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Binary MDS Array Codes with Optimal Repair
Hanxu Hou and Patrick P. C. Lee

Abstract— Consider a binary maximum distance separable
(MDS) array code composed of an m× (k+r) array of bits with
k information columns and r parity columns, such that any k out
of k+r columns suffice to reconstruct the k information columns.
Our goal is to provide optimal repair access for binary MDS array
codes, meaning that the bandwidth triggered to repair any single
failed information or parity column is minimized. In this paper,
we propose a generic transformation framework for binary MDS
array codes, using EVENODD codes as a motivating example, to
support optimal repair access for k+1 ≤ d ≤ k+ r−1, where d
denotes the number of non-failed columns that are connected for
repair; note that when d < k+r−1, some of the chosen d columns
in repairing a failed column are specific. In addition, we show how
our transformation framework applies to an example of binary
MDS array codes with asymptotically optimal repair access of
any single information column and enables asymptotically or
exactly optimal repair access for any column. Furthermore, we
present a new transformation for EVENODD codes with two
parity columns such that the existing efficient repair property
of any information column is preserved and the repair access of
parity column is optimal.

Index Terms—Binary MDS array codes, EVENODD codes,
repair bandwidth, repair access.

I. INTRODUCTION

Large-scale storage systems typically introduce redundancy
into data storage to provide fault tolerance and maintain
storage reliability. Erasure coding is a redundancy technique
that significantly achieves higher reliability than replication
at the same storage overhead [1], and has been widely
adopted in commercial storage systems [2], [3]. One important
class of erasure codes is maximum distance separable (MDS)
codes, which achieve the maximum reliability for a given
amount of redundancy. Specifically, an MDS code transforms
k information symbols into k+r encoded symbols of the same
size for some configurable parameters k and r, such that any k
out of k+ r symbols are sufficient to retrieve all k information
symbols. Reed-Solomon (RS) codes [4] are one well-known
example of MDS codes.

In this paper, we examine a special class of MDS codes
called binary MDS array codes, which have low computational
complexity since the encoding and decoding procedures only
involve XOR operations. Examples of binary MDS array
codes are EVENODD [5]–[7], X-code [8], and RDP [9], [10].
Specifically, we consider a binary MDS array code that is
composed of an array of size m× (k+ r), where each element
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in the array is a bit. In this work, we assume that the code is
systematic, meaning that k columns are information columns
that store information bits, and the remaining r columns are
parity columns that store parity bits encoded from the k
information columns. The code is MDS, meaning that any
k out of k + r columns can reconstruct all the original k
information columns. We distribute the k + r columns across
k+ r distinct storage nodes, such that the bits in each column
are stored in the same node. We use the terms “column” and
“node” interchangeably in this paper.

In large-scale storage systems, node failures are common and
the majority of all failures are single node failures [11]. Thus, it
is critical to design an efficient repair scheme for repairing the
lost bits of a single failed node, while providing fault tolerance
for multiple node failures. The problem of repairing a single
node failure was first formulated by Dimakis et al. [12], in
which it is shown that the amount of symbols downloaded for
repairing a single node failure (called the repair bandwidth) of
an m× (k + r) MDS array code is at least (in units of bits):

dm

d− k + 1
, (1)

where d (k ≤ d ≤ k+r−1) is the number of nodes connected
to repairing the failed node. Many constructions [13]–[17] of
MDS array codes have been proposed to achieve the optimal
repair bandwidth in (1). If the repair bandwidth of a binary
MDS array code achieves the optimal value in (1), we say that
the code has optimal repair bandwidth. If the repair does not
require any arithmetic operations on the d connected nodes,
then the repair is called uncoded repair. A binary MDS array
code is said to achieve optimal repair access if the repair
bandwidth is (1) with uncoded repair.

A. Related Work

There are many related studies on binary MDS array codes
along different directions, such as new constructions [6],
[7], [18]–[20], efficient decoding methods [21]–[26] and the
improvement of the repair problem [27]–[33].

In particular, EVENODD is well explored in the literature,
and has been extended to STAR codes [21] with three parity
columns and generalized EVENODD [6], [7] with more parity
columns. The computational complexity of EVENODD is
optimized in [20] by a new construction. A sufficient condition
for the generalized EVENODD to be MDS with more than
eight parity columns is given in [34].

RDP is another important class of binary MDS array codes
with two parity columns. It is extended to RTP codes [18] to
tolerate three column failures. Blaum [10] generalized RDP
to correct more than three column failures and showed that
the generalized EVENODD and generalized RDP share the
same MDS property condition. The authors in [25] proposed a
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unified form of generalized EVENODD and generalized RDP,
and presented an efficient decoding method for some patterns
of failures.

The above constructions are based on the Vandermonde
matrix. Some constructions of binary MDS array codes based
on Cauchy matrix are Cauchy Reed-Solomon codes [35], Rabin-
like codes [26], [36] and circulant Cauchy codes [37].

Most of the decoding methods focus on generalized EVEN-
ODD [21], [22] and generalized RDP [18], [24] with three
parity columns. The study [25] shows an efficient erasure de-
coding method based on the LU factorization of Vandermonde
matrix for EVENODD and RDP with more than two parity
columns.

There have been many studies [27], [28], [31]–[33], [38]–
[42] on the repair problem of binary MDS array codes. Some
optimal repair schemes reduce I/O for RDP [28], X-code
[38] and EVENODD [27] by approximately 25%, but the
repair bandwidth is sub-optimal. ButterFly codes [41], [42] are
binary MDS array codes with optimal repair for information
column failures, but only has two parity columns (i.e., r=2).
MDR codes [39], [40] are constructed with r = 2 and have
optimal repair bandwidth for k information columns and one
parity column. Binary MDS array codes with more than two
parity columns are proposed in [31]–[33]; however, the repair
bandwidth is asymptotically optimal and the d helper columns
are specifically selected.

B. Contributions

The contributions of this paper are summarized as follows.
1) First, we propose a generic transformation for an m×

(k + r) EVENODD code. The transformed EVENODD
code is of size m(d − k + 1) × (k + r) and has three
properties: (1) the transformed EVENODD code achieves
optimal repair access for the chosen d− k + 1 columns;
(2) the property of optimal repair access for the chosen
d − k + 1 columns of the transformed EVENODD
code is preserved if we apply the transformation once
more for the transformed EVENODD code; and (3) the
transformed EVENODD code is MDS.

2) Second, we present a family of m(d − k +

1)d
k

d−k+1 e+d
r

d−k+1 e × (k + r) multi-layer transformed
EVENODD codes with r ≥ 2, such that it achieves
optimal repair access for all columns based on the
EVENODD transformation, where k+1 ≤ d ≤ k+r−1.
Some of the d helper columns need to be specifically
selected.

3) Third, the efficient decoding method of the original
EVENODD code is also applicable to the proposed family
of multi-layer transformed EVENODD codes.

4) Lastly, the other binary MDS array codes, such as RDP
[10] and codes in [26], [31]–[33], [35]–[37], can also
be transformed to achieve optimal repair access and
the efficient decoding methods of the original binary
MDS array codes are maintained in the transformed
codes. By applying the transformation with well-chosen
encoding coefficients for an example of binary MDS
array codes [33] that have asymptotically optimal repair

access for any information column, we show that the
obtained transformed codes have asymptotically optimal
repair access for any information column and optimal
repair access for any parity column. We also show how
to design a transformation for EVENODD codes with
two parity columns such that the transformed codes have
optimal repair access for any single parity column and
the repair access of any single information column of the
transformed codes is roughly 3/4 of all the information
bits.

A closely related work to ours is [16], which also proposes
a transformation for non-binary MDS codes to enable optimal
repair access. The main differences between the work in [16]
and ours are two-fold. First, our transformation is designed
for binary MDS array codes, while the transformation in
[16] is designed for non-binary MDS codes. The minimum
operation unit of our transformed codes is a bit, so that we can
carefully choose the encoding coefficients of the transformation
to combine the efficient repair property of existing or newly
designed binary MDS array codes for any single information
column as well as the optimal repair of the transformed codes
for any parity column. In contrast, the minimum operation unit
of the transformation [16] for non-binary MDS codes is a field
element, so we cannot directly apply the transformation [16]
for binary MDS array codes. Even though we can view each
column of some binary MDS array codes (such as EVENODD
codes with p being a special prime number [6]) as a field
element, if we apply the transformation [16] for such binary
MDS array codes, the efficient repair property of such binary
MDS array codes for any single information column cannot
be maintained, as the efficient repair property of binary MDS
array codes is achieved by downloading some bits from the
chosen columns but not all the bits (field element) from the
chosen columns. We illustrate the transformation of an example
of binary MDS array codes [33] with asymptotically optimal
repair access for any single information column to obtain
the transformed array codes that have asymptotically optimal
repair for any information column and optimal repair access
for any parity column in Section IV. We also design a new
transformation for EVENODD codes with r = 2 parity columns
such that the repair access of any single information column
of the transformed codes is roughly 3/4 of all the information
bits and the repair access of each parity column is optimal in
Section IV-B. Second, our work allows a more flexible number
of nodes connected for repairing the failed node. In particular,
our work allows k + 1 ≤ d ≤ k + r − 1, while the work in
[16] requires d = k + r − 1.

II. TRANSFORMATION OF EVENODD CODES

We first review the definition of EVENODD codes. We then
present our transformation approach.

A. Review of EVENODD Codes

An EVENODD code is an array code of size (p−1)×(k+r),
where p is a prime number with p ≥ max{k, r}. Given the
(p − 1) × (k + r) array [ai,j ] for i = 0, 1, . . . , p − 2 and
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j = 0, 1, . . . , k+ r− 1, the p− 1 bits a0,j , a1,j , . . . , ap−2,j in
column j can be represented as a polynomial

aj(x) = a0,j + a1,jx+ · · ·+ ap−2,jx
p−2.

Without loss of generality, we store the information bits in
the k leftmost columns and the parity bits in the remaining
r columns. The first k polynomials a0(x), . . . , ak−1(x) are
called information polynomials, and the last r polynomials
ak, . . . , ak+r−1(x) are parity polynomials. The r parity poly-
nomials are computed as[

ak(x) · · · ak+r−1(x)
]
=

[
a0(x) · · · ak−1(x)

]

1 1 · · · 1
1 x · · · xr−1

...
...

. . .
...

1 xk−1 · · · x(r−1)(k−1)


(2)

over the ring F2[x]/(1 + x+ · · ·+ xp−1). The matrix on the
right-hand side of (2) is called the encoding matrix.

B. The Transformation

We will present the transformation that can convert a (p−
1)×(k+r) EVENODD code into a (p−1)(d−k+1)×(k+r)
transformed code with optimal repair access for any chosen
d− k+1 columns, where k+1 ≤ d ≤ k+ r− 1. For the ease
of presentation, we assume that the chosen d− k+ 1 columns
are the first d− k + 1 columns in the following discussion.

1) The First Transformation: Given the codewords of a
(p − 1) × (k + r) EVENODD code a0(x), . . . , ak+r−1(x),
we first generate d− k + 1 instances a0,`(x), . . . , ak+r−1,`(x)
for ` = 0, 1, . . . , d− k. Specifically, the r parity polynomials
ak,`(x), . . . , ak+r−1,`(x) are computed by the multiplication of
[a0,`(x), . . . , ak−1,`(x)] and the encoding matrix in (2), where
` = 0, 1, . . . , d − k. For i = 0, 1, . . . , d − k, the polynomials
in column i are
ai,0(x) + a0,i(x), ai,1(x) + a1,i(x), . . . , ai,i−1(x) + ai−1,i(x),
ai,i(x), ai,i+1(x) + (1 + xe)ai+1,i(x),
ai,i+2(x) + (1 + xe)ai+2,i(x), . . . , ai,d−k(x) + (1 + xe)ad−k,i(x),

(3)
where e is a positive integer with 1 ≤ e ≤ p− 1. On the other
hand, for i = d − k + 1, . . . , k + r − 1, the polynomials in
column i are

ai,0(x), ai,1(x), . . . , ai,d−k(x).

The above transformation is called the first transformation
and the obtained codes are called transformed EVENODD
codes. Each column of the transformed EVENODD codes has
d− k + 1 polynomials. Table I shows an example of the first
transformed EVENODD code with k = 4, r = 2, d = 5 and
e = 1.

Remark. For i < j ∈ {0, 1, . . . , d − k}, columns i and j
contain the following two polynomials

ai,j(x) + (1 + xe)aj,i(x), aj,i(x) + ai,j(x).

We can solve xeaj,i(x) by summing the above two polynomials.
Then, we can obtain aj,i(x) by multiplying xeaj,i(x) by xp−e,
and ai,j(x) by summing aj,i(x) + ai,j(x) and aj,i(x). There-
fore, we can solve two information polynomials aj,i(x), ai,j(x)

from columns i and j. If ` columns are chosen that are in
the first d − k + 1 columns, then we can solve `(` − 1)
information polynomials from the chosen ` columns, where
` = 2, 3, . . . , d− k + 1.

