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Abstract

Fault tolerance is critical for distributed stream processing systems,

yet achieving error-free fault tolerance often incurs substantial per-

formance overhead. We present AF-Stream, a distributed stream

processing system that addresses the trade-off between performance

and accuracy in fault tolerance. AF-Stream builds on a notion

called approximate fault tolerance, whose idea is to mitigate backup

overhead by adaptively issuing backups, while ensuring that the er-

rors upon failures are bounded with theoretical guarantees. Our

AF-Stream design provides an extensible programming model for

incorporating general streaming algorithms, and also exports only

few threshold parameters for configuring approximation fault tol-

erance. Experiments on Amazon EC2 show that AF-Stream main-

tains high performance (compared to no fault tolerance) and high

accuracy after multiple failures (compared to no failures) under var-

ious streaming algorithms.

1. INTRODUCTION
Stream processing becomes an important paradigm for process-

ing data at high speed and large scale. As opposed to traditional

batch processing that is designed for static data, stream processing

treats data as a continuous stream, and processes every item in the

stream in real-time. For scalability, we can make stream process-

ing distributed, by processing streaming data in parallel through

multiple processes (or workers) or threads.

Given that failures can happen at any time and at any worker in a

distributed environment, fault tolerance is a critical requirement in

distributed stream processing. In particular, streaming algorithms

often keep internal states in main memory, which is fast but unre-

liable. Also, streaming data is generated continuously in real-time,

and will become unavailable after being processed. Thus, we need

to provide fault tolerance guarantees for both internal states and

streaming data. One approach is to issue regular backups for in-

ternal states and streaming data, so that when failures happen, they

can recover from backups and resume processing as normal with-

out any error. However, frequent backups can incur significant net-

work and disk I/Os, thereby compromising the stream processing

performance. Some stream processing systems (e.g., S4 [44] and

Storm [55]) aim for best-effort fault tolerance to trade accuracy for
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performance, but can incur unbounded errors and hence compro-

mise the correctness of outputs.

We propose AF-Stream, a distributed stream processing system

that addresses the trade-off between performance and accuracy in

fault tolerance. AF-Stream builds on a notion called approximate

fault tolerance, whose idea is to adaptively issue backup opera-

tions for both internal states and unprocessed items, while incur-

ring only bounded errors after failures are recovered. Specifically,

AF-Stream estimates the errors upon failures with the aid of user-

specified interfaces, and issues a backup operation only when the

errors go beyond the user-defined acceptable level.

We justify the trade-off with two observations. First, to mitigate

computational complexities, streaming algorithms tend to produce

“quick-and-dirty” results rather than exact ones (e.g., data synop-

sis) (§2.2). It is thus feasible to incur small additional errors due to

approximate fault tolerance, provided that the errors are bounded.

Also, the errors can often be amortized after the processing of large-

volume and high-speed data streams. Second, although failures are

prevalent in distributed systems, their occurrences remain relatively

infrequent over the lifetime of stream processing. Thus, incurring

errors upon failures should bring limited disturbance. We point out

that the power of approximation has been extensively addressed in

distributed computing (e.g., [2, 3, 35, 47, 49, 59, 60]). To the best of

our knowledge, AF-Stream is the first work that leverages approxi-

mation in achieving fault tolerance in distributed stream processing.

Our contributions are summarized as follows.

First, AF-Stream provides an extensible programming model for

general streaming algorithms. In particular, it exports built-in in-

terfaces and primitives that make fault tolerance intrinsically sup-

ported and transparent to programmers.

Second, AF-Stream realizes approximate fault tolerance, which

bounds errors upon failures in two aspects: state divergence and

number of lost items. We prove that the errors are bounded inde-

pendent of the number of failures and the number of workers in a

distributed environment. Also, the error bounds are tunable with

only three user-specified parameters to trade between performance

and accuracy. Note that AF-Stream adds no error to the common

case when failures never happen.

Third, we implement an AF-Stream prototype, with emphasis on

optimizing its inter-thread and inter-worker communications.

