
that are given by different proportions of the determined
maximum session throughput to address both fixed-rate and
maximal-rate session models (see Section I). Finally, we assign
the appropriate fraction bounds to all links (see Section III-
B). Here, we evaluate the degree of resilience based on the
minimized worst-case attack cost.

Figure 4 depicts the performance metrics at different session
throughputs, and Table II shows the worst-case attack cost
when a single path with the minimum hop-count is used.
Figure 4(a) shows that the Bound-Control algorithm sub-
stantially reduces the worst-case attack cost when compared
to the single-path approach (e.g., from 0.78 to 0.17, or by
78%, for the 1000-link network that uses the maximal-rate

TABLE II

EXPERIMENT 1: WORST-CASE ATTACK COST WHEN A SINGLE PATH WITH

THE MINIMUM HOP-COUNT IS USED.

Network setting Attack cost
200 nodes, 600 links 0.73
200 nodes, 800 links 0.72
200 nodes, 1000 links 0.78

model for the maximum session throughput). Specifically, we
observe two kinds of trade-offs. First, as the session throughput
increases, links experience tighter fraction bounds in general.
This leads to more Preflow-Push executions and higher worst-
case attack cost. Second, while a network with more links
attains a smaller worst-case attack cost, it also incurs more
messages in running the Bound-Control algorithm as well as
higher routing overhead.
Experiment 2 (Analysis of the Lex-Control algorithm at
different numbers of lexicographic iterations): This exper-
iment considers how the Lex-Control algorithm prevents the
severe single-link attacks when it executes different numbers
of lexicographic iterations. We regard a single-link attack as
“severe” if its resulting attack cost is at least 25% of the
worst-case one. Here, for each topology, we evaluate the
algorithm using the maximal-rate session model (see Section I)
in which the maximum session throughput is determined as in
Experiment 1. Also, we use the number of links that incur
severe attack costs as the resilience measure.

Figure 5 plots the resulting metrics. It shows that the Lex-
Control algorithm can reduce the number of links where the
single-link attacks are severe. The reduction is more salient
in the 1000-link network (e.g., by more than 50% in three
or more lexicographic iterations). The trade-off is that the
required number of executions of the Preflow-Push algorithm
increases linearly with the number of lexicographic iterations.
One interesting side benefit of the Lex-Control algorithm is
that it alleviates the routing overhead as well. A possible
explanation is that shorter paths incur smaller attack costs in
general, so as the Lex-Control algorithm proceeds, it identifies
these more secure shorter paths and hence reduces the routing
overhead. From Figure 5, the benefits of the Lex-Control
algorithm are more prominent in the first three lexicographic
iterations. Thus, in practice, it is reasonable to run a small
number of lexicographic iterations. This allows system de-
signers to select the trade-off of diminishing returns.
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Fig. 5. Experiment 2: Analysis of the Lex-Control algorithm at different numbers of lexicographic iterations.
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Fig. 7. Experiment 4: Analysis of the Lex-Control algorithm subject to the proportional and worst-case multi-link attacks

Experiment 3 (Analysis of the Lex-Control algorithm sub-
ject to different scales of uniform link attacks): Although
our analysis concentrates on the worst-case single-link attack,
since the Lex-Control algorithm seeks the most balanced
distribution of attack costs of all links, we envision that it also
minimizes the average attack cost under uniform link attacks,
i.e., an intruder uniformly attacks a single or multiple links
that carry session data. In this experiment, we investigate this
potential benefit by considering different scales of uniform link
attacks.

In the experiment setup, we let the security constant cl be
the proportion of loss of data traversing link l that is being
attacked (see Section II), so the attack cost of link l (i.e.,
al = clxl) represents the actual proportion of data loss for
the data session. For the single-link attack, we compute the
average attack cost by dividing the total attack cost of all
links by the number of links that carry data. For multi-link

attacks, we look at the amount of remaining data that actually
reach the sink in order to compute the aggregate attack cost.
Then we simulate 50 multi-link attacks for each topology to
obtain the average aggregate attack cost. Here, we focus on
the maximal-rate session model as in Experiment 2.