2) The Second Transformation: Note that the above trans-
formed code is a non-systematic code. To obtain the systematic
code, we can first replace ai,`(x) + a`,i(x) by a′i,`(x) and
replace a`,i(x)+(1+xe)ai,`(x) by a′`,i(x) for ` < i, to obtain
that {

ai,`(x) = xp−ea′i,`(x) + xp−ea′`,i(x),

a`,i(x) = (1 + xp−e)a′i,`(x) + xp−ea′`,i(x).
(4)

Then, we can show the equivalent systematic transformed code
as follows. For i = 0, 1, . . . , k − 1, the d− k + 1 polynomials
in column i are ai,`(x) for ` = 0, 1, . . . , d− k. Recall that the
polynomial ai,`(x) is computed by

ai,`(x) =

k−1∑
j=0

xj(i−k)aj,`(x)

for i = k, k + 1, . . . , k + r − 1 and ` = 0, 1, . . . , d − k.
We update r(d − k + 1) polynomials ai,`(x) for i = k, k +
1, . . . , k + r − 1 and ` = 0, 1, . . . , d − k, by replacing the
component xj(i−k)aj,`(x) of ai,`(x) by xj(i−k)(xp−eaj,`(x)+
(1 + xp−e)a`,j(x)) for j < `, and replacing the com-
ponent xj(i−k)aj,`(x) of ai,`(x) by xj(i−k)(xp−eaj,`(x) +
xp−ea`,j(x)) for j > `, i.e.,

ai,`(x) =

`−1∑
j=0

xj(i−k)(xp−eaj,`(x) + (1 + xp−e)a`,j(x))

+

x`(i−k)a`,`(x) +

 d−k∑
j=`+1

xj(i−k)(xp−eaj,`(x) + xp−ea`,j(x))


+

 k−1∑
j=d−k+1

xj(i−k)aj,`(x)

 .

The d−k+1 polynomials in column i for i = k, k+1, . . . , k+
r − 1 are ai,`(x) for ` = 0, 1, . . . , d− k. In other words, the
d−k+1 polynomials in column i for i = k, k+1, . . . , k+r−1
are ai,0(x), . . . , ai,d−k(x), which are computed by (5) (in the
next page) over the ring F2[x]/(1 + x + · · · + xp−1). The
above transformation is called the second transformation. The
transformed EVENODD code is denoted by EVENODD1. Note
that each column of EVENODD codes has one polynomial,
and each column of EVENODD1 obtained by applying the
transformation for EVENODD codes has d−k+1 polynomials.

When k = 4, r = 2, d = 5 and e = 1, the EVENODD1

code with the second transformation is shown in Table II. We
claim that we can recover all the information polynomials from
any four columns. We can obtain the information polynomials
from columns 0, 1, 2 and 3 directly. Consider that we want to
recover the information polynomials from one parity column
and three information columns, say columns 0, 2, 3 and 4. We
can obtain a1,0(x) by

x(a4,0(x) + a0,0(x) + xp−1a0,1(x) + a2,0(x) + a3,0(x)),
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TABLE I: The first transformation for EVENODD codes with k = 4, r = 2, d = 5 and e = 1.
Column 0 Column 1 Column 2 Column 3 Column 4 Column 5
a0,0(x) a1,0(x)+ a2,0(x) a3,0(x) a4,0(x) = a0,0(x) + a1,0(x)+ a5,0(x) = a0,0(x) + xa1,0(x)+

a0,1(x) a2,0(x) + a3,0(x) x2a2,0(x) + x3a3,0(x)
a0,1(x)+ a1,1(x) a2,1(x) a3,1(x) a4,1(x) = a0,1(x) + a1,1(x)+ a5,1(x) = a0,1(x) + xa1,1(x)+

(1 + x)a1,0(x) a2,1(x) + a3,1(x) x2a2,1(x) + x3a3,1(x)

[
1 xi−k · · · x(k−1)(i−k)

]
·

a0,0(x) xp−ea0,1(x) + (1 + xp−e)a1,0(x) · · · xp−ea0,d−k(x) + (1 + xp−e)ad−k,0(x)
xp−e(a1,0(x) + a0,1(x)) a1,1(x) · · · xp−ea1,d−k(x) + (1 + xp−e)ad−k,1(x)

...
...

. . .
...

xp−e(ad−k,0(x) + a0,d−k(x)) xp−e(ad−k,1(x) + a1,d−k(x)) · · · ad−k,d−k(x)
ad−k+1,0(x) ad−k+1,1(x) · · · ad−k+1,d−k(x)

...
...

. . .
...

ak−1,0(x) ak−1,1(x) · · · ak−1,d−k(x)


.

(5)

and a1,1(x) by

a4,1(x)+x
p−1a0,1(x)+(1+xp−1)a1,0(x)+a2,1(x)+a3,1(x).

Suppose that we want to solve the information polynomials
from two information columns and two parity columns, say
columns 1, 2, 4 and 5. First, we compute the following two poly-
nomials by subtracting a1,1(x), a2,1(x) from a4,1(x), a5,1(x),

p1(x) =a4,1(x) + (1 + xp−1)a1,0(x) + a1,1(x) + a2,1(x)

=xp−1a0,1(x) + a3,1(x),

p2(x) =a5,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x)

=xp−1a0,1(x) + x3a3,1(x).

Then, we can solve a3,1(x) by p1(x)+p2(x)
1+x3 ,1 and a0,1(x) by

x(a3,1(x) + p1(x)). The other two information polynomials
a0,0(x), a3,0(x) can be solved similarly.

The repair access of each of the first two columns is optimal.
Suppose that the first column fails. We can first solve a0,0(x)
and xp−1(a1,0(x) + a0,1(x)) by accessing four polynomials
a2,0(x), a3,0(x), a4,0(x), a5,0(x) due to the MDS property of
EVENODD codes, and then recover a0,1(x) by computing
x(xp−1(a1,0(x)+ a0,1(x))+ xp−1a1,0(x)). Therefore, we can
recover two information polynomials by downloading five
polynomials from five helper columns, and the repair bandwidth
achieves the minimum value in (1). The repair of the second
column is similar.

C. Properties of Transformed EVENODD Codes

The next theorem shows that the second transformed
EVENODD code is also MDS code.

Theorem 1. If the (k + r, k) EVENODD code is MDS code,
then the second transformed EVENODD code is also MDS.

Proof. The code is an MDS code if any k out of k+r columns
can retrieve all information bits. It is equivalent to show that
the k information columns can be reconstructed from any t

11 + x3 is invertible in F2[x]/(1 + x + · · · + xp−1) due to the MDS
property of EVENODD codes given in Proposition 2.2 in [6].

information columns and any k − t parity columns, where
max{0, k − r} ≤ t ≤ k. When t = k, we can obtain the k
information columns directly.

In the following, we consider the case of t < k. Suppose
that columns i1, i2, . . . , it and columns j1, j2, . . . , jk−t are
connected with 0 ≤ i1 < . . . < it ≤ k − 1 and k ≤ j1 <
. . . < jk−t ≤ k+ r− 1. We need to recover k− t information
columns e1, e2, . . . , ek−t, where

e1 < e2 < · · · < ek−t ∈ {0, 1, . . . , k − 1} \ {i1, i2, . . . , it}.

Recall that we can obtain t(d−k+1) information polynomials
ai1,`(x), . . . , ait,`(x) and (k−t)(d−k+1) parity polynomials
aj1,`(x), . . . , ajk−t,`(x) from the connected columns, where
` = 0, 1, . . . , d− k.

We divide the proof into two cases: i1 < d − k and
i1 ≥ d− k. We first assume that i1 < d− k. By subtracting
t(d − k + 1) information polynomials from k − t parity
polynomials aj1,i1(x), . . . , ajk−t,i1(x) each, we obtain k − t
syndrome polynomials over F2[x]/(1 + x+ · · ·+ xp−1) as

[xp−eae1,i1(x) · · · xp−eaeα,i1(x) aeα+1,i1(x) · · · aek−t,i1(x)]
xe1(j1−k) xe1(j2−k) · · · xe1(jk−t−k)

xe2(j1−k) xe2(j2−k) · · · xe2(jk−t−k)

...
...

. . .
...

xek−t(j1−k) xek−t(j2−k) · · · xek−t(jk−t−k)

 ,
where α is an integer that ranges from 1 to k − t − 1 with
eα ≤ d − k and eα+1 ≥ d − k + 1. In the decoding process
from columns 1, 2, 4 and 5 of the example in Table II, we
have k = 4, t = 2, e = 1, i1 = 1, e1 = 0, e2 = 3, j1 = k,
j2 = k + 1 and α = 1. The two syndrome polynomials are[

p1(x) p2(x)
]
=
[
xp−1a0,1(x) a3,1(x)

]
·
[
1 1
1 x3

]
.

As the (k+ r, k) EVENODD code is MDS, we can recover
the polynomials

xp−eae1,i1(x), . . . , x
p−eaeα,i1(x), aeα+1,i1(x), . . . , aek−t,i1(x),

and therefore, ae1,i1(x), ae2,i1(x), . . . , aek−t,i1(x) can be re-
covered. Let c be an integer with 2 ≤ c ≤ t such that
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TABLE II: The second transformation for EVENODD codes with k = 4, r = 2, d = 5 and e = 1.
Column 0 Column 1 Column 2 Column 3 Column 4 Column 5
a0,0(x) a1,0(x) a2,0(x) a3,0(x) a0,0(x) + xp−1a1,0(x)+ a0,0(x) + a1,0(x) + a0,1(x)

xp−1a0,1(x) + a2,0(x) + a3,0(x) +x2a2,0(x) + x3a3,0(x)

a0,1(x) a1,1(x) a2,1(x) a3,1(x) xp−1a0,1(x) + (1 + xp−1)a1,0(x)+ xp−1a0,1(x) + (1 + xp−1)a1,0(x)+
a1,1(x) + a2,1(x) + a3,1(x) xa1,1(x) + x2a2,1(x) + x3a3,1(x)

ic−1 < d − k and ic ≥ d − k. By the same argument, we
can recover polynomials ae1,ih(x), ae2,ih(x), . . . , aek−t,ih(x)
for h = 2, 3, . . . , c− 1. Once the polynomials

ae1,ih(x), ae2,ih(x), . . . , aek−t,ih(x)

for h = 1, 2, . . . , c − 1 are known, we can recover all
the other failed polynomials by first subtracting all t(d −
k + 1) information polynomials and the known polynomials
ae1,ih(x), ae2,ih(x), . . . , aek−t,ih(x) with h = 1, 2, . . . , c − 1
from parity polynomials aj1,i`(x), . . . , ajk−t,i`(x), followed
by solving the failed polynomials according to the MDS
property of the (k + r, k) EVENODD code, where ` ∈
{0, 1, . . . , d− k} \ {i1, i2, . . . , ic−1}.

If i1 ≥ d − k, then it > · · · > i1 ≥ d − k and we can
obtain the following syndrome polynomials by subtracting all
t(d−k+1) information polynomials from all (k−t)(d−k+1)
parity polynomials[

a∗e1,`(x) a∗e2,`(x) · · · a∗ek−t,`(x)
]
·

xe1(j1−k) xe1(j2−k) · · · xe1(jk−t−k)

xe2(j1−k) xe2(j2−k) · · · xe2(jk−t−k)

...
...

. . .
...

xek−t(j1−k) xek−t(j2−k) · · · xek−t(jk−t−k)

 ,
where

a∗
ei,`(x) =

 aei,`(x) if ei = `,
xp−eaei,`(x) + (1 + xp−e)a`,ei(x) if ei < `,
xp−eaei,`(x) + xp−ea`,ei(x) if ei > `,

(6)
` = 0, 1, . . . , d − k. The polynomials a∗e1,`(x),
a∗e2,`(x), . . . , a

∗
ek−t,`

(x) can be recovered, because (k + r, k)
EVENODD code is MDS. Then, we can obtain a`,`(x) directly,
aei,`(x) for ei > ` by a∗ei,`(x) + a∗`,ei(x), and aei,`(x) for
ei < ` by xe(a`,ei(x) + a∗`,ei(x)).

We show in the next theorem that the second transformed
EVENODD code has optimal access for the first d − k + 1
columns.

Theorem 2. The repair bandwidth and repair access of
column i of the second transformed EVENODD code for
i = 0, 1, . . . , d− k is optimal.

Proof. For i = 0, 1, . . . , d − k, column i can be repaired
by downloading one polynomial from each of d helper
columns. Among d columns, d − k columns are columns
0, 1, . . . , i − 1, i + 1, . . . , d − k and other k columns
are chosen from columns d − k + 1, . . . , k + r − 1.
Specifically, we can recover the polynomials ai,i(x),
xp−eaj,i(x) + (1 + xp−e)ai,j(x) for j < i and
xp−e(a`,i(x) + ai,`(x)) for ` > i, by downloading k
polynomials ah1,i(x), . . . , ahk,i(x) from columns h1, . . . , hk,

where h1 6= . . . 6= hk ∈ {d− k+1, . . . , k+ r− 1}, due to the
MDS property of EVENODD codes. Then we download d− k
polynomials a0,i(x), . . . , ai−1,i(x), ai+1,i(x), . . . , ad−k,i(x)
from columns 0, 1, . . . , i − 1, i + 1, . . . , d − k.
Finally, we subtract the downloaded polynomials
a0,i(x), . . . , ai−1,i(x), ai+1,i(x), . . . , ad−k,i(x) from the
recovered polynomials xp−eaj,i(x) + (1 + xp−e)ai,j(x) for
j < i and xp−e(a`,i(x) + ai,`(x)) for ` > i, to obtain polyno-
mials ai,0(x), ai,1(x), . . . , ai,i−1(x), ai,i+1(x), . . . , ai,d−k(x).
This completes the proof.