Finally, we evaluate the performance and accuracy of our AF-

Stream prototype on a 10 Gb/s Amazon EC2 cluster for various

streaming algorithms. AF-stream only degrades the throughput

by up to 4.7%, 5.2%, and 0.3% in heavy hitter detection, online

join, and online logistic regression, respectively, when compared

to disabling backups; meanwhile, its accuracy after 10 failures only

drops by a small percentage (based on algorithm-specific metrics)

when compared to without failures.
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Figure 1: Throughput of Spark Streaming with and without

backups on Amazon EC2.

2. STREAMING ALGORITHMS
We first overview general streaming algorithms. We narrow down

our study to three classes of streaming algorithms, in which we

identify their commonalities to guide our system design.

2.1 Overview and Motivation
A streaming algorithm comprises a set of operators for process-

ing a data stream of items. Each operator continuously receives an

input item, processes the item, and produces one or multiple output

items. It also keeps an in-memory state, which holds a collection of

values corresponding to the processing of all received input items.

The state is updated after each input item is processed. Also, an op-

erator produces new items with respect to the updated state. Since

items are produced and processed asynchronously and will become

unavailable after being processed, an operator often buffers items

until they are fully processed.

If failures never happen, we refer to the produced state and out-

put as the ideal state and ideal output, respectively. However, the

actual deployment environment is failure-prone. In this case, an

operator needs to generate its actual state and actual output in a

fault-tolerant manner. Specifically, an operator needs to handle: (i)

missing in-memory state and (ii) missing unprocessed items.

Suppose that we want to achieve error-free fault tolerance for an

operator, and ensure that both ideal and actual cases are identical

after recovery. This necessitates the availability of a prior state and

any following items, so that when a failure happens, we can retrieve

the prior state and resume the processing of the following items.

In particular, in stream processing, the items to be processed are

generated continuously, so we need to make periodic state backups

and issue a backup for every item in order to achieve error-free

fault tolerance. For example, Spark Streaming saves each state as a

Resilient Distributed Dataset (RDD) [62] in a mini-batch fashion,

and also saves each item via write-ahead logging [63].

However, making regular backups for both the state and each

item incurs excessive I/O overhead to normal processing. We moti-

vate this claim by evaluating the backup overhead of Spark Stream-

ing (v1.4.1) versus the mini-batch interval (i.e., the duration within

which items are batched). Note that the performance of Spark

Streaming is sensitive to the number of items in a mini-batch: hav-

ing small mini-batches aggravates backup overhead, while having

very large mini-batches increases the processing time to even ex-

ceed the mini-batch interval and hence makes the system unsta-

ble [15]. Thus, for a given mini-batch interval, we tune the stream

input rate that gives the maximum stable throughput. Figure 1

shows the throughput of Spark Streaming for Grep and WordCount,

measured on Amazon EC2 (see §4 for the details on the datasets

and experimental setup). We see that the throughput drops signifi-

cantly due to backups, for example, by nearly 50% for WordCount

when the mini-batch interval is 1 second.

2.2 Classes of Streaming Algorithms
This paper focuses on three classes of streaming algorithms that

have been well studied and widely deployed.

Data synopsis. Data synopsis algorithms summarize vital infor-

mation of large-volume data streams into compact in-memory data

structures with low time and space complexities. Examples include

sampling, histograms, wavelets and sketches [12], and have been

used in areas such as anomaly detection in network traffic [13, 17]

and social network analysis [53]. To bound memory usage of the

data structures, data synopsis algorithms are often designed to re-

turn estimates with bounded errors. For example, sampling al-

gorithms (e.g., [17]) perform computations on a subset of items;

sketch-based algorithms (e.g., [13, 17]) map a large key space into

a fixed-size two-dimensional array of counters.

Stream database queries. Stream databases manage data streams

with SQL-like operators as in traditional relational databases, and

allow queries to be continuously executed over unlimited streams.

Since some SQL operators (e.g., join, sorting, etc.) require mul-

tiple iterations to process items, stream database queries need to

adapt the semantics of SQL operators for streaming data. For ex-

ample, they restrict the processing of items over a time window,

or return approximate query results using data synopsis techniques

(e.g., sampling in online join queries [21, 40]).