Figure 6 illustrates the attack costs incurred by the uniform
attacks on one, 10, and 50 links. It shows that the Lex-Control
algorithm can mitigate the threats of uniform link attacks. For
instance, given that 50 out of 1000 links are attacked, the
average aggregate attack cost is reduced by 40% (or from 0.75
to 0.45) with four or more lexicographic iterations. Therefore,
apart from the worst-case single-link attack, the Lex-Control
algorithm also enhances the robustness of the network subject
to various scales of uniform link attacks.

Experiment 4 (Analysis of the Lex-Control algorithm sub-
ject to the proportional and worst-case multi-link attacks):
The final experiment assesses the Lex-Control algorithm under
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the proportional and worst-case multi-link attacks. In the
proportional multi-link attack, an intruder attacks a number
of links such that the probability that each link is attacked is
directly proportional to its attack cost. In the worst-case multi-
link attack, however, the intruder deterministically attacks the
links with the highest attack costs. We use the same setting as
in Experiment 3 to evaluate the Lex-Control algorithm based
on the maximal-rate session model.

Figure 7 illustrates the average aggregate attack costs when
five links are attacked. It shows that in general, the Lex-
Control algorithm can reduce the average aggregate attack
costs in both proportional and worst-case attacks. For instance,
in a 1000-link network, the attack cost is decreased from 0.3
to 0.23, or by 23%, in the proportional 5-link attack, and from
0.59 to 0.52, or by 12%, in the worst-case 5-link attack. Also,
around four lexicographic iterations are sufficient to achieve
such reduction.
Summary: The experiments show that the Bound-Control
algorithm significantly protects against the worst-case single-
link attack, and that the Lex-Control algorithm provides addi-
tional protection by reducing the number of links with severe
attack costs. Moreover, the Lex-Control algorithm effectively
defends against the uniform, proportional, and worst-case
multi-link attacks, with the majority of benefits occurring
within the first few lexicographic iterations.

VI. APPLICATION IN ATTACK-RESISTANT NETWORKS

To further examine the applicability of both Bound-Control
and Lex-Control algorithms, we consider their use in an attack-
resistant network [7], a specialized network that protects end
hosts by surrounding them with a defensive architecture.
One example is Secure Overlay Services (SOS) [20], which
constructs the defensive architecture with a set of application-
level overlay nodes layered atop the underlying network
architecture. According to [7], an attack-resistant network
should satisfy two crucial but contradicting criteria termed (1)
resiliency: the network should offer alternate paths in the face
of node failures, and (2) security: the network should confine
the damage caused by compromised nodes. In this section, we
propose how to balance these two criteria using our multipath
solution and evaluate their trade-off via simulation.

A. Overview

Following [7], [20], we first overview the architecture of
an attack-resistant network as illustrated in Figure 8. To
communicate with a protected sink t, a source s first connects
to an access point (AP), which authenticates incoming packets.
Authenticated packets are then routed from the AP through an
interconnection network to a target (a.k.a. secret servlets [20]),
which relays packets to sink t. Intuitively, the AP and the target
can be viewed as an entry point to the attack-resistant network
and to sink t, respectively, such that no packet can reach sink
t without properly going through an AP followed by a target.
In a general attack-resistant network, source s can reach sink
t using multiple paths through different APs and targets. Also,
the APs function independently from one another [7]. Thus,
we can deploy our distributed multipath solution in this type

s t

A T

A

A

T

T

... ...

... ...

access
points targetsinterconnection

network

Fig. 8. Example of an attack-resistant network.

of attack-resistant network to further protect the underlying
secure communication.

In order to secure the targets and hence the end hosts, the
identities of the targets are hidden from the public and known
only to a small set of nodes (a.k.a. beacons [20]) which are in
turn known only to the associated APs. However, if an AP is
compromised, then an intruder can identify and hence attack
the associated targets through the compromised AP. This poses
a trade-off issue between resiliency and security: for resiliency,
each AP should be associated with sufficient targets so as to
select an alternate target if one target becomes unavailable,
while for security, each AP should not be assigned too many
targets so as to suppress the number of targets being attacked
when an AP is compromised.