Note that EVENODD1 with the first transformation also
satisfies Theorem 1 and Theorem 2, as the two transformations
are equivalent. In the following, let EVENODD1 be the
transformed code with the first transformation and EVENODD2

be the transformed code by applying the first transformation
for the columns from d−k+1 to 2d−2k+1 of EVENODD1.
Specifically, we can obtain EVENODD2 as follows. Let

t = d− k + 1.

We first generate t instances of the code EVENODD1 and
view the t polynomials stored in each column of EVENODD1

as a vector. For ` = 0, 1, . . . , d − k and h = 0, 1, . . . , n − 1,
the vector stored in column h of instance ` of EVENODD1

is denoted as v`h. For i = 0, 1, . . . , d − k, column t + i of
EVENODD2 stores the following t vectors (t2 polynomials)

v0
t+i + vit,

v1
t+i + vit+1, . . . ,

vi−1t+i + vit+i−1,
vit+i,

vi+1
t+i + (1 + xe)vit+i+1,

vi+2
t+i + (1 + xe)vit+i+2, . . . ,

vd−kt+i + (1 + xe)vit+d−k,

(7)

where 1 ≤ e ≤ p − 1. Note that the multiplication of a
polynomial xe and a vector

v =
[
v0 v1 . . . vd−k

]
is defined as

xev =
[
xev0 xev1 . . . xevd−k

]
and the addition of two vectors

v1 =
[
v10 v11 . . . v1d−k

]
and

v2 =
[
v20 v21 . . . v2d−k

]
is

v1 + v2 =
[
v10 + v20 v11 + v21 . . . v1d−k + v2d−k

]
.
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For h ∈ {0, 1, . . . , n − 1} \ {t, t + 1, . . . , 2t − 1}, column h
stores t vectors (t2 polynomials)

v0
h,v

1
h, . . . ,v

d−k
h .

For ` = 0, 1, . . . , d− k and h = t, t+ 1, . . . , n− 1, we have
that

v`h =
[
ah,`t(x) ah,`t+1(x) · · · ah,(`+1)t−1(x)

]
according to the first transformation. Table III shows the storage
of the first 2t columns of EVENODD2 by (7). We show in
the next theorem that the optimal repair access property of the
first d− k + 1 columns of EVENODD1 code is maintained in
EVENODD2.

Theorem 3. The repair access of column i of EVENODD2

code for i = 0, 1, . . . , 2d− 2k + 1 is optimal.

Proof. By Theorem 2, we can repair t vectors (t2 polynomials)
in column i for i = t, t+1 . . . , 2t−1 by downloading k vectors
(kt polynomials)

vi−th1
,vi−th2

, . . . ,vi−thk
(8)

from columns hj with j = 0, 1, . . . , k − 1, where hj = j
for j = 0, 1, . . . , t − 1 and hj ∈ {2t, . . . , k + r − 1} for
j = t, t+1, . . . , k−1, and the following d−k vectors ((d−k)t
polynomials)

vi−tt + (1 + xe)v0
i , . . . ,v

i−t
i−1 + (1 + xe)vi−t−1i ,

vi−ti+1 + vi−t+1
i , . . . ,vi−t2t−1 + vt−1i .

(9)

Specifically, we can first compute vectors

vi−tt ,vi−tt+1, . . . ,v
i−t
2t−1

from k vectors in (8), and then recover the t vectors in column
i with the above t vectors and the downloaded d− k vectors
in (9).

Consider the repair of column i with i = 0, 1, . . . , d−k. We
can repair t2 polynomials in column i by downloading (2t−1)t
polynomials from 2t−1 columns 0, 1, . . . , i−1, i+1, . . . , t−
1, t, t+ 1, . . . , 2t− 1 in rows i+ 1, i+ 1+ t, . . . , i+ 1+ (t−
1)t, and (d− 2t+ 1)t polynomials from d− 2t+ 1 columns
h1, . . . , hd−2t+1 in rows i+1, i+1+t, . . . , i+1+(t−1)t with
indices 2t ≤ h1 < . . . < hd−2t+1 ≤ n − 1. Note that the t2

polynomials downloaded from columns t to 2t− 1 are in (10)
(in the next page). We can compute at+1,i(x) and at,t+i(x)
from at+1,i(x) + at,t+i(x) and at,t+i(x) + (1 + xe)at+1,i(x)
by

(at,t+i(x) + (1 + xe)at+1,i(x))− (at+1,i(x) + at,t+i(x))

xe

and
(1 + xe)(at+1,i(x) + at,t+i(x))− (at,t+i(x) + (1 + xe)at+1,i(x))

xe
,

respectively. Similarly, we can compute t2 polynomials

at,`t+i(x), at+1,`t+i(x), . . . , a2t−1,`t+i(x),

from t2 polynomials in (10) (in the next page), where ` =
0, 1, . . . , d− k. Together with (d− 2t+ 1)t polynomials

ah1,`t+i(x), ah2,`t+i(x), . . . , ahd−2t+1,`t+i(x),

with ` = 0, 1, . . . , d− k downloaded from d− 2t+1 columns
h1, . . . , hd−2t+1, we can compute the following t2 polynomials

a0,`t+i(x), a1,`t+i(x), . . . , ad−k,`t+i(x),

with ` = 0, 1, . . . , d − k. Finally, we can recover all t2

polynomials with the above t2 polynomials and the downloaded
(t − 1)t polynomials from t − 1 columns 0, 1, . . . , i − 1, i +
1, . . . , t− 1.

Each column of EVENODD1 stores d− k + 1 polynomials,
we can repair each of the first d− k+1 columns by accessing
one polynomial from each of the d columns according to
Theorem 2 and the repair access is optimal according to (1).
In EVENODD2, each column has (d − k + 1)2 polynomials.
According to Theorem 3, the (d− k+ 1)2 polynomial in each
of the first 2(d−k+1) columns can be recovered by accessing
d − k + 1 polynomials from each of the d columns and the
repair access is optimal according to (1).

Table IV shows the EVENODD2 by applying the first
transformation twice for EVENODD codes with k = 4, r = 2,
d = 5 and e = 1. We can repair column 0 by downloading the
following 10 polynomials

a1,0(x) + a0,1(x), a2,0(x), a3,0(x) + a2,2(x), a4,0(x),

a5,0(x), a1,2(x) + a0,3(x), a2,2(x) + (1 + x)a3,0(x),

a3,2(x), a4,2(x), a5,2(x).

Specifically, we first compute a2,2(x) and a3,0(x) from
a3,0(x) + a2,2(x) and a2,2(x) + (1 + x)a3,0(x). Then, we
can compute a0,0(x), a1,0(x) and a0,2(x), a1,2(x) from

a2,0(x), a3,0(x), a4,0(x), a5,0(x),

and
a2,2(x), a3,2(x), a4,2(x), a5,2(x),

respectively, according to the MDS property of EVENODD
codes. Finally, we can recover a0,1(x) + (1 + x)a1,0(x) and
a0,3(x) + (1 + x)a1,2(x) by (a1,0(x) + a0,1(x)) + xa1,0(x)
and (a1,2(x)+ a0,3(x))+xa1,2(x), respectively. According to
Theorem 3, we can repair each of the first four columns by
downloading 10 polynomials and the repair access is optimal.

Consider the systematic EVENODD2 code with k = 4,
r = 2, d = 5 and e = 1 in Table V. The repair access of
column i for i = 0, 1, 2, 3 is optimal. We can recover the four
polynomials in column 0 by downloading 10 polynomials

a1,0(x), a1,2(x), a2,0(x), a2,2(x), a3,0(x), a3,2(x),

a4,0(x), a4,2(x), a5,0(x), a5,2(x).

By subtracting polynomials a1,0(x), a2,0(x), a3,0(x) and
a2,2(x) from a4,0(x) and a5,0(x) each, we can obtain two
polynomials

p1(x) =a0,0(x) + xp−1a0,1(x),

p2(x) =a0,0(x) + a0,1(x).

Thus, we can recover a0,0(x) and a0,1(x) by p1(x)+x
p−1p2(x)

1+xp−1

and p1(x)+p2(x)
1+xp−1 , respectively. Similarly, we can first obtain

p3(x) =a0,2(x) + xp−1a0,3(x),

p4(x) =a0,2(x) + a0,3(x),



7

TABLE III: The storage of the first 2t columns of EVENODD2, where t = d− k + 1.

Column 0 Column 1 · · · Column d− k
a0,0(x) a1,0(x) + a0,1(x) · · · ad−k,0(x) + a0,d−k(x)

a0,1(x) + (1 + xe)a1,0(x) a1,1(x) · · · ad−k,1(x) + a1,d−k(x)

...
...

. . .
...

a0,d−k(x) + (1 + xe)ad−k,0(x) a1,d−k(x) + (1 + xe)ad−k,1(x) · · · ad−k,d−k(x)

...
...

...
...

a0,(d−k)t(x) a1,(d−k)t(x) + a0,(d−k)t+1(x) · · · ad−k,(d−k)t(x) + a0,t2−1(x)

a0,(d−k)t+1(x) + (1 + xe)a1,(d−k)t(x) a1,(d−k)t+1(x) · · · ad−k,(d−k)t+1(x) + a1,t2−1(x)

...
...

. . .
...

a0,t2−1(x) + (1 + xe)ad−k,(d−k)t(x) a1,t2−1(x) + (1 + xe)ad−k,(d−k)t+1(x) · · · ad−k,t2−1(x)

Column t Column t+ 1 · · · Column 2t− 1
at,0(x) at+1,0(x) + at,t(x) · · · a2t−1,0(x) + at,(d−k)t(x)
at,1(x) at+1,1(x) + at,t+1(x) · · · a2t−1,1(x) + at,(d−k)t+1(x)

...
... · · ·

...
at,d−k(x) at+1,d−k(x) + at,2t−1(x) · · · a2t−1,d−k(x) + at,t2−1(x)

at,t(x) + (1 + xe)at+1,0(x) at+1,t(x) · · · a2t−1,t(x) + at+1,(d−k)t(x)
at,t+1(x) + (1 + xe)at+1,1(x) at+1,t+1(x) · · · a2t−1,t+1(x) + at+1,(d−k)t+1(x)

...
... · · ·

...
at,2t−1(x) + (1 + xe)at+1,d−k(x) at+1,2t−1(x) · · · a2t−1,2t−1(x) + at+1,t2−1(x)

...
... · · ·

...
at,(d−k)t(x) + (1 + xe)a2t−1,0(x) at+1,(d−k)t(x) + (1 + xe)a2t−1,t(x) · · · a2t−1,(d−k)t(x)
at,(d−k)t+1(x) + (1 + xe)a2t−1,1(x) at+1,(d−k)t+1(x) + (1 + xe)a2t−1,t+1(x) · · · a2t−1,(d−k)t+1(x)

...
... · · ·

...
at,t2−1(x) + (1 + xe)a2t−1,d−k(x) at+1,t2−1(x) + (1 + xe)a2t−1,2t−1(x) · · · a2t−1,t2−1(x)


at,i(x) at+1,i(x) + at,t+i(x) · · · a2t−1,i(x) + at,(d−k)t+i(x)

at,t+i(x) + (1 + xe)at+1,i(x) at+1,t+i(x) · · · a2t−1,t+i(x) + at+1,(d−k)t+i(x)
...

...
. . .

...
at,(d−k)t+i(x) + (1 + xe)a2t−1,i(x) at+1,(d−k)t+i(x) + (1 + xe)a2t−1,t+i(x) · · · a2t−1,(d−k)t+i(x)

 . (10)

TABLE IV: EVENODD2 by applying the first transformation twice for EVENODD codes with k = 4, r = 2, d = 5 and e = 1.
Column 0 Column 1 Column 2 Column 3 Column 4 Column 5
a0,0(x) a1,0(x) + a0,1(x) a2,0(x) a3,0(x) + a2,2(x) a4,0(x) a5,0(x)

a0,1(x) + (1 + x)a1,0(x) a1,1(x) a2,1(x) a3,1(x) + a2,3(x) a4,1(x) a5,1(x)

a0,2(x) a1,2(x) + a0,3(x) a2,2(x) + (1 + x)a3,0(x) a3,2(x) a4,2(x) a5,2(x)
a0,3(x) + (1 + x)a1,2(x) a1,3(x) a2,3(x) + (1 + x)a3,1(x) a3,3(x) a4,3(x) a5,3(x)

by subtracting polynomials a1,2(x), a2,2(x), a3,2(x) and
a3,0(x) from a4,2(x) and a5,2(x) each, and then recover the
other two polynomials in column 0 by p3(x)+x

p−1p4(x)
1+xp−1 and

p3(x)+p4(x)
1+xp−1 . Column 1 can be recovered by downloading

a0,1(x), a0,3(x), a2,1(x), a2,3(x), a3,1(x), a3,3(x),

a4,1(x), a4,3(x), a5,1(x), a5,3(x).