Online machine learning. Machine learning aims to model the

properties of data by processing the data (possibly over iterations)

and identifying the optimal parameters toward some objective func-

tion. It has been widely used in web search, advertising, and an-

alytics. Traditional machine learning algorithms assume that all

data is available in advance and iteratively refine parameters to-

wards a global optimization objective on the entire dataset. To sup-

port streaming data, online machine learning algorithms define a

local objective function for each item with respective to the current

model parameters, and search for the locally optimal parameters.

After a large number of items are processed, it has been shown that

the local approach can converge to a global optimal point, subject

to certain conditions [24, 25, 65].

2.3 Common Features
We identify the common features of existing streaming algo-

rithms to be addressed in our system design. Table 1 elaborates

how our design choices are related to the common features.

Common primitive operators. We can often decompose an op-

erator of a streaming algorithm into a small number of primitive

operators, which form the building blocks of the same class of

streaming algorithms. For example, stream database queries are

formed by few operators such as map, union, and join [1, 20, 48];

sketch-based algorithms are formed by hash functions, matching,

and numeric arrays [61].

Intensive and skewed updates. The state of an operator often

holds update-intensive values, such as sketch counters [61] and

model parameters in online machine learning [35]. Also, state val-

ues are updated at different frequencies. For example, the coun-

ters corresponding to frequent items are updated at higher rates;

in online machine learning, only few model parameters are fre-

quently updated due to the sparsity nature of machine learning fea-

tures [35].

Bounding by windows. Streaming algorithms often work on a

bounded sequence of items of a stream. For example, some oper-

ators of stream database queries process a time window of items

(§2.2); some incremental processing systems (e.g., [8, 22, 38, 62])

divide a stream into mini-batches for processing.
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Table 1: Common features of streaming algorithms and their corresponding design choices.
Common features Corresponding design choices

Common primitive operators AF-Stream abstracts a streaming algorithm into a set of operators and maintains fault tolerance for
each operator (§3.2). It also realizes a rich set of built-in primitive operators (§3.6).

Intensive and skewed state updates AF-Stream supports partial state backup to reduce the backup size (§3.4.1). It also exposes interfaces
to let users specify which parts of a state are actually included in a backup (§3.3).

Bounding by windows AF-Stream resets thresholds based on windows (§3.5.2). It also exposes interfaces to let users spec-
ify window types and lengths (§3.3).

2.4 Distributed Implementation
For scalability, we can parallelize a streaming algorithm through

a distributed implementation. We identify two common distributed

approaches, which can be used individually or in combination.

Pipelining divides an operator into multiple stages, each of which

corresponds to an operator or a primitive operator (§2.3). The out-

put items of one stage can serve as input items to the next stage,

while different stages can process different items in parallel.

Operator duplication parallelizes stream processing through mul-

tiple copies of the same operator. There are two ways to distribute

loads across operator copies: data partitioning, in which each op-

erator copy processes a subset of data items of a stream, and state

partitioning, in which each operator copy manages a subset of val-

ues of a state. Both approaches can be used simultaneously in a

streaming algorithm.

3. AFSTREAM DESIGN
AF-Stream abstracts a streaming algorithm as a set of operators.

It maintains fault tolerance for each operator by making backups

for its state and unprocessed items. To realize approximate fault

tolerance, AF-Stream issues a backup operation only when the ac-

tual state and output deviate much from the ideal state and out-

put, respectively. This mitigates backup overhead, while incurring

bounded errors after failures are recovered.

AF-Stream’s approximate fault tolerance inherently differs from

existing backup-based approaches for distributed stream process-

ing. Unlike the approaches that achieve error-free fault tolerance

(e.g., [4,30,48]), AF-Stream issues fewer backups, thereby improv-

ing stream processing performance. Unlike the approaches that

achieve best-effort fault tolerance by also making fewer backups

(e.g., [44,55]), AF-Stream ensures that the errors are bounded with

theoretical guarantees. AF-Stream also differs from approximate

processing approaches (§5) in that it only makes approximations in

maintaining fault tolerance rather than in normal processing.