To address the trade-off between resiliency and security, [7]
formulates an assignment problem, namely, given a fixed data
allocation on each AP, the objective is to find an optimal path
assignment between the APs and targets that minimizes the
blocking probability, defined as the probability that a request
cannot reach a protected end host due to the attacks on the
APs and targets. However, the existence of a polynomial-time
optimal algorithm to this problem remains an open issue. In
addition, the approximation algorithms in [7] do not take into
account load balancing on the APs and targets. Therefore,
we address the problem from another perspective in which
our goal is to assign transmission rates at the APs instead of
finding an optimal path assignment. We formalize the problem
in the following discussion.

B. Model

We first formulate the problem based on [7]. We consider a
network graph Ga =(A,T ,P), where A is the set of APs, T
is the set of targets, and P is the set of directed paths from
the APs to the targets. We let A(j) and T (i) be the sets of
APs and targets, respectively, such that if there exists a path
in P from access point i∈A to target j ∈ T , then i∈ A(j)
and j∈ T (i).

We focus on two types of attacks: (1) compromise attack,
in which an intruder obtains unauthorized access to a node,
and (2) denial-of-service (DoS) attack, in which an intruder
prevents a node from providing legitimate service, for exam-
ple, by flooding the victim node with huge traffic. Let Cu

and Du be the respective events that node u ∈ A ∪ T is
compromised and is vulnerable to DoS attacks, and Cu and Du



10

denote their complements. Let also P (E) be the probability
that event E occurs. In practice, the attack probabilities P (Cu)
and P (Du) can be estimated via the approaches described
in Section II. Since the identities of the targets are hidden
from the public, we assume that an intruder can only mount
the attacks through the APs. It follows that P (Cj) = 0 and
P (Dj |Ci1 , · · · , Cik

) = 0 for all j ∈T and i1, · · · , ik ∈A(j).
We assume that if AP i is compromised, then an intruder will
identify all targets j ∈T (i) and launch DoS attacks on them
from the compromised AP i. This implies P (Dj |Ci) = 1 for
all j∈T (i). Finally, we assume that C ′

is and D′
is are mutually

independent for all i∈A.
An AP i ∈ A is said to be blocked if it is compromised, it

is the victim of a DoS attack, or its associated targets are all
victims of a DoS attack. Thus, the blocking probability pi at
AP i is given by

pi = 1 − P (Di)P (
⋃

j∈T (i) Dj). (7)

Note that the event
⋃

j∈T (i) Dj implies that AP i is not
compromised. To compute P (

⋃
j∈T (i) Dj), we note that as a

result of the independence assumption, the probability that all
k targets j1, · · · , jk ∈T are not vulnerable to DoS attacks is
given by

P (Dj1 ∩ · · · ∩ Djk
) =

∏
i∈T (j1)∪···∪T (jk) P (Ci). (8)

We then evaluate P (
⋃

j∈T (i) Dj) via the inclusion-exclusion
principle [9].

To apply our algorithms, we extend the single-link attack
model in Section II to a single-node attack model (e.g., via
node splitting [2]). We let xu, where 0 ≤ xu ≤ 1, be the
proportion of data carried by node u, where u ∈ A ∪ T
can be an AP or a target, and x = (xu, u ∈ A ∪ T ) be the
proportion vector. The attack cost of node u is thus defined
as au = cuxu, where cu is the security constant of node u.
Using the blocking probability as our measure, for every AP
i ∈ A, we set ci = pi, indicating that the attack cost of AP
i is quantified as the expected proportion of data loss when
AP i is blocked. In contrast, since the blocking probability is
calibrated only at the layer of APs, for every target j ∈ T , we
set cj = 0. To determine the security constant, each AP can
independently consult its attached targets for the compromise
probabilities of their associated APs. It then computes the
blocking probability based on Equations 7 and 8. Furthermore,
for load balancing, each of the APs and targets can assign itself
a bandwidth constraint and determine its fraction bound bu,
where 0 ≤ bu ≤ 1 for u ∈ A ∪ T , using either the fixed-rate
model or the maximal-rate model.