The first transformed EVENODD codes also satisfy the
above three theorems, as the two transformations are equivalent.
The EVENODD1 codes have optimal repair for each of the
first d− k + 1 columns according to Theorem 2. By applying
the second transformation for the columns from d− k + 1 to
2d − 2k + 1 of EVENODD1 codes, we obtain EVENODD2

codes that have optimal repair for each of the columns from
0 to 2d − 2k + 1 according to Theorem 3. Similarly, we
can transform the original EVENODD codes for the columns
between i(d− k + 1) and ((i+ 1)(d− k + 1)− 1) mod n to
obtain the transformed EVENODD codes with optimal repair

with the columns between i(d − k + 1) and ((i + 1)(d −
k + 1) − 1) mod n, where i = 1, 2, . . . , d n

d−k+1e − 1. The
polynomial 1 + xe used in the transformation in (3) is called
the encoding coefficient associated with the transformation.
We may replace the encoding coefficient 1 + xe by other
polynomials in F2[x]/(1 + x + · · · + xp−1), such as xe, as
long as the three theorems in Section II-C still hold under
the specific binary MDS array codes. It is easy to check that
the three theorems in Section II-C hold for EVENODD codes,
if we replace the encoding coefficient 1 + xe by xe. More
generally, we can view the d − k + 1 polynomials in (3) as
d− k + 1 vectors with length p− 1 and compute the vectors
by the summation of some permutated vectors, as long as
the three theorems in Section II-C hold. With more general
transformation, we may combine the transformation and the
existing binary MDS array codes with efficient repair for any
single information column to obtain the transformed codes that
have efficient repair for both information and parity columns.
Recall that there are some efficient repair schemes for any
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TABLE V: Systematic EVENODD2 code by applying the second transformation twice for EVENODD code with k = 4, r = 2,
d = 5 and e = 1.

Information columns Parity column 0
a0,0(x) a1,0(x) a2,0(x) a3,0(x) a0,0(x) + (xp−1a1,0(x) + xp−1a0,1(x)) + a2,0(x) + (xp−1a3,0(x) + xp−1a2,2(x))
a0,1(x) a1,1(x) a2,1(x) a3,1(x) xp−1a0,1(x) + (1 + xp−1)a1,0(x) + a1,1(x) + a2,1(x) + xp−1a3,1(x) + xp−1a2,3(x)
a0,2(x) a1,2(x) a2,2(x) a3,2(x) a0,2(x) + (xp−1a1,2(x) + xp−1a0,3(x)) + xp−1a2,2(x) + (1 + xp−1)a3,0(x) + a3,2(x)
a0,3(x) a1,3(x) a2,3(x) a3,3(x) xp−1a0,3(x) + (1 + xp−1)a1,2(x) + a1,3(x) + xp−1a2,3(x) + (1 + xp−1)a3,1(x) + a3,3(x)

Parity column 1
a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x) + (x2a3,0(x) + x2a2,2(x))

xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x) + x2a3,1(x) + x2a2,3(x)
a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x) + (x+ x2)a3,0(x) + x3a3,2(x)

xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x) + xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x)

information column of RDP [28], X-code [38], EVENODD
[27] and the binary MDS array codes [33]. In Section IV, we
will take an example of EVENODD to show how to design
the specific transformation for EVENODD to enable optimal
repair for each of the parity columns and preserve the efficient
repair property for any single information column. We also
give the transformation for the binary MDS array codes [33]
with efficient repair access for any single information column
such that the transformed codes have optimal repair access for
any single parity column and asymptotically optimal repair
access for any single information column in Section IV.

III. CONSTRUCTION OF MULTI-LAYER TRANSFORMED
EVENODD CODES

In the section, we first present the construction of multi-layer
transformed EVENODD codes by applying the transformation
given in Section II. We then give a repair algorithm for any
single column with optimal repair access.

A. Construction

The codes considered herein have k information columns
and r parity columns. For notational convenience, we divide
k information columns into d k

d−k+1e information partitions,
each of the information partitions has d− k + 1 columns. For
i = 1, 2, . . . , d k

d−k+1e − 1, information partition i contains
columns between (i − 1)(d − k + 1) and (i(d − k + 1) −
1). Information partition d k

d−k+1e contains the last d − k +
1 information columns. Similarly, the r parity columns are
divided into d r

d−k+1e parity partitions and parity column i
contains parity columns between (i− 1)(d−k+1) and (i(d−
k + 1) − 1) for i = 1, 2, . . . , d r

d−k+1e − 1. Parity partition
d r
d−k+1e contains the last d−k+1 parity columns. Therefore,

we obtain d k
d−k+1e + d

r
d−k+1e partitions, contains d k

d−k+1e
information partitions and d r

d−k+1e parity partitions. We label
the index of the partitions from 1 to d k

d−k+1e+ d
r

d−k+1e. The
construction is given in the following.

By applying the transformation for the first information
partition (the first d − k + 1 columns) of EVENODD code,
we can obtain EVENODD1 with each column having d −
k + 1 polynomials, such that EVENODD1 is MDS according
to Theorem 1 and has optimal repair bandwidth for the first
d− k + 1 information columns according to Theorem 2. By
applying the transformation for the second partition (columns

between d− k+ 1 and 2(d− k+ 1)− 1) of EVENODD1, we
obtain EVENODD2 with each column having (d − k + 1)2

polynomials that is MDS code according to Theorem 1 and has
optimal repair bandwidth for the first 2(d− k+1) information
columns according to Theorem 2 and Theorem 3.

For j = 1, 2, . . . , d k
d−k+1e − 1, by recursively applying the

transformation for information partition i+ 1 of EVENODDj
code, we can obtain EVENODDd k

d−k+1 e
. Specifically, we can

obtain EVENODDj+1 by applying the transformation for
EVENODDj as follows, where j = 1, 2, . . . , d k

d−k+1e − 1.
We generate d− k+ 1 instances of the code EVENODDj and
view the (d − k + 1)j polynomials stored in each column
of EVENODDj as a vector. For ` = 0, 1, . . . , d − k and
h = 0, 1, . . . , n− 1, denote (d− k+1)j polynomials stored in
column h of instance ` of EVENODDj as the vector v`h. For
i = 0, 1, . . . , d−k, column j(d−k+1)+ i of EVENODDj+1

stores the following d − k + 1 vectors ((d − k + 1)j+1

polynomials)

v0
(d−k+1)+i + vi(d−k+1),

v1
(d−k+1)+i + vi(d−k+1)+1, . . . ,

vi−1(d−k+1)+i + vi(d−k+1)+i−1,

vi(d−k+1)+i,

vi+1
(d−k+1)+i + (1 + xe)vi(d−k+1)+i+1,

vi+2
(d−k+1)+i + (1 + xe)vi(d−k+1)+i+2, . . . ,

vd−k(d−k+1)+i + (1 + xe)vi(d−k+1)+d−k,

where 1 ≤ e ≤ p− 1. For h ∈ {0, 1, . . . , n− 1} \ {j(d− k +
1), j(d− k + 1) + 1, . . . , (j + 1)(d− k + 1)− 1}, column h
stores d− k + 1 vectors ((d− k + 1)j+1 polynomials)

v0
h,v

1
h, . . . ,v

d−k
h .

Note that the transformation from EVENODDj to
EVENODDj+1 is the same as the transformation from
EVENODD1 to EVENODD2, and we can show that the
optimal repair property of the first j(d − k + 1) columns of
EVENODDj is maintained in EVENODDj+1 by the similar
proof of Theorem 3. Therefore, we can obtain the code
EVENODDd k

d−k+1 e
and each column has (d− k + 1)d

k
d−k+1 e

polynomials. EVENODDd k
d−k+1 e

is MDS code according to
Theorem 1 and we can repair each of the first k columns
by downloading (d − k + 1)d

k
d−k+1 e−1 polynomials from

each of the chosen d columns, the repair bandwidth of each
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of the first k columns is optimal according to Theorem 2
and Theorem 3. To obtain optimal repair bandwidth for
parity columns, we can transform EVENODDd k

d−k+1 e
code

d r
d−k+1e times into EVENODDd k

d−k+1 e+d
r

d−k+1 e
code by

the first transformation. In EVENODDd k
d−k+1 e+d

r
d−k+1 e

code, each column has (d − k + 1)d
k

d−k+1 e+d
r

d−k+1 e

polynomials and we can repair each column by downloading
(d− k + 1)d

k
d−k+1 e+d

r
d−k+1 e−1 polynomials from each of the

chosen d columns. Therefore, EVENODDd k
d−k+1 e+d

r
d−k+1 e

code has optimal repair bandwidth for any column.

B. Repair Algorithm

Algorithm 1 Algorithm of repairing a single failed column f ,
where 0 ≤ f ≤ k + r − 1.

1: The column f is failed.
2: if f ∈ {0, 1, . . . , k− 1}, denote f = (d− k+ 1)mf + rf ,

where mf , rf are two integers with 0 ≤ mf and 0 ≤ rf ≤
d− k. then

3: Repair the polynomials in column f by download-
ing ah1,`(x), ah2,`(x), . . . , ahd,`(x), for ` mod (d −
k + 1)mf+1 ∈ {rf · (d − k + 1)mf , rf · (d −
k + 1)mf + 1, . . . , (rf + 1) · (d − k + 1)mf − 1},
where {h1, h2, . . . , hd−k} = {f − mf , f − mf +
1, . . . , f − 1, f + 1, . . . , f −mf + d− k} and columns
hd−k+1, . . . , hd are chosen as follows. For i = d− k +
1, . . . , d, if hi belongs to a partition ` with ` > mf +1,
then all d − k + 1 columns of the partition ` are in
{hd−k+1, . . . , hd}.

4: return
5: if f ∈ {k, k + 1 . . . , k + r− 1}, denote f − k = (d− k +

1)mf + rf , where mf , rf are two integers with 0 ≤ mf

and 0 ≤ rf ≤ d− k. then
6: Repair the polynomials in column f by downloading

ah1,`(x), ah2,`(x), . . . , ahd,`(x), for ` mod (d − k +

1)d
k

d−k+1 e+mf+1 ∈ {rf · (d − k + 1)d
k

d−k+1 e+mf , rf ·
(d − k + 1)d

k
d−k+1 e+mf + 1, . . . , (rf + 1) · (d − k +

1)d
k

d−k+1 e+mf − 1}, where {h1, h2, . . . , hd−k} = {f −
mf , f −mf +1, . . . , f −1, f +1, . . . , f −mf +d−k}
and columns hd−k+1, . . . , hd are chosen as follows. For
i = d− k+ 1, . . . , d, if hi belongs to a partition ` with
` > mf +1, then all d− k+1 columns of the partition
` are in {hd−k+1, . . . , hd}.

7: return

In the following, we present the repair algorithm for a
single column failure that is stated in Algorithm 1. Note that
there is a requirement when choosing the d helper columns in
Algorithm 1. We show in the next lemma that we can always
choose the d helper columns that satisfy the requirement for
all f .

Lemma 4. For f = 0, 1, . . . , k + r − 1, column f belongs to
partition mf + 1. The first d− k helper columns are chosen
to be the other surviving columns of partition mf + 1, and
the other k helper columns hi for i = d− k+ 1, . . . , d satisfy
that if hi belongs to a partition ` with ` > mf + 1, then all

d− k+ 1 columns of the partition ` are in {hd−k+1, . . . , hd}.

Proof. We first consider the information failure, i.e., 0 ≤ f ≤
k− 1. The case of k ≤ f ≤ k+ r− 1 can be proven similarly.

If k is a multiple of d− k+1, then we can choose k helper
columns hi for i = d− k+ 1, . . . , d as all the columns of any
k/(d− k+1) partitions, except partition mf +1. If k is not a
multiple of d− k + 1, we can divide the proof into two cases:
mf = 0 and mf > 0. When mf = 0, We can choose k helper
columns hi for i = d − k + 1, . . . , d as all the columns of
information partitions d k

d−k+1e−1 and d k
d−k+1e, and any other

d k
d−k+1e−2 partitions except partition mf+1. When mf > 0,

we can choose k helper columns hi for i = d− k + 1, . . . , d
as all the columns of α partitions except partition mf + 1
and β columns that belong to information partition ` with
1 ≤ ` ≤ mf , where (d− k+1)α+ β = k. This completes the
proof.

We first consider the repair algorithm of information column
f , i.e., 0 ≤ f ≤ k − 1. There exist two integers mf and
rf such that f = (d − k + 1)mf + rf , where 0 ≤ mf and
0 ≤ rf ≤ d− k.