3.1 Design Assumptions
To bound the errors upon failures, AF-Stream makes the follow-

ing assumptions on streaming algorithms.

AF-Stream assumes that a single lost item (without any backup)

brings limited degradations to accuracy. Instead of focusing on

identifying a specific item (e.g., finding an outlier item), AF-Stream

is designed to analyze the aggregated behavior over a large-volume

stream of items, so each item has limited impact on the overall anal-

ysis. For example, in network monitoring, we may want to identify

the flows whose sums of packet sizes exceed a threshold. Each item

corresponds to a packet, whose maximum size is typically limited

by the network (e.g., 1,500 bytes). Note that this assumption is also

made by existing stream processing systems that build on approxi-

mation techniques (§5).

Note that after we recover a failed operator, there may be er-

rors when the restored operator resumes processing from an actual

state instead of from the ideal state. Nevertheless, such errors can
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Figure 2: AF-Stream architecture.

often be amortized or compensated after processing a sufficiently

large number of items. For example, online machine learning algo-

rithms can converge to the optimal solution even if they start from a

non-ideal state [23, 34, 52]. Thus, this type of errors brings limited

accuracy degradations, as also validated by our experiments (§4).

Finally, AF-Stream assumes that the errors across multiple du-

plicate operator copies can be aggregated. For example, machine

learning algorithms maintain linearly additive states [35], thereby

allowing the errors of multiple copies to be summable.

3.2 Architecture
Figure 2 shows the architecture of AF-Stream. AF-Stream com-

prises multiple processes, including a single controller and multi-

ple workers. Each worker manages a single operator of a stream-

ing algorithm, while the controller coordinates the executions of

all workers. AF-stream organizes workers as a graph, in which

one or multiple sources originate data streams, and one or multi-

ple destinations store the final results. For a pair of neighboring

workers, say w1 and w2, we call w1 an upstream worker and w2

a downstream worker if the stream processing directs from w1 to

w2. Specifically, a worker receives input items from either a source

or an upstream worker, processes the items, and forwards output

items to either a destination or a downstream worker.

AF-Stream also supports the feedback mechanism, which is es-

sential for some streaming algorithms (e.g., model convergence in

online machine learning [34]). It allows a downstream worker to

optionally send feedback messages to an upstream worker. In other

words, the communication between each pair of neighboring work-

ers is bi-directional.

The controller manages the execution of each worker, which pe-

riodically sends heartbeats to the controller. If a worker fails, the

controller recovers the failed state and data in a new worker. Also,

each worker issues backups to a centralized backup server, which

keeps backups in reliable storage. The backup server should be

viewed as a logical entity that can be substituted with any exter-

nal storage system (e.g., HDFS [51]). This paper assumes that the

controller and the backup server are always available and have suf-
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ficient computational resources, yet we can deploy multiple con-

trollers and backup servers for fault tolerance and scalability.

Each worker in AF-Stream comprises one upstream thread, one

downstream thread, and multiple compute threads. The upstream

thread forwards input items from either a source or an upstream

worker to one of the compute threads, while the downstream thread

forwards the output items from the compute threads to either a

destination or a downstream worker. In particular, multiple com-

pute threads can collaboratively process items, such that a compute

thread can partially process an item and forward the intermediate

results to another compute thread for further processing. Further-

more, the downstream thread can collect and forward any feedback

message from a downstream worker to the compute threads for pro-

cessing, and the upstream thread can forward any new feedback

message from the compute threads to an upstream worker. Our

implementation experience is that it suffices to have only one up-

stream thread and one downstream thread per worker to achieve

the required processing performance. Thus, we can reserve the re-

maining CPU cores for compute threads to perform heavy-weight

computations.

AF-Stream connects workers and threads as follows. For inter-

worker communications, AF-Stream connects each pair of upstream

and downstream workers via a bi-directional network queue. For

inter-thread communications, AF-Stream shares data across threads

via in-memory circular ring buffers. We carefully optimize both

network queue and ring buffer implementations so as to mitigate

communication overhead (§3.6).