Given the above formulation, our primary objective is to
decide the data allocation x=(xu, u∈A∪T ) that minimizes
the worst-case attack cost of an AP subject to bandwidth con-
straints. Thus, we have the following optimization problem:

a∗ = min
x

max
i∈A

ai = min
x

max
i∈A

cixi

subject to 0 ≤ xu ≤ bu, ∀u ∈ A ∪ T . (9)

We can further extend Problem 9 to a lexicographic opti-
mization problem. We can then readily obtain the optimal data
allocation using the Bound-Control or Lex-Control algorithms.
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C. Evaluation

We conduct a simulation study on three attack-resistant
network settings, each of which has 30, 50, and 100 APs,
respectively, together with 20 targets. We define connectivity
as the number of targets to which each AP is connected.
For each network setting and connectivity, we consider the
average results over 50 topologies. Within a topology, each
AP is connected randomly to different targets according to the
connectivity and is assigned the compromise and DoS proba-
bilities uniformly at random between 0 and 0.08. Moreover, we
assume that each AP and its paths to the targets have infinite
bandwidth and that each target has the same bandwidth. We
then determine the fraction bounds of the APs and targets
using the maximal-rate model.

We first analyze the minimized worst-case attack cost a∗

as well as the aggregate attack cost A∗ of the five APs that
have the highest attack costs. We compute a∗ and A∗ respec-
tively via the Bound-Control algorithm and the Lex-Control
algorithm with three lexicographic iterations. Figures 9(a) and
9(b) plot a∗ and A∗ versus the connectivity, respectively.
Initially, the resilience of an attack-resistant network increases
with the connectivity and both attack costs decrease. As
the connectivity further increases, the targets are attached to
more APs that can be compromised. Thus, they become more
vulnerable to DoS attacks, and the attack costs increase. Such
increase is more severe when a network has more APs (e.g.,
100 APs). This shows that a network with more APs and
higher connectivity does not necessarily offer better protection.

To evaluate the effectiveness of the multipath algorithms,
we normalize a∗ to the respective cost when no Bound-
Control algorithm is used (i.e., only the maximal-rate model
is satisfied), and we also normalize A∗ to the respective cost
when only the Bound-Control algorithm is used. Figure 10(a)
plots the normalized a∗ and shows that the Bound-Control
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algorithm can effectively reduce the worst-case attack cost of
an AP (e.g., by at least 80% for 100 APs and 20 targets).
In Figure 10(b), we plot the normalized A∗ and observe that
the Lex-Control algorithm reduces the aggregate attack cost at
low connectivities. As the connectivity increases, each AP is
assigned more targets and is less constrained by the bandwidth
requirement. Thus, the Bound-Control algorithm immediately
minimizes the worst-case attack cost at all APs (i.e., where
the minimum cut lies) and has the same result as does the
Lex-Control algorithm.

VII. RELATED WORK

Multipath routing was first studied in [27], in which data is
transmitted over multiple disjoint paths as a means to provide
load balancing and routing resilience. Redundancy can be
added to the transmitted data so that the receiver side can
fully reconstruct the data in the presence of moderate data loss.
Based on this intuition, we apply multipath routing to address
the presence of link attacks using optimization models.

One possible optimization model for multipath routing is
based on minimax optimization. Previous studies consider the
load-balancing problem (e.g., in [1], [17]), multipath solutions
to combat link attacks (e.g., in [5], [6], [18]), and the network-
intrusion problem (e.g., in [21]). Note that the above studies
focus on centralized algorithms that assume the knowledge
of the network topology. We extend beyond the previous
studies by devising a distributed solution that can handle link-
bandwidth constraints.

Another possible optimization model is based on lexico-
graphic optimization, which has been studied in [11], [13]
for a network setting. While [11] considers only the lexico-
graphic optimization of the flows of the links attached to the
source node, [13] extends [1] to lexicographically optimize
the flows of all the network links in a centralized manner.
Specifically, the idea of [13] is to solve the minimax problem
via the maximum-flow problem for a given network, identify
the minimum-cut links, and recursively solve the minimax
problems for the subnetworks separated by those links. Our
Lex-Control algorithm supports the distributed implementation
in the presence of link-bandwidth constraints.