Note that EVENODDd k
d−k+1 e+d

r
d−k+1 e

code is transformed
from EVENODD code for d k

d−k+1e + d
r

d−k+1e times. The
optimal repair of columns in partition i is enabled by the i-th
transformation, where i = 1, 2, . . . , d k

d−k+1e+ d
r

d−k+1e. Ac-
cording to Theorem 3, the optimal repair property of columns in
partition i of EVENODDi is preserved in EVENODDi+1 (also
in EVENODDd k

d−k+1 e+d
r

d−k+1 e
) for i = 1, 2, . . . , d k

d−k+1e−1

if either all d− k + 1 columns of partition i+ 1 are chosen
as helper columns or all d− k + 1 columns of partition i+ 1
are not chosen as helper columns. In addition, the other d− k
surviving columns of partition i are required to recover the
failed column in partition i. Therefore, the d helper columns of
the failed column f are comprised of d−k columns in partition
mf + 1, and other k columns. If a column of partition ` with
` > mf + 1 is chosen as helper column, then all d − k + 1
columns of partition ` are chosen as the helper columns. By
Lemma 4, we can always find the d helper columns that satisfy
the requirement in Algorithm 1.

We can recover column f of EVENODDmf+1 by down-
loading polynomials ah1,`(x), ah2,`(x), . . . , ahd,`(x) from the
chosen d helper columns, for ` ∈ {rf · (d − k + 1)mf , rf ·
(d− k+ 1)mf + 1, . . . , 2rf · (d− k+ 1)mf − 1}. Because the
optimal repair algorithm of column f of EVENODDmf+1 is
preserved in EVENODDd k

d−k+1 e+d
r

d−k+1 e
and the number of

polynomials of EVENODDd k
d−k+1 e+d

r
d−k+1 e

is extended to be

(d−k+1)d
k

d−k+1 e+d
r

d−k+1 e that is a multiple of (d−k+1)mf+1

(the number of polynomials of EVENODDmf+1). Therefore,
we can recover column f by step 3 in Algorithm 1. It can be
counted that the number of polynomials that are downloaded
to recover column f is d(d− k + 1)d

k
d−k+1 e+d

r
d−k+1 e, which

is optimal by (1).
When f = k, k + 1, . . . , k + r − 1, the repair algorithm of

column f is similar to the repair algorithm of an information
column. The only difference is that the optimal repair property
of parity column is enabled by the first transformation, while
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the optimal repair property of information column is enabled
by the second transformation.

C. Decoding Method

We present the decoding method of any ρ ≤ r erasures for
EVENODDd k

d−k+1 e+d
r

d−k+1 e
code. Suppose that γ information

columns a1, . . . , aγ and δ parity columns b1, . . . , bδ are erased
with 0 ≤ a1 < . . . < aγ ≤ k − 1 and 0 ≤ b1 < . . . < bδ ≤
r − 1, where k > γ > 0, r ≥ δ ≥ 0 and γ + δ = ρ ≤ r. Let

A := {0, 1, . . . , k − 1} \ {a1, a2, . . . , aγ}

be a set of indices of the available information columns, and
let

B := {0, 1, . . . , r − 1} \ {b1, b2, . . . , bδ}

be a set of indices of the available parity columns. We want
to first recover the lost information columns by reading k − γ
information columns with indices s1, s2, . . . , sk−γ ∈ A, and γ
parity columns with indices c1, c2, . . . , cγ ∈ B, and then recov-
er the failure parity column by multiplying the corresponding
encoding vector and the information polynomials.

In the construction, k + r columns are divided into
d k
d−k+1e + d

r
d−k+1e partitions with each partition contains

d − k + 1 columns. Columns in each partition are enabled
optimal repair access by recursively applying a transformation
for each partition. In the decoding procedure, we need to first
return to the original EVENODD codes and then decode the
failed information polynomials for some rows recursively. The
decoding procedure is briefly described as follows.

For i = 1, 2, . . . , γ, there exist two integers mci and rci
such that ci = (d − k + 1)mci + rci , where 0 ≤ mci and
0 ≤ rci ≤ d−k. Similarly, we have si = (d−k+1)msi + rsi
for i = 1, 2, . . . , k − γ, where 0 ≤ msi and 0 ≤ rsi ≤ d− k.

We consider the case that mc1 6= mc2 6= · · · 6= mcγ .
The parity polynomials are either linear combinations of the
corresponding information polynomials or the summations
of some linear combinations of the information polynomials.
According to Theorem 1, there exists at least one row of
the array codes, of which we can first obtain γ syndrome
polynomials by subtracting (k − γ)(d − k + 1) information
polynomials from γ parity polynomials and then solve the
γ failed information polynomials by computing the γ × γ
linear equations of the γ syndrome polynomials. Finally, we
can recover the failed information polynomials in other rows
recursively by subtracting the known information polynomials
from the chosen parity polynomials.

For 1 ≤ i < j ≤ γ, if mci = mcj , then we can obtain
two parity polynomials of EVENODDd k

d−k+1 e
according to

the remark at the end of Section II-B1. After solving the
parity polynomials of EVENODDd k

d−k+1 e+1 for all i, j with

mci = mcj , then we can find at least (d− k+1)d
k

d−k+1 e+mc1

rows such that all the γ parity polynomials in the each of the
chosen rows are parity polynomials of EVENODDd k

d−k+1 e
. By

the similar decoding procedure of mc1 6= mc2 6= · · · 6= mcγ ,
all the failed information polynomials can be solved.

D. Example

We present an example of k = 4, r = 2, d = 5
and e = 1 to illustrate the main ideas. Table II shows
the systematic transformed EVENODD1 code and Table V
shows the systematic transformed EVENODD2 code. While
the systematic transformed EVENODD2+1 code is shown in
Table VI, and we focus on the transformed EVENODD2+1

code in the following.
1) Decoding Procedure: We claim that we can recover all

the information polynomials from any four columns. From
the first four columns, we can obtain all the information
polynomials directly. Suppose that the data collector connects
to three information columns and one parity column, say
columns 0, 1, 2 and 5. From columns 0, 1 and 2, one
can download information polynomials a0,`(x), a1,`(x), a2,`(x)
for ` = 0, 1, . . . , 7 directly. By subtracting the downloaded
information polynomials from the parity polynomials a5,`(x),
we can obtain the following 8 polynomials

x2a3,0(x) + xp−1a3,4(x), x
2a3,1(x) + xp−1a3,5(x),

(x+ x2)a3,0(x) + x3a3,2(x) + (1 + xp−1)a3,4(x) + a3,6(x),

(x+ x2)a3,1(x) + x3a3,3(x) + (1 + xp−1)a3,5(x) + a3,7(x),

x2a3,4(x), x
2a3,5(x), (x+ x2)a3,4(x) + x3a3,6(x),

(x+ x2)a3,5(x) + x3a3,7(x).

It is easy to recover the information polynomials a3,`(x) for
` = 0, 1, . . . , 7 from the above polynomials. The decoding of
any three information columns and the first parity column is
similar.

Suppose that we want to decode the information polynomials
from two information columns and two parity columns, say
columns 0, 2, 4 and 5. Denote

b0(x) =a0,4(x) + (xp−1a1,4(x) + xp−1a0,5(x)) + a2,4(x)+

(xp−1a3,4(x) + xp−1a2,6(x)),

b1(x) =x
p−1a0,5(x) + (1 + xp−1)a1,4(x) + a1,5(x)+

a2,5(x) + xp−1a3,5(x) + xp−1a2,7(x),

b2(x) =a0,6(x) + (xp−1a1,6(x) + xp−1a0,7(x))+

xp−1a2,6(x) + (1 + xp−1)a3,4(x) + a3,6(x),

b3(x) =x
p−1a0,7(x) + (1 + xp−1)a1,6(x) + a1,7(x)+

xp−1a2,7(x) + (1 + xp−1)a3,5(x) + a3,7(x),

and

c0(x) =a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x)+

(x2a3,0(x) + x2a2,2(x)),

c1(x) =x
p−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x)+

x2a2,1(x) + x2a3,1(x) + x2a2,3(x),

c2(x) =a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x)+

(x+ x2)a3,0(x) + x3a3,2(x)

c3(x) =x
p−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x)+

xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x).
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TABLE VI: Systematic transformed EVENODD2+1 code with k = 4, r = 2, d = 5 and e = 1.

Information columns Parity column 0
a0,0(x) a1,0(x) a2,0(x) a3,0(x) a0,0(x) + (xp−1a1,0(x) + xp−1a0,1(x)) + a2,0(x) + (xp−1a3,0(x) + xp−1a2,2(x))

a0,1(x) a1,1(x) a2,1(x) a3,1(x) xp−1a0,1(x) + (1 + xp−1)a1,0(x) + a1,1(x) + a2,1(x) + xp−1a3,1(x) + xp−1a2,3(x)

a0,2(x) a1,2(x) a2,2(x) a3,2(x) a0,2(x) + (xp−1a1,2(x) + xp−1a0,3(x)) + xp−1a2,2(x) + (1 + xp−1)a3,0(x) + a3,2(x)

a0,3(x) a1,3(x) a2,3(x) a3,3(x) xp−1a0,3(x) + (1 + xp−1)a1,2(x) + a1,3(x) + xp−1a2,3(x) + (1 + xp−1)a3,1(x) + a3,3(x)

a0,4(x) a1,4(x) a2,4(x) a3,4(x) a0,4(x) + (xp−1a1,4(x) + xp−1a0,5(x)) + a2,4(x) + (xp−1a3,4(x) + xp−1a2,6(x))+
(1 + x)(a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x) + (x2a3,0(x) + x2a2,2(x)))

a0,5(x) a1,5(x) a2,5(x) a3,5(x) xp−1a0,5(x) + (1 + xp−1)a1,4(x) + a1,5(x) + a2,5(x) + xp−1a3,5(x) + xp−1a2,7(x)+

(1 + x)(xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x) + x2a3,1(x) + x2a2,3(x))

a0,6(x) a1,6(x) a2,6(x) a3,6(x) a0,6(x) + (xp−1a1,6(x) + xp−1a0,7(x)) + xp−1a2,6(x) + (1 + xp−1)a3,4(x) + a3,6(x)+
(1 + x)(a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x) + (x+ x2)a3,0(x) + x3a3,2(x))

a0,7(x) a1,7(x) a2,7(x) a3,7(x) xp−1a0,7(x) + (1 + xp−1)a1,6(x) + a1,7(x) + xp−1a2,7(x) + (1 + xp−1)a3,5(x) + a3,7(x)+

(1 + x)(xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x) + xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x))

Parity column 1
a5,0(x) = a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x) + (x2a3,0(x) + x2a2,2(x))+

a0,4(x) + (xp−1a1,4(x) + xp−1a0,5(x)) + a2,4(x) + (xp−1a3,4(x) + xp−1a2,6(x))

a5,1(x) = xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x) + x2a3,1(x) + x2a2,3(x)+

xp−1a0,5(x) + (1 + xp−1)a1,4(x) + a1,5(x) + a2,5(x) + xp−1a3,5(x) + xp−1a2,7(x)

a5,2(x) = a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x) + (x+ x2)a3,0(x) + x3a3,2(x)+

a0,6(x) + (xp−1a1,6(x) + xp−1a0,7(x)) + xp−1a2,6(x) + (1 + xp−1)a3,4(x) + a3,6(x)

a5,3(x) = xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x) + xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x)+

xp−1a0,7(x) + (1 + xp−1)a1,6(x) + a1,7(x) + xp−1a2,7(x) + (1 + xp−1)a3,5(x) + a3,7(x)

a5,4(x) = a0,4(x) + a1,4(x) + a0,5(x) + x2a2,4(x) + (x2a3,4(x) + x2a2,6(x))

a5,5(x) = xp−1a0,5(x) + (1 + xp−1)a1,4(x) + xa1,5(x) + x2a2,5(x) + x2a3,5(x) + x2a2,7(x)

a5,6(x) = a0,6(x) + (a1,6(x) + a0,7(x)) + xa2,6(x) + (x+ x2)a3,4(x) + x3a3,6(x)

a5,7(x) = xp−1a0,7(x) + (1 + xp−1)a1,6(x) + xa1,7(x) + xa2,7(x) + (x+ x2)a3,5(x) + x3a3,7(x)

We have that

a4,4(x) = b0(x) + (1 + x)c0(x), a5,0(x) = b0(x) + c0(x),

a4,5(x) = b1(x) + (1 + x)c1(x), a5,1(x) = b1(x) + c1(x),

a4,6(x) = b2(x) + (1 + x)c2(x), a5,2(x) = b2(x) + c2(x),

a4,7(x) = b3(x) + (1 + x)c3(x), a5,3(x) = b3(x) + c3(x).