3.3 Programming Model
AF-Stream manages two types of objects: states and items (§2.1),

whose formats are user-defined. Each operator is associated with

a state, and each state holds an array of binary values. Also, each

operator supports three types of items: (i) data items, which col-

lectively refer to the input and output items that traverse along

workers from upstream to downstream in stream processing, (ii)

feedback items, which traverse along workers from downstream to

upstream, and (iii) punctuation items, which specify the end of an

entire stream or a sub-stream for windowing (§2.3).

AF-Stream has two sets of interfaces: composing interfaces and

user-defined interfaces. We list them in our technical report [27] in

the interest of space.

The composing interfaces are used to define the AF-Stream ar-

chitecture and the stream processing workflows. Their function-

alities can be summarized as follows: (i) connecting workers (in

server hostnames) and the source/destination (in file pathnames),

(ii) adding threads to each worker, (iii) connecting threads within

each worker, (iv) pinning a thread to a CPU core, and (v) speci-

fying the windowing type (e.g., hopping window, sliding window,

decaying window) and window length.

On the other hand, user-defined interfaces allow programmers to

add specific implementation details. AF-Stream automatically calls

the user-defined interfaces and processes items based on their im-

plementations. Specifically, the upstream thread can be customized

to receive items, dispatch them to the compute threads, and op-

tionally send feedback items to upstream workers. Similarly, the

downstream thread can be customized to send output items and

optionally receive feedback items from downstream workers. The

compute thread can be customized to process data items, feedback

items, and punctuation items.

AF-Stream provides three user-defined interfaces for building

operators that realize approximate fault tolerance for state backup

(§3.4.1): (i) StateDivergence, which quantifies the divergence

between the current state and the most recent backup state, (ii)

BackupState, by which operators provide the state to be saved

in reliable storage via the backup server, and (iii) RecoverState,

by which operators obtain the most recent backup state from the

backup server. For example, suppose that we implement a sketch-

based algorithm and maintain a fixed-length array of counters as the

state (§2.2). Then StateDivergence can specify the divergence

as the Manhattan distance, Euclidean distance, or maximum dif-

ference of counter values; BackupState can issue backups for the

array of counter values; and RecoverState can restore the array

of counter values.

3.4 Approximate Fault Tolerance
AF-Stream maintains approximate fault tolerance for both the

state and items of each operator. We introduce both state backup

(§3.4.1) and item backup (§3.4.2) as individual backup mechanisms

that are complementary to each other and are configured by differ-

ent thresholds.

3.4.1 State Backup

Recall that AF-Stream calls BackupState to issue a backup op-

eration for the state of an operator to the backup server. Instead of

making frequent calls to BackupState, AF-Stream defers the call

to BackupState until the current state deviates from the most re-

cent backup state by some threshold (denoted by θ). Specifically,

AF-Stream caches a copy of the most recent backup state of the

operator in local memory. Each time when an item updates the

current state, AF-Stream calls StateDivergence to compute the

divergence between the current state and the cached backup state.

If the divergence exceeds θ, AF-Stream calls BackupState to is-

sue a backup for the current state, and updates the cached copy

accordingly.

Making the backup of an entire state may be expensive, espe-

cially if the state is large. To further mitigate backup overhead,

AF-Stream supports the backup of a partial state, such that pro-

grammers can only specify the list of updated values (together with

their indices) that make a state substantially deviate as the returned

state of BackupState. Partial state backup is useful when only few

values of a state are updated (§2.3).

Note that each state update triggers a call to StateDivergence.

For most operators and divergence functions (e.g., difference of

cardinalities, Manhattan distance, Euclidean distance, or maximum

difference of values), StateDivergence only involves few arith-

metic operations. For example, suppose that a divergence function

returns the sum of differences (denoted by D) of all values between

two states. If we update a value, then we can compute the new sum

of differences (denoted by D′) as D′ = D + ∆, where ∆ is the

change of the value. Thus, if the operator has only one compute

thread, the compute thread itself can evaluate the divergence with

limited overhead. On the other hand, if the operator has multiple

compute threads to process a state simultaneously, say by opera-

tor duplication (§2.4), then summing the divergence of all com-

pute threads can be expensive due to inter-thread communications.