Analytical studies regarding secure multipath routing can
be found in [4], [5], [6], [18], [25], [32], in which the
vulnerability of each node is characterized by an attack (or
failure) probability. In particular, [25], [32] consider disjoint
paths among network nodes, while [4] relaxes this disjointness
requirement and proposes a resilient routing scheme using two
non-disjoint paths. Our algorithms, as in [5], [6], [18], explore
a higher degree of network diversity by using all the paths
(either disjoint or not) that are available.

In terms of the applicability of secure multipath routing,
[30] studies the implementation issues of protecting an attack-
resistant network (e.g., SOS [20]) against the intruders that
seek to compromise a small portion of overlay nodes at
random. Our work, on the other hand, provides an analytical
study for protecting an attack-resistant network using a worst-
case attack model. Besides attack-resistant networks, multipath
routing has also been applied to improve the resilience of other
architectures, such as sensor networks [12].

VIII. PRACTICAL ISSUES

In this section, we address several practical issues of our
current work and suggest directions for future research.

Redundant routing: As mentioned in Section I, we assume
that some error correction mechanism is used to reliably
deliver data. Intuitively, redundant messages must be added to
transmitted data so that a receiver can recover all data as long
as data loss due to failed paths is modest [25], [27]. Although
redundant routing provides data reliability, part of the raw
network bandwidth is used to transmit redundant data, and this
decreases the effective network bandwidth for carrying actual
data. Determining the suitable level of redundancy that best
balances the trade-off between data reliability and effective
network bandwidth is challenging and hence requires further
investigation.

Fault-tolerance: We currently assume that the nodes remain
stable throughout the execution of the algorithms, yet in
practice, nodes can experience attacks or transient failures. To
offer fault-tolerance, we can either restart the algorithms, or
adopt the self-stabilizing solutions in [14], [19]. In particular,
[19] enhances the original Preflow-Push algorithm to adjust to
the changes of link states. However, the worst-case complexity
of this solution is proportional to the number of adjustments
multiplied by the complexity of the original Preflow-Push
algorithm, leading to severe performance degradation if the
adjustments occur frequently. Hence, we need to consider the
trade-offs between restarting the algorithms and invoking the
self-stabilizing procedures.

Multiple sessions: Our algorithms are on a per-session basis.
To support multiple sessions, one simple approach is to require
each link to allocate different bandwidths (or fraction bounds)
for the multiple sessions based on the application requirement.
However, such an approach may not fully utilize the link
bandwidth. For example, we may allocate the unused link
bandwidth of one session to other sessions. If a session is
given more bandwidth, it is subject to weaker fraction bounds.
In Section V, Experiment 1 shows that weaker fraction bounds
can achieve smaller worst-case attack cost. Thus, we have to
examine how to allocate fraction bounds for multiple sessions
effectively to achieve the optimal solution.

Quantifying vulnerability: We currently assume that we can
characterize the damage of an attack via security constants
(see Section II) or attack probabilities (see Section VI). We
emphasize that our algorithms can still be applied regardless
of the actual values of these parameters, although a sound
attack-modeling mechanism can provide better data allocation
over multiple paths. We pose this problem as future work.

IX. CONCLUSIONS

We presented a distributed secure multipath solution that
comprises the Bound-Control and Lex-Control algorithms,
both of which proactively combat link attacks in a distributed
fashion and provably converge to the desired optimal solutions.
We used simulation to demonstrate the resilience of both
algorithms toward different types of single-link and multi-link
attacks. Specifically, simulation results demonstrate that the
Lex-Control algorithm counters severe link attacks efficiently
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within the first few lexicographic iterations, and hence both
routing security and algorithm performance can be effectively
achieved during actual implementation. Finally, we studied
the applicability of both algorithms using an attack-resistant
network as an example. By simulation, we evaluated their
performance and analyzed how they react to resiliency and
security under different attack-resistant network settings.
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APPENDIX I
PREFLOW-PUSH ALGORITHM

We outline the Preflow-Push algorithm in Algorithm 3,
while the detailed discussion of the algorithm can be found in
[2], [16].