Therefore, we can solve c`(x) by

c`(x) = xp−1(a4,4+`(x) + a5,`(x))

and b`(x) by c`(x) + a5,`(x) for ` = 0, 1, 2, 3. Then, we
can subtract the information polynomials a0,`(x), a2,`(x) for
` = 0, 1, . . . , 7 from the polynomials a4,`(x), a5,4+`(x),
b`(x), c`(x) for ` = 0, 1, 2, 3, and obtain the polynomials

p0(x) = xp−1a1,0(x) + xp−1a3,0(x),

p1(x) = a1,0(x) + x2a3,0(x),

p2(x) = (1 + xp−1)a1,0(x) + a1,1(x) + xp−1a3,1(x),

p3(x) = (1 + xp−1)a1,0(x) + xa1,1(x) + x2a3,1(x),

p4(x) = xp−1a1,2(x) + (1 + xp−1)a3,0(x) + a3,2(x),

p5(x) = a1,2(x) + (x+ x2)a3,0(x) + x3a3,2(x),

p6(x) = (1 + xp−1)a1,2(x) + a1,3(x) + (1 + xp−1)a3,1(x) + a3,3(x),

p7(x) = (1 + xp−1)a1,2(x) + xa1,3(x) + (x+ x2)a3,1(x) + x3a3,3(x),

p8(x) = a1,4(x) + x2a3,4(x),

p9(x) = xp−1a1,4(x) + xp−1a3,4(x),

p10(x) = (1 + xp−1)a1,4(x) + xa1,5(x) + x2a3,5(x),

p11(x) = (1 + xp−1)a1,4(x) + a1,5(x) + xp−1a3,5(x),

p12(x) = xp−1a1,6(x) + (1 + xp−1)a3,4(x) + a3,6(x),

p13(x) = a1,6(x) + (x+ x2)a3,4(x) + x3a3,6(x),

p14(x) = (1 + xp−1)a1,6(x) + a1,7 + (1 + xp−1)a3,5(x) + a3,7(x),

p15(x) = (1 + xp−1)a1,6(x) + xa1,7 + (x+ x2)a3,5(x) + x3a3,7(x).

We can first compute

a3,0(x) =
p0(x) + xp−1p1(x)

x+ xp−1

and then compute a1,0(x) = p1(x) + x2a3,0(x). The other
polynomials

a1,1(x), a3,1(x); a1,2(x), a3,2(x); a1,3(x), a3,3(x)

can be computed by recursively subtracting the known polyno-
mials from

p2(x), p3(x); p4(x), p5(x); p6(x), p7(x).

Similarly, polynomials

a1,4(x), a3,4(x); a1,5(x), a3,5(x); a1,6(x), a3,6(x); a1,7(x), a3,7(x)

can be computed from

p8(x), p9(x); p10(x), p11(x); p12(x), p13(x); p14(x), p15(x).

2) Repair Procedure: Next we show that any one column
can be recovered by Algorithm 1 with optimal repair bandwidth.
Suppose that column 4 (parity column 0) is failed, i.e., f = 4.
As k = 4, r = 2 and d = 5, we have mf = 0 and rf = 0 and
all the surviving five columns are selected as helper columns.
By step 6 of Algorithm 1, we need to download polynomials

a0,`(x), a1,`(x), a2,`(x), a3,`(x), a5,`(x)

from columns 0, 1, 2, 3, 5 for ` = 0, 1, 2, 3 to recover column
4. First, we can directly compute the following four parity
polynomials

a4,0(x) =a0,0(x) + (xp−1a1,0(x) + xp−1a0,1(x))+

a2,0(x) + (xp−1a3,0(x) + xp−1a2,2(x)),

a4,1(x) =x
p−1a0,1(x) + (1 + xp−1)a1,0(x) + a1,1(x)+

a2,1(x) + xp−1a3,1(x) + xp−1a2,3(x),

a4,2(x) =a0,2(x) + (xp−1a1,2(x) + xp−1a0,3(x))+

xp−1a2,2(x) + (1 + xp−1)a3,0(x) + a3,2(x),

a4,3(x) =x
p−1a0,3(x) + (1 + xp−1)a1,2(x) + a1,3(x)+

xp−1a2,3(x) + (1 + xp−1)a3,1(x) + a3,3(x),
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from the downloaded information polynomials. Then, we can
compute the following four polynomials

c0(x) =a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x)+

(x2a3,0(x) + x2a2,2(x)),

c1(x) =x
p−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x)+

x2a2,1(x) + x2a3,1(x) + x2a2,3(x),

c2(x) =a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x)+

(x+ x2)a3,0(x) + x3a3,2(x)

c3(x) =x
p−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x)+

xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x),

from the downloaded information polynomials. Lastly, we can
recover the polynomials a4,4(x), a4,5(x), a4,6(x) and a4,7(x)
by computing

a4,4(x) =a5,0(x) + xc0(x),

a4,5(x) =a5,1(x) + xc1(x),

a4,6(x) =a5,2(x) + xc2(x),

a4,7(x) =a5,3(x) + xc3(x).

It can be checked that column 5 can be recovered by
downloading a0,`(x), a1,`(x), a2,`(x), a3,`(x) and a4,`(x)
from columns 0, 1, 2, 3, 4 for ` = 4, 5, 6, 7 according to
Algorithm 1. Similarly, we can recover column 2 and column 3
by downloading a0,`(x), a1,`(x), a3,`(x), a4,`(x), a5,`(x) for
` = 0, 2, 4, 6, and a0,`(x), a1,`(x), a2,`(x), a4,`(x), a5,`(x)
for ` = 2, 3, 6, 7, respectively. According to Algorithm 1,
column 0 and column 1 can be recovered by downloading
a1,`(x), a2,`(x), a3,`(x), a4,`(x), a5,`(x) for ` = 0, 2, 4, 6,
and a0,`(x), a2,`(x), a3,`(x), a4,`(x), a5,`(x) for ` = 1, 3, 5, 7,
respectively.

IV. TRANSFORMATION FOR OTHER BINARY MDS ARRAY
CODES

The transformation given in Section II-B can also be
employed in other binary MDS array codes, such as RDP
and codes in [26], [31]–[33], [35]–[37].

Specifically, for RDP and codes in [26], [35]–[37], the
transformation is similar to that of EVENODD in Section III-A.
We only need to replace the original EVENODD by the
new codes and transform them for d k

d−k+1e + d
r

d−k+1e
times. We can show that the multi-layer transformed codes
also have optimal repair access for all columns, as in
EVENODDd k

d−k+1 e+d
r

d−k+1 e
.

For codes with optimal repair access or asymptotically
optimal repair access only for information column, such as
codes in [31]–[33], [41], [42], we can transform them for
d r
d−k+1e times to enable optimal repair access for all r parity

columns and the optimal repair property of any information
column is preserved. In the following, we take an example with
k = 2, r = 2 and d = 3 of the construction in [33] to illustrate
how to apply the transformation to obtain the transformed
codes with optimal repair access for each of the two parity
columns and asymptotically optimal repair access for each of
the two information columns.

TABLE VII: An example of the array code in [33] with k = 2,
r = 2, d = 3, p = 3 and τ = 4.

Column 0 Column 1 Column 2 Column 3
a0,0 a0,1 a0,2 = a0,0 + a0,1 a0,3 = a11,0 + a10,1
a1,0 a1,1 a1,2 = a1,0 + a1,1 a1,3 = a0,0 + a11,1
a2,0 a2,1 a2,2 = a2,0 + a2,1 a2,3 = a1,0 + a0,1
a3,0 a3,1 a3,2 = a3,0 + a3,1 a3,3 = a2,0 + a1,1
a4,0 a4,1 a4,2 = a4,0 + a4,1 a4,3 = a3,0 + a2,1
a5,0 a5,1 a5,2 = a5,0 + a5,1 a5,3 = a4,0 + a3,1
a6,0 a6,1 a6,2 = a6,0 + a6,1 a6,3 = a5,0 + a4,1
a7,0 a7,1 a7,2 = a7,0 + a7,1 a7,3 = a6,0 + a5,1

A. Transformation for Array Codes in [33]

The array code in [33] is specified by parameters k, r, d, p
and τ . Let k = 2, r = 2, d = 3, p = 3 and τ = 4. The array
of the example is of size 8 × 4. The first two columns are
information columns that store information bits and the last two
columns are parity columns that store parity bits. Let ai,j be the
i-th bit in column j, where i = 0, 1, . . . , 7 and j = 0, 1, 2, 3.
For j = 0, 1, we define four extra bits a8,j , a9,j , a10,j , a11,j
associated with column j as

a8,j = a0,j + a4,j ,

a9,j = a1,j + a5,j ,

a10,j = a2,j + a6,j ,

a11,j = a3,j + a7,j . (11)

Given the information bits, the parity bits a0,2, a1,2, . . . , a7,2
in column 2 are computed by

ai,2 = ai,0 + ai,1 for i = 0, 1, . . . , 7,

and the parity bits a0,3, a1,3, . . . , a7,3 in column 3 are computed
by

ai,3 = ai−1,0 + ai−2,1 for i = 0, 1, . . . , 7.

Note that all the subscripts in the example are comput-
ed by modulo 12. Table VII shows the example. Similar
to the information column, we also define four extra bits
a8,j , a9,j , a10,j , a11,j associated with column j as in (11). Note
that we only store eight bits a0,j , a1,j , . . . , a7,j in column j,
where j = 0, 1, 2, 3, and we can compute the extra bits when
necessary by (11).

We can repair four bits a0,0, a2,0, a4,0, a6,0 in column 0 by

a0,0 =a0,1 + a0,2, where a0,2 = a0,0 + a0,1,

a2,0 =a2,1 + a2,2, where a2,2 = a2,0 + a2,1,

a4,0 =a4,1 + a4,2, where a4,2 = a4,0 + a4,1,

a6,0 =a6,1 + a6,2, where a6,2 = a6,0 + a6,1,

and the other bits a1,0, a3,0, a5,0, a7,0 in column 0 by

a1,0 =a0,1 + a2,3, where a2,3 = a1,0 + a0,1,

a3,0 =a2,1 + a4,3, where a4,3 = a3,0 + a2,1,

a5,0 =a4,1 + a6,3, where a6,3 = a5,0 + a4,1,

a7,0 =a6,1 + a4,3 + a0,3, where a4,3 = a3,0 + a2,1

and a0,3 = a11,0 + a10,1.
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We need to download 12 bits

a0,1, a2,1, a4,1, a6,1, a0,2, a2,2, a4,2, a6,2, a0,3, a2,3, a4,3, a6,3,

to recover the eight bits in column 0. Therefore, the repair
access of column 0 is optimal according to (1). Column 1 can
be recovered by downloading 14 bits

a0,0, a1,0, a3,0, a4,0, a5,0, a7,0, a0,2, a1,2,

a4,2, a5,2, a0,3, a1,3, a4,3, a5,3,

which are two bits more than the optimal repair access.
We argue that we can recover the information bits from any

two columns. We can directly obtain the information bits from
column 0 and column 1. We can also obtain the information
bits from any one information column and any one parity
column. For example, if we want to decode the information
bits from column 0 and column 2, we can subtract ai,0 from
ai,2 to obtain ai,1, for i = 0, 1, . . . , 7. Finally, we can decode
the information bits from column 2 and column 3 as follows.
We can compute a7,1 by

a7,1 = a0,2 + a1,2 + a2,2 + a3,2 + a1,3 + a2,3 + a3,3 + a4,3.

Similarly, we can compute a8,1, a9,1, a10,1 by

a8,1 =a1,2 + a2,2 + a3,2 + a4,2 + a2,3 + a3,3 + a4,3 + a5,3,

a9,1 =a2,2 + a3,2 + a4,2 + a5,2 + a3,3 + a4,3 + a5,3 + a6,3,

a10,1 =a3,2 + a4,2 + a5,2 + a6,2 + a4,3 + a5,3 + a6,3 + a7,3.

Then, we can compute the other information bits iteratively.
Next, we show how to apply the first transformation for

the above example to obtain the transformed codes that have
optimal repair access for each of columns 2 and 3, while the
efficient repair property of each of columns 0 and 1 is also
preserved. For j = 0, 1, 2, 3, we can represent the eight bits in
column j and the four extra bits associated with column j by
polynomial

aj(x) = a0,j + a1,jx+ . . .+ a11,jx
11.

First, we can generate two instances a0(x), a1(x), a2(x), a3(x)
and b0(x), b1(x), b2(x), b3(x). Then, we compute polynomials
b2(x) + x4a3(x), a3(x) + b2(x) over F2[x]/(1 + x12). For
j = 0, 1, column j stores the eight coefficients of degrees
from zero to seven of the polynomials aj(x) and bj(x); while
column 2 and column 3 stores the eight coefficients of degrees
from zero to seven of the polynomials a2(x), b2(x) + x4a3(x)
and a3(x) + b2(x), b3(x), respectively. Table VIII shows the
transformed array codes.

First, we show that the efficient repair property of any one
information column is preserved in the transformed array codes.
Consider the repair method of column 0. We can repair column
0 by downloading 24 bits

a0,1, a2,1, a4,1, a6,1, a0,2, a2,2, a4,2, a6,2, a0,3 + b0,2, a2,3 + b2,2,

a4,3 + b4,2, a6,3 + b6,2, b0,1, b2,1, b4,1, b6,1, b0,2 + a8,3,

b2,2 + a10,3, b4,2 + a0,3, b6,2 + a2,3, b0,3, b2,3, b4,3, b6,3.

Specifically, we can compute the four bits a0,0, a2,0, a4,0, a6,0
in column 0 by

a0,0 =a0,1 + a0,2, where a0,2 = a0,0 + a0,1,

a2,0 =a2,1 + a2,2, where a2,2 = a2,0 + a2,1,

a4,0 =a4,1 + a4,2, where a4,2 = a4,0 + a4,1,

a6,0 =a6,1 + a6,2, where a6,2 = a6,0 + a6,1,

and a1,0, a3,0, a5,0, a7,0 in column 0 by

a3,0 =(b0,2 + a8,3) + (a0,3 + b0,2) + b2,1,

a5,0 =(b2,2 + a10,3) + (a2,3 + b2,2) + b4,1,

a7,0 =(b4,2 + a0,3) + (a4,3 + b4,2) + b6,1,

a1,0 =(b6,2 + a2,3) + (a6,3 + b6,2) + a0,1 + a4,1 + a5,0.

Similarly, we can compute b1,0, b3,0, b5,0, b7,0 in column 0 by

b1,0 =b0,1 + b2,3, where b2,3 = b1,0 + b0,1,

b3,0 =b2,1 + b4,3, where b4,3 = b3,0 + b2,1,

b5,0 =b4,1 + b6,3, where b6,3 = b5,0 + b4,1,

b7,0 =b6,1 + b0,3 + b4,3, where b4,3 = b3,0 + b2,1

and b0,3 = b11,0 + b10,1,

and b0,0, b2,0, b4,0, b6,0 in column 0 by

b0,0 =(b0,2 + a8,3) + b0,1 + a7,0 + a6,1,

b2,0 =(b2,2 + a10,3) + b2,1 + a1,0 + a5,0 + a0,1 + a4,1,

b4,0 =(b4,2 + a0,3) + b4,1 + a3,0 + a7,0 + a2,1 + a6,1,

b6,0 =(b6,2 + a2,3) + b6,1 + a1,0 + a0,1.

The repair access of column 0 is also optimal. Column 1 can
be recovered by downloading 28 bits

a0,0, a1,0, a3,0, a4,0, a5,0, a7,0, a0,2, a1,2, a4,2, a5,2, a0,3 + b0,2,

a1,3 + b1,2, a4,3 + b4,2, a5,3 + b5,2, b0,0, b1,0, b3,0, b4,0, b5,0, b7,0,

b0,2 + a8,3, b1,2 + a9,3, b4,2 + a0,3, b5,2 + a1,3, b0,3, b1,3, b4,3, b5,3,

which are four bits more than the optimal repair access.
According to Theorem 3, the repair access of each of

column 2 and column 3 is optimal. We can repair column
2 by downloading 24 bits

a0,0, a1,0, a2,0, a3,0, a4,0, a5,0, a6,0, a7,0,

a0,1, a1,1, a2,1, a3,1, a4,1, a5,1, a6,1, a7,1,

a0,3 + b0,2, a1,3 + b1,2, a2,3 + b2,2, a3,3 + b3,2,

a4,3 + b4,2, a5,3 + b5,2, a6,3 + b6,2, a7,3 + b7,2,

from columns 0, 1 and 3, and repair column 3 by downloading
24 bits

b0,0, b1,0, b2,0, b3,0, b4,0, b5,0, b6,0, b7,0,

b0,1, b1,1, b2,1, b3,1, b4,1, b5,1, b6,1, b7,1,

b0,2 + a8,3, b1,2 + a9,3, b2,2 + a10,3, b3,2 + a11,3,

b4,2 + a0,3, b5,2 + a1,3, b6,2 + a2,3, b7,2 + a3,3,

from columns 0, 1 and 2.
For the MDS array codes [31]–[33] with general pa-

rameters k and r, each column has (p − 1)τ bits, we
can choose p to make the array codes satisfy the MDS
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TABLE VIII: The transformed array code with k = 2, r = 2, d = 3, p = 3 and τ = 4.

Column 0 Column 1 Column 2 Column 3
a0,0 a0,1 a0,2 = a0,0 + a0,1 a0,3 + b0,2 = a11,0 + a10,1 + b0,0 + b0,1
b0,0 b0,1 b0,2 + a8,3 = b0,0 + b0,1 + a7,0 + a6,1 b0,3 = b11,0 + b10,1
a1,0 a1,1 a1,2 = a1,0 + a1,1 a1,3 + b1,2 = a0,0 + a11,1 + b1,0 + b1,1
b1,0 b1,1 b1,2 + a9,3 = b1,0 + b1,1 + a8,0 + a7,1 b1,3 = b0,0 + b11,1
a2,0 a2,1 a2,2 = a2,0 + a2,1 a2,3 + b2,2 = a1,0 + a0,1 + b2,0 + b2,1
b2,0 b2,1 b2,2 + a10,3 = b2,0 + b2,1 + a9,0 + a8,1 b2,3 = b1,0 + b0,1
a3,0 a3,1 a3,2 = a3,0 + a3,1 a3,3 + b3,2 = a2,0 + a1,1 + b3,0 + b3,1
b3,0 b3,1 b3,2 + a11,3 = b3,0 + b3,1 + a10,0 + a9,1 b3,3 = b2,0 + b1,1
a4,0 a4,1 a4,2 = a4,0 + a4,1 a4,3 + b4,2 = a3,0 + a2,1 + b4,0 + b4,1
b4,0 b4,1 b4,2 + a0,3 = b4,0 + b4,1 + a11,0 + a10,1 b4,3 = b3,0 + b2,1
a5,0 a5,1 a5,2 = a5,0 + a5,1 a5,3 + b5,2 = a4,0 + a3,1 + b5,0 + b5,1
b5,0 b5,1 b5,2 + a1,3 = b5,0 + b5,1 + a0,0 + a11,1 b5,3 = b4,0 + b3,1
a6,0 a6,1 a6,2 = a6,0 + a6,1 a6,3 + b6,2 = a5,0 + a4,1 + b6,0 + b6,1
b6,0 b6,1 b6,2 + a2,3 = b6,0 + b6,1 + a1,0 + a0,1 b6,3 = b5,0 + b4,1
a7,0 a7,1 a7,2 = a7,0 + a7,1 a7,3 + b7,2 = a6,0 + a5,1 + b7,0 + b7,1
b7,0 b7,1 b7,2 + a3,3 = b7,0 + b7,1 + a2,0 + a1,1 b7,3 = b6,0 + b5,1

property and choose τ to achieve asymptotically optimal
repair bandwidth for each of the k information columns.
For j = 0, 1, . . . , k + r − 1, we can represent the (p − 1)τ
bits a0,j , a1,j , . . . , a(p−1)τ−1,j in column j and τ extra bits
a(p−1)τ,j , a(p−1)τ+1,j , . . . , apτ−1,j associated with column j

by polynomial aj(x) =
∑pτ−1
i=0 ai,jx

i ∈ F2[x]/(1 + xpτ ),
where the extra bit a(p−1)τ+µ,j with µ = 0, 1, . . . , τ − 1 is
computed by

a(p−1)τ+µ,j = aµ,j + aτ+µ,j + . . .+ a(p−2)τ+µ,j .

If we apply the first transformation with encoding coefficient
being xe for the columns from k to d of the MDS array
codes, we can obtain the transformed codes with each column
containing d− k+1 polynomials. We should carefully choose
the encoding coefficient in the transformation in order to make
sure that the efficient repair property of any information column
of original MDS array codes is preserved in the transformed
MDS array codes. In the example with k = 2, r = 2 and d = 3,
we choose the encoding coefficient of the transformation to
be x4. In fact, the efficient repair property of any information
column is also maintained if the encoding coefficient is any
polynomial of {1+x4, x8, 1+x8, x4+x8, 1+x4+x8}. However,
the efficient repair property of any information column is not
maintained if the encoding coefficient is other polynomial in
F2[x]/(1 + x12).

Note that the following two properties are the essential
reasons to preserve the efficient repair property. First, there is a
cyclic structure in the ring F2[x]/(1+x

12). The multiplication
of x4 and the polynomial a3(x) in F2[x]/(1 + x12) can be
implemented by cyclicly shifting 4 positions of a3(x). Second,
the exponent of the encoding coefficient of the transformation,
e = 4 is a multiple of two. Otherwise, the efficient repair
property of original array codes is not maintained. In the
example, we have d = k+r−1, i.e., all the surviving columns
are connected to recover a failure column. By applying one
transformation for the r parity columns, the transformed array
codes will have asymptotically or exactly optimal repair for
any single column. However, if d < k + r − 1, then we may
need to employ the transformation for many times, as like the
transformation for EVENODD codes. When we apply multiple

transformations for the array codes in [31]–[33], we should
not only carefully choose the encoding coefficient but also
the transformed columns in each transformation, in order to
preserve the efficient repair property of the information column.

B. Transformation for EVENODD to Preserve the Efficient
Repair Property of Any Information Column

The number of symbols stored in each column or node is
also referred to as the sub-packetization level. It is important to
have a low sub-packetization level for practical consideration.
It is shown in [43] that the lower bound of sub-packetization
of optimal access MDS codes over finite field with d = n− 1
is r(k−1)/r. The sub-packetization of MDS code constructions
over finite field with optimal repair access presented in [16],
[17] is (n − k)d

n
n−k e, for d = n − 1. ε-minimum storage

regenerating (ε-MSR) codes are proposed in [44] to reduce the
sub-packetization at a cost of slightly more repair bandwidth.
Existing constructions [33] of binary MDS array codes with
d = k + 1 and asymptotically optimal repair access for any
single information column show that the sub-packetization is
strictly less than p · 2

k
r−1+r−1 [33, Theorem 2], where p is

a prime and constant number. The existing constructions of
MDS codes with asymptotically or exactly optimal repair access
have an exponential sub-packetization level. The construction
of MDS codes with efficient repair for any column with lower
sub-packetization level is attractive. In the following, we take
EVENODD codes with r = 2 as an example to show how
to design new transformation to enable optimal repair for
any single parity column and the repair access of any single
information column is roughly 3/4 of all the information bits,
and thus the sub-packetization level is low.

Consider the example of EVENODD codes with k = 3,
r = 2 and p = 5. We have k = 3 information columns and
r = 2 parity columns. Let a0,j , a1,j , a2,j , a3,j be the four
bits in column j, where j = 0, 1, 2, 3, 4. Table IX shows the
example.

When we say one information bit is repaired by a parity
column (the first parity column or the second parity column), it
means that we repair the bit by downloading the parity bit in the
parity column that contains the failed information bits and all
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TABLE IX: The EVENODD code with k = 3, r = 2 and p = 5.
Column 0 Column 1 Column 2 Column 3 Column 4
a0,0 a0,1 a0,2 a0,3 = a0,0 + a0,1 + a0,2 a0,4 = a0,0 + a3,2 + (a3,1 + a2,2)
a1,0 a1,1 a1,2 a1,3 = a1,0 + a1,1 + a1,2 a1,4 = a1,0 + a0,1 + (a3,1 + a2,2)
a2,0 a2,1 a2,2 a2,3 = a2,0 + a2,1 + a2,2 a2,4 = a2,0 + a1,1 + a0,2 + (a3,1 + a2,2)
a3,0 a3,1 a3,2 a3,3 = a3,0 + a3,1 + a3,2 a3,4 = a3,0 + a2,1 + a1,2 + (a3,1 + a2,2)

the information bits that are used to compute the downloaded
parity bit except the failed information bit. For example, the
bit a0,0 is repaired by the first parity column, which means
that we download the parity bit a0,3 = a0,0 + a0,1 + a0,2
in the first parity column and two information bits a0,1, a0,2
to recover the information bit a0,0. According to the repair
method given in [27], we can repair two information bits of the
failed information column by the first parity column and the
other information bits by the second parity column. Consider
column 1. We can repair a0,1, a1,1 by

a0,1 =a0,0 + a0,2 + a0,3, where a0,3 = a0,0 + a0,1 + a0,2,

a1,1 =a1,0 + a1,2 + a1,3, where a1,3 = a1,0 + a1,1 + a1,2,

and repair a2,1, a3,1 by

a3,1 =a1,0 + a0,1 + a2,2 + a1,4,

where a1,4 = a1,0 + a0,1 + a3,1 + a2,2,

a2,1 =a3,0 + a1,2 + a3,1 + a2,2 + a3,4,

where a3,4 = a3,0 + a2,1 + a1,2 + a3,1 + a2,2.

We need to download 10 bits to recover column 1, i.e., the repair
bandwidth of column 1 is roughly 3/4 of all 12 information
bits.

Next, we present the transformation for general parameters
k and p of EVENODD codes with r = 2 and d = k+1. Each
column of the transformed EVENODD codes has 2(p − 1)
bits. The transformed EVENODD codes have optimal repair
bandwidth for each parity column and the repair bandwidth of
each information column is roughly 3/4 of all the information
bits.

Create two instances of EVENODD codes a0(x),
a1(x), . . . , ak+1(x) and b0(x), b1(x), . . . , bk+1(x), where
aj(x) =

∑p−2
i=0 ai,jx

i and bj(x) =
∑p−2
i=0 bi,jx

i. The
information polynomials are a0(x), a1(x), . . . , ak−1(x) and
b0(x), b1(x), . . . , bk−1(x), and the parity polynomials are
computed by[

ak(x) ak+1(x)
bk(x) bk+1(x)

]

=

[
a0(x) a1(x) · · · ak−1(x)
b0(x) b1(x) · · · bk−1(x)

]
1 1
1 x
...