Algorithm 3 Preflow-Push
1: source s pushes as much flow as possible to its neighbors
2: while ∃ node u∈N−{s, t} having flow excess do
3: if node u has an admissible neighbor node v then
4: node u pushes excess flow to node v
5: else
6: node u relabels its estimated shortest distance to sink t

7: source s determines the maximum flow f ∗

Consider a network G = (N ,L) with source s∈N and sink
t ∈N . Initially, source s first pushes the maximum possible
flow toward its neighbor nodes in G. For every node u∈N −
{s, t} that has flow excess, it seeks to push its flow excess
to an admissible neighbor node v (a.k.a. push operation). By
admissible, we mean node v is a neighbor node of u in the
residual network (defined in Section IV) with respect to the
current flow f and node v lies on the estimated shortest path
from node u to sink t. If no admissible neighbor is found,
then node u updates its estimated shortest distance to sink t
(a.k.a. relabel operation). The algorithm terminates when all
nodes besides source s and sink t have no excess flow. Then
source s can determine the maximum flow by checking how
much flow has been actually sent to sink t.

APPENDIX II
PROOFS

A. Correctness of the Bound-Control Algorithm

To prove the correctness of the Bound-Control algorithm,
we first show the existence of an optimal maximum flow f ∗

for Problem 4 (defined in Section II) under a necessary and
sufficient condition for the values of bl. Then we prove that the
flow value fs broadcast by source s is strictly decreasing and
bounded from below by f∗. This implies the Bound-Control
algorithm converges to the optimal value f ∗.

Lemma 1: (Existence) There always exists a maximum flow
f∗ > 0 for Problem 4 if and only if

∑
l∈C bl ≥1 for any cut

C in the network G.
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Proof: Necessity (⇒): Given f∗ > 0, suppose that
there exists a cut C such that

∑
l∈C bl < 1. Hence, the

capacity of the cut C is given by
∑

l∈C min(1/cl, blf
∗) ≤∑

l∈C blf
∗ = f∗

∑
l∈C bl < f∗. This contradicts the max-flow

min-cut theorem, which suggests that the capacity of any cut
is at least the value of the maximum flow.

Sufficiency (⇐): We want to show that f = 1 is a feasible
flow for Problem 4. From Problem 4, if f = 1, the capacity
of any cut C is given by

∑
l∈C min(1/cl, bl) ≥

∑
l∈C bl ≥ 1

(recall that cl is normalized and so 1/cl≥1). Hence, the flow
f = 1 is bounded from above by the capacity of any cut and is
regarded as feasible. This implies the optimal maximum flow
f∗ > 0 exists.

Before proceeding to the next proof, we define additional
notation. Based on Algorithm 1, we first let f

(0)
s be the flow

value fs initially broadcast (line 1). For n≥1, we let f
(n)
s be

the flow value fs broadcast in the nth iteration of the repeat-
until loop (line 8). Note that f

(n)
s represents the maximum

flow computed from the previous execution of the Preflow-
Push algorithm. Moreover, we let C(n) and C∗ be one of the
minimum cuts associated with the maximum flows f

(n)
s and

f∗, respectively.
Lemma 2: (Monotonicity and boundedness) For any posi-

tive integer n, we have f
(n−1)
s ≥ f

(n)
s ≥ f∗. In particular, if

f
(n−1)
s =f

(n)
s for some n, we have f

(n−1)
s =f

(n)
s =f∗.

This lemma implies that prior to the termination of the
Bound-Control algorithm, the flow value fs is strictly decreas-
ing. Furthermore, if the value fs that has just been broadcast
equals the computed maximum-flow result, the algorithm
terminates with the optimal value f∗ = fs.

Proof: We first prove by induction on n that f
(n−1)
s ≥

f
(n)
s ≥f∗ for any positive integer n.

• Base case: For n = 1, f
(0)
s equals the sufficiently large

value U , while f
(1)
s is the maximum flow given by the

first run of the Preflow-Push algorithm. This implies that
f

(0)
s ≥ f

(1)
s . Also, f

(1)
s and f∗ are the maximum flows

subject to the capacity constraints cap(l) = 1/cl and
cap(l)=min(1/cl, blfs) for every link l∈L, respectively.
Since the latter constraint is tighter, f∗ is no greater than
f

(1)
s .

• Induction hypothesis: Let f
(k−1)
s ≥ f

(k)
s ≥ f∗ for some

positive integer k.
• Induction step: We note that f

(k)
s , f

(k+1)
s , and f∗ are the

maximum-flow results subject to the capacity constraints
cap(l)=min(1/cl, blf

(k−1)
s ), cap(l)=min(1/cl, blf

(k)
s ),

and cap(l) = min(1/cl, blf
∗) for every link l ∈ L,

respectively. By hypothesis, f∗ is subject to the tightest
capacity constraint, followed by f

(k+1)
s , and finally f

(k)
s .

This implies that f
(k)
s ≥f

(k+1)
s ≥f∗.

By induction, we have f
(n−1)
s ≥ f

(n)
s ≥ f∗ for any

positive integer n. Furthermore, if f
(n−1)
s = f

(n)
s , f

(n)
s is

the maximum flow satisfying the capacity constraint cap(l)=

min(1/cl, blf
(n−1)
s ) = min(1/cl, blf

(n)
s ) for every link l ∈L.

Thus, f
(n)
s is a feasible flow for Problem 4. This implies

f
(n)
s ≤ f∗. However, we have proved that in every iteration,

we have f
(n)
s ≥f∗. It follows that f

(n)
s =f∗.

Theorem 1: (Convergence) The Bound-Control algorithm
converges to the maximum-flow value f ∗ > 0 to Problem 4,
provided that

∑
l∈C bl≥1 for any cut C.

Proof: Immediate from Lemmas 1 and 2.

B. Correctness of the Lex-Control Algorithm

We first present two properties that indicate how to pinpoint
the critical links (see Section IV-A) in a distributed fashion.

Property 1: In a maximum-flow solution, if link l ∈ L lies
on a minimum cut, then it is critical.

Proof: The attack cost of link l∈L is al =clfl/f
∗. Since

cl is fixed and f∗ is the maximum flow, the attack cost al can
only be decreased by reducing fl. If link l lies on a minimum
cut, it is saturated (i.e., flow of link l equals its link capacity).
We can hence regard the reduction of fl as the decrease in the
capacity of link l. This results in the decrease in the capacity
of the minimum cut and, by the max-flow-min-cut theorem,
the decrease in the maximum flow f∗. Thus, the minimized
worst-case attack cost a∗=1/f∗ increases. By definition, link
l is critical.

Property 2: For every link l ∈ L directed from node u to
node v, where u, v ∈ N , if node v is not reachable from
node u in the residual network Gf∗ (see Section IV-A for
its definition), then link l lies on a minimum cut.

Proof: Let S be the set of nodes reachable from node u in
Gf∗ and T =N−S. By assumption, we have u∈S and v∈T .
We note that link l∈L carries flow from u to v (otherwise, v is
reachable from u in Gf∗ ) and the flow originates from source
s, so s is reachable from u in Gf∗ . It follows that s ∈ S.
Similarly, the flow arriving at v will eventually reach t, so v
is reachable from t in Gf∗ . This implies that t∈ T (if t∈ S
instead, v is reachable from u via t in Gf∗ ). Moreover, since
the nodes in T are not reachable from the nodes in S, there
are no links directed from S to T in Gf∗ , so the links from S
to T in G are saturated and they must represent a minimum
cut. Since l is one of the links directed from S to T , l lies on
the minimum cut.

Based on Properties 1 and 2, each node u∈N can invoke
any algorithm that can check the connectivity of a graph
(e.g., the breadth-first search) on Gf∗ . This check is used to
determine whether its neighbors in G are reachable in Gf∗ .
If not, the corresponding links l∈L(u) between node u and
its neighbors in G are lying on a minimum cut and hence are
critical. This enables the identification of all critical links in a
distributed fashion.

Now, we formally prove that the Lex-Control algorithm
converges to the lexicographically optimal solution a

∗ (see
Problems 5 and 6 in Section II).