...
1 xk−1

 .
Let aj = [a0,j , a1,j , . . . , ap−2,j ]

T and bj =
[b0,j , b1,j , . . . , bp−2,j ]

T be the coefficients of polynomials
aj(x) and bj(x), respectively, where j = 0, 1, . . . , k + 1.
Given a column vector a0, we define

a∗0 =[a1,0, a0,0, a3,0, a2,0, . . . , ap−2,0, ap−3,0]
T ,

ā0 =[a0,0, 0, a2,0, 0, . . . , ap−3,0, 0]
T .

The summation of two column vectors a0,a1 is define by

a0 ⊕ a1 = [a0,0 + a0,1, a1,0 + a1,1, . . . , ap−2,0 + ap−2,1]
T .

For example, when p = 5, we have

a0 ⊕ a1 = [a0,0 + a0,1, a1,0 + a1,1, a2,0 + a2,1, a3,0 + a3,1]
T ,

and

a∗0 =[a1,0, a0,0, a3,0, a2,0]
T ,

ā0 =[a0,0, 0, a2,0, 0]
T .

For j = 0, 1, . . . , k − 1, column j stores 2(p− 1) information
bits aj,bj. The first parity column stores 2(p− 1) parity bits

ak ⊕ bk = [a0,k + b0,k, a1,k + b1,k, . . . , ap−2,k + bp−2,k]
T ,

bk+1 = [b0,k+1, b1,k+1, . . . , bp−2,k+1]
T ,

and the second parity column stores 2(p− 1) parity bits

ak ⊕ b̄k ⊕ b∗k =[a0,k + b0,k + b1,k, a1,k + b0,k, . . . ,

ap−3,k + bp−3,k + bp−2,k, ap−2,k + bp−3,k]
T ,

ak+1 =[a0,k+1, a1,k+1, . . . , ap−2,k+1]
T .

We show that the transformed EVENODD codes satisfy
MDS property, i.e., we can retrieve all 2k(p− 1) information
bits from any k columns. Consider the k columns from
columns 2 to k + 1. First, we can compute (p − 1)/2
bits bi,k by (ai−1,k + bi−1,k) + (ai−1,k + bi−1,k + bi,k) for
i = 1, 3, . . . , p − 2 and compute ai,k by bi,k + (ai,k + bi,k)
for i = 1, 3, . . . , p − 2. Then, we can compute bi,k by
ai+1,k + (ai+1,k + bi,k) for i = 0, 2, . . . , p − 3 and compute
ai,k by bi,k + (ai,k + bi,k) for i = 0, 2, . . . , p − 3. Final-
ly, we can obtain the information bits b0,0, b1,0, . . . , bp−2,0
and b0,1, b1,1, . . . , bp−2,1 from b0,j , b1,j , . . . , bp−2,j for j =
2, 3, . . . , k + 1, as the EVENODD code is MDS code. The in-
formation bits a0,0, a1,0, . . . , ap−2,0 and a0,1, a1,1, . . . , ap−2,1
can be computed similarly. We can also retrieve all information
bits from any k − 1 information columns and any one parity
column. Consider the k columns from column 1 to k. We can
obtain k(p − 1) bits b0,j , b1,j , . . . , bp−2,j for j = 1, 2, . . . , k
from column 1 to k, and compute the information bits
b0,0, b1,0, . . . , bp−2,0. Then, we can compute bi,k from the
information bits bi,0, bi,1, . . . , bi,k−1, and compute ai,k by
ai,k = bi,k+(ai,k+bi,k) for i = 0, 1, . . . , p−2. Together with
(k − 1)(p− 1) bits a0,j , a1,j , . . . , ap−2,j with j = 1, 2, . . . , k
from column 1 to k, we can compute p− 1 information bits
a0,0, a1,0, . . . , ap−2,0. The decoding method from any k − 1
information columns plus any one parity column is similar.

Each parity column of the transformed EVENODD codes has
optimal repair access. We can repair column k by downloading
bj from column j for j = 0, 1, . . . , k − 1 and ak ⊕ b̄k ⊕ b∗k
from column k + 1. Specifically, we can compute bk,bk+1
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from b0,b1, . . . ,bk−1, and ak ⊕ bk by (ak ⊕ b̄k ⊕ b∗k) ⊕
b∗k ⊕ b̄k ⊕ bk. Similarly, we can repair column k + 1 by
downloading aj from column j for j = 0, 1, . . . , k − 1 and
ak⊕bk from column k. In the next theorem, we show that the
efficient repair property of any single information column of
EVENODD codes is preserved in the transformed EVENODD
codes.

Theorem 5. In the (k+ 2, k) EVENODD codes, suppose that
p−1 is a multiple of four and we can download the bits ai,j for
all i ∈ Sj and j = 0, 1, . . . , f − 1, f +1, . . . , k+1 to recover
column f , where 0 ≤ f ≤ k− 1, Sj denotes the set of indices
of the downloaded bits from column j and Sk = {0, 1, . . . , (p−
1)/2−1}. Then, column f of the transformed EVENODD codes
can be recovered by downloading ai,j , bi,j for all i ∈ Sj from
column j for j = 0, 1, . . . , f − 1, f + 1, . . . , k − 1, ai,k + bi,k
for all i ∈ Sk = {0, 1, . . . , (p− 1)/2− 1} and bi,k+1 for all
i ∈ Sk+1 from column k, ai,k+ bi,k+ bi+1,k and ai+1,k+ bi,k
for all i ∈ {0, 2, . . . , (p−1)/2−2} and ai,k+1 for all i ∈ Sk+1

from column k + 1.

Proof. Consider the repair of column f for the transformed
EVENODD codes. We have received the following bits

Column 0 ai,0 ∀i ∈ S0 and bi,0 ∀i ∈ S0

· · · · · ·
Column k − 1 ai,k−1 ∀i ∈ Sk−1 and bi,k−1 ∀i ∈ Sk−1

Column k ai,k + bi,k ∀i ∈ Sk and bi,k+1 ∀i ∈ Sk+1

Column ai,k + bi,k + bi+1,k, ai+1,k + bi,k
k + 1 ∀i ∈ {0, 2, . . . , p−5

2
} and ai,k+1 ∀i ∈ Sk+1

 .

We can calculate bi,k by (ai−1,k+bi−1,k)+(ai−1,k+bi−1,k+
bi,k) for i = 1, 3, . . . , (p− 1)/2− 1, and ai,k by bi,k +(ai,k +
bi,k) for i = 1, 3, . . . , (p − 1)/2 − 1. Then, we can compute
bi,k by ai+1,k + (ai+1,k + bi,k) for i = 0, 2, . . . , (p − 5)/2
and ai,k by bi,k + (ai,k + bi,k) for i = 0, 2, . . . , (p − 5)/2.
We thus obtain ai,k and bi,k for all i ∈ Sk = {0, 1, . . . , (p−
1)/2−1}. Recall that we can recover a0,f , a1,f , . . . , ap−2,f by
downloading the bits ai,j for all i ∈ Sj and j = 0, 1, . . . , f −
1, f + 1, . . . , k + 1. Therefore, we obtain the bits ai,j , bi,j for
all i ∈ Sj and j = 0, 1, . . . , f−, f +1, . . . , k+1, and the bits
a0,f , a1,f , . . . , ap−2,f and b0,f , b1,f , . . . , bp−2,f in column f
of the transformed EVENODD codes can be recovered.

By Theorem 5, the efficient repair property of any informa-
tion column of EVENODD codes with r = 2 is preserved after
the transformation, if p− 1 is a multiple of four. When r ≥ 3,
the repair method of information column of EVENODD codes
is different from that of EVENODD codes with r = 2. We
need to design new transformation carefully to preserve the
efficient repair property of information column and that will
be our future work.

Table X shows an example of the transformed code with
k = 3, r = 2 and p = 5. When f = 1, we have S0 = {0, 1, 3},
S2 = {0, 1, 2}, S3 = {0, 1} and S4 = {1, 3} according to the
repair method of the EVENODD code in Table IX. According
to Theorem 5, we can recover column 1 of the transformed
EVENODD code by downloading the following 20 bits.

a0,0, a1,0, a3,0, a0,2, a1,2, a2,2, b0,0, b1,0, b3,0, b0,2, b1,2, b2,2, a3,4,

a0,3 + b0,3, a1,3 + b1,3, b1,4, b3,4, a0,3 + b0,3 + b1,3, a1,3 + b0,3, a1,4.

Specifically, we can repair the bits a0,1, a1,1 and b0,1, b1,1 by

a0,1 =a0,0 + a0,2 + (a1,3 + b1,3) + (a1,3 + b0,3)+

(a0,3 + b0,3 + b1,3),

a1,1 =a1,0 + a1,2 + (a0,3 + b0,3) + (a1,3 + b1,3)+

(a0,3 + b0,3 + b1,3),

b0,1 =b0,0 + b0,2 + (a0,3 + b0,3) + (a1,3 + b1,3)+

(a0,3 + b0,3 + b1,3) + (a1,3 + b0,3),

b1,1 =b1,0 + b1,2 + (a0,3 + b0,3) + (a0,3 + b0,3 + b1,3),

and repair a2,1, a3,1, b2,1, b3,1 by

a3,1 =a1,0 + a0,1 + a2,2 + a1,4,

a2,1 =a3,0 + a1,2 + a3,1 + a2,2 + a3,4,

b3,1 =b1,0 + b0,1 + b2,2 + b1,4,

b2,1 =b3,0 + b1,2 + b3,1 + b2,2 + b3,4.

Therefore, we can recover column 1 by downloading 20 bits
and the efficient repair property of column 1 is preserved in
our transformation. We can also show that the efficient repair
property of any other information column is preserved similarly.

We can also show that any one parity column of the
transformed code is optimal. We can repair column 3 by
downloading 16 bits

bi,j for i = 0, 1, 2, 3 and j = 0, 1, 2, and
a0,3 + b0,3 + b1,3, a1,3 + b0,3, a2,3 + b2,3 + b3,3, a3,3 + b2,3.

Specifically, we can compute bi,3, bi,4 from bi,0, bi,1, bi,2 for
i = 0, 1, 2, 3, as EVENODD is MDS code. Then, we can
compute the other four bits in column 3 by

a0,3 + b0,3 =(a0,3 + b0,3 + b1,3) + b1,3,

a1,3 + b1,3 =(a1,3 + b0,3) + b0,3 + b1,3,

a2,3 + b2,3 =(a2,3 + b2,3 + b3,3) + b3,3,

a3,3 + b3,3 =(a3,3 + b2,3) + b2,3 + b3,3.

Therefore, the repair access of the first parity column is optimal.
Similarly, we can repair column 4 by downloading 16 bits

ai,j for i = 0, 1, 2, 3 and j = 0, 1, 2, and
b0,3 + a0,3, b1,3 + a1,3, b2,3 + a2,3, b3,3 + a3,3,

and the repair access of column 4 is optimal.
In order to obtain binary MDS array codes with low sub-

packetization that have efficient repair for any column, we
show in this section how to apply the transformation for
the array codes in [33] and EVENODD codes. Note that
the transformation given in this section can be viewed as
a variant of the transformation in Section II-B. We can also
apply the transformation given in this section multiple times
for EVENODD codes to obtain the multi-layer transformed
EVENODD codes that have optimal repair for any column,
as the construction in Section III-A. The difference between
two transformations is that, the efficient repair property of
any information column of codes in [33] is maintained
with the transformation given in this section, while not for
the transformation in Section II-B. The relationship of sub-
packetization and repair bandwidth of binary MDS array codes
is one of our future work.
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TABLE X: The transformed EVENODD code with k = 3, r = 2 and p = 5.
Column 0 Column 1 Column 2 Column 3 Column 4
a0,0, b0,0 a0,1, b0,1 a0,2, b0,2 a0,3 + b0,3, b0,4 a0,4, a0,3 + b0,3 + b1,3
a1,0, b1,0 a1,1, b1,1 a1,2, b1,2 a1,3 + b1,3, b1,4 a1,4, a1,3 + b0,3
a2,0, b2,0 a2,1, b2,1 a2,2, b2,2 a2,3 + b2,3, b2,4 a2,4, a2,3 + b2,3 + b3,3
a3,0, b3,0 a3,1, b3,1 a3,2, b3,2 a3,3 + b3,3, b3,4 a3,4, a3,3 + b2,3

V. DISCUSSION AND CONCLUSION

In this paper, we propose a generic transformation for
EVENODD codes that can enable optimal repair access for
the chosen d− k + 1 columns. Based on the proposed EVEN-
ODD transformation, we present the multi-layer transformed
EVENODDd k

d−k+1 e+d
r

d−k+1 e
that have optimal repair access

for all k + r columns. In EVENODDd k
d−k+1 e+d

r
d−k+1 e

, the d
helper columns can be selected from k + 1 and k + r − 1,
and some of the d helper columns should be specifically
selected. Moreover, we show that the proposed transformation
can also be employed in other existing binary MDS array codes,
such as codes in [26], [31]–[33], [35]–[37], that can enable
optimal repair access. How to combine the existing binary
MDS array codes with asymptotically optimal repair access by
our transformation to obtain the transformed binary MDS array
codes with asymptotically optimal repair access for all columns
and lower sub-packetization is an interesting and practical
future work. The implementation of the proposed transformed
binary MDS array codes in practical storage systems is another
one of our future works.
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