Lemma 3: In the Lex-Control algorithm, if a link is deter-
mined to be critical in a lexicographic iteration, it remains
critical in subsequent lexicographic iterations.

Proof: Consider the links that are found to be critical.
By Property 1, they lie on some minimum cut. Let C be this
minimum cut. From lines 9-10 of Algorithm 2, the capacity of
the cut C is specified as

∑
l∈C blf , where f is the flow value

reaching the sink. By flow conservation, we have
∑

l∈C bl =1,
and thus the capacity of C is specified as f . In the next
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lexicographic iteration, due to flow conservation, the flow
across C is the newly computed maximum flow which also
equals the specified capacity of C. By the max-flow min-cut
theorem, C is still a minimum cut and hence the underlying
links remain critical.

Remark: Lemma 3 implies that the attack cost of every
critical link remains unchanged in subsequent lexicographic
iterations.

Lemma 4: Before the Lex-Control algorithm ends, every
lexicographic iteration finds new critical links. Moreover,
among the non-critical links that are identified to be critical,
at least one of them has the attack cost 1/f ∗, where f∗ is the
maximum flow returned from the previous execution of the
Bound-Control algorithm.

Proof: Suppose the algorithm proceeds to a new lex-
icographic iteration. This implies that f ∗ is less than the
sufficiently large value U (due to line 3 of Algorithm 2),
where f∗ is the maximum flow computed from the previous
execution of the Bound-Control algorithm. By the max-flow
min-cut theorem, f∗ equals the capacity of some minimum cut,
say C, and this capacity is equal to

∑
l∈C min(1/cl, blf

∗). To
achieve f∗ <U , we must have a minimum cut C in which at
least one link l has capacity equal to 1/cl instead of blf

∗ so
that f∗ is bounded away from U (otherwise, f ∗ = U is the
maximum flow and the algorithm terminates). This link l is
previously non-critical (otherwise, its capacity is specified by
blf

∗ due to line 10 of Algorithm 2) and is now identified to
be critical (since it lies on a minimum cut). Furthermore, its
attack cost is given by 1/f∗.

Remark: Lemma 4 implies that at least one newly identified
critical link exhibits the minimized worst-case attack cost
computed from the latest execution of the Bound-Control
algorithm.

Lemma 5: Within the Lex-Control algorithm, the maximum
flow computed in each execution of the Bound-Control algo-
rithm is strictly increasing.

Proof: From Lemma 4, the maximum flow, say f ∗,
computed in an execution of the Bound-Control algorithm is
given by

∑
l∈C min(1/cl, blf

∗), where C denotes a minimum
cut that includes a non-critical link l. Notice that C is not a
minimum cut in the previous executions of the Bound-Control
algorithm, or link l would have already been identified as
critical. Thus, C has greater capacity. By the max-flow min-cut
theorem, the computed maximum flow becomes greater, and is
thus strictly increasing in each execution of the Bound-Control
algorithm.

Theorem 2: The Lex-Control algorithm converges to the
lexicographically optimal solution a

∗.
Proof: By Lemmas 3 and 4, each lexicographic iteration

of the Lex-Control algorithm identifies two types of critical
links: the already spotted ones (if any) and the newly spotted
ones. By Lemma 3, the attack costs of the already identified
critical links remain the same. Meanwhile, by the definition of
a critical link and Lemma 4, the new critical links have their
attack costs minimized subject to the computed minimized
worst-case attack cost that is exhibited by at least one new
critical link. Thus, the Lex-Control algorithm approaches the
lexicographically optimal solution as more critical links are

identified.
By Lemma 5, the maximum flow returned from the Bound-

Control algorithm is strictly increasing, so it eventually reaches
the very large value U . In this case, for any remaining non-
critical link l, its attack cost is given by al = clfl/U , which
is negligibly small (or simply regarded as zero). Thus, the
attack costs of any remaining links are at the optimized
values (which are zeros). As the attack costs of the critical
links are minimized (by the definition of a critical link), the
Lex-Control algorithm terminates with the lexicographically
optimal solution a

∗.