AF-Stream currently employs a smaller threshold in each compute

thread, such that the sum of the thresholds does not exceed θ. For

example, we can set the threshold as θ/n if there are n > 1 com-

pute threads.

3.4.2 Item Backup

AF-Stream makes item backups selective, such that a worker de-

cides to make a backup for an item based on the item type and

a pre-defined threshold. For a punctuation item, a worker always

makes a backup for it to accurately identify the head and tail of a

sequence to be processed; for a data item or a feedback item, the
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Figure 3: Comparisons between upstream backup and our

receiver-side backup.

worker counts the number of pending items that have not yet been

processed. If the number exceeds a threshold (denoted by l), the

worker makes backups for all pending items so as to bound the

number of missing items upon failures.

In AF-Stream, item backups are issued by the receiver-side worker

(i.e., a downstream worker handles the backups of data and punc-

tuation items, while an upstream worker handles the backups of

feedback items). The rationale is that the receiver-side worker can

exactly count the number of unprocessed items and decide when to

issue item backups. Consider a data item that traverses from an up-

stream worker to a downstream worker. After the upstream worker

sends the data item, it keeps the data item in memory. When the

downstream worker receives the data item, it examines the number

of unprocessed data items. If the number exceeds the threshold l,
then the worker makes backups for all pending data items before

dispatching the data item to the compute threads for processing.

It also returns an acknowledgment (ACK) to the upstream worker,

which can then release the cached data item from memory.

Performing item backups on the receiver side enables us to han-

dle ACKs differently from the upstream backup approach [4, 30,

48], as shown in Figure 3. Upstream backup makes item backups

on the sender side. For example, an upstream worker is responsible

for making item backups for data items. It caches the backup items

in memory and waits until its downstream worker replies an ACK.

However, the downstream worker sends the ACK only when the

item is completely processed, and the upstream worker may need

to cache the item for a long time. In contrast, our receiver-side ap-

proach can send an ACK before an item is processed, and hence

limits the caching time in the upstream worker.

The rate of item backups in AF-Stream is responsive to the cur-

rent load of a worker. Specifically, when a worker is heavily loaded,

it will accumulate more unprocessed items and hence trigger more

backups. Nevertheless, the backup overhead remains limited since

item processing is the bottleneck in this case. On the other hand,

when a worker is lightly loaded, it issues fewer backups and avoids

compromising the processing performance.

Note that the sender-side worker may miss all unacknowledged

items if it fails. Currently AF-Stream does not make backups for

such unacknowledged items, but instead bounds the maximum num-

ber of unacknowledged items (denoted by γ) that a worker can

cache in memory. If the number of unacknowledged items reaches

γ, then the worker is blocked from sending new items until the

number drops. The value of γ can be generally very small as our

receiver-side approach allows a worker to reply an ACK immedi-

ately upon receiving an item.

3.4.3 Recovery

If the controller detects a failed worker, it activates recovery and

restores the state of the failed worker in a new worker. The new

worker calls RecoverState to retrieve the most recent backup

state. Also, AF-Stream replays the backup items into the new

worker, which can then process them to update the restored state.

Some backup items may have already been processed and up-

dated in the recovered state, and we should avoid the duplicate

processing of those items. AF-Stream uses the sequence number

information for backup and recovery. When a worker receives an

item, it associates the item with a sequence number. Each state also

keeps the sequence number of the latest item that it includes. When

AF-Stream replays backup items during recovery, it only chooses

the items whose sequence numbers are larger than the sequence

number kept in the restored state. To reduce the recovery time, our

current implementation restores fewer items by replaying only the

most recent sequence of consecutive items. Since the number of

unprocessed items before the replayed sequence is at most l, the

errors are still bounded.

3.4.4 UserConfigurable Thresholds

AF-Stream exports three user-configurable threshold parameters:

(i) Θ, the maximum divergence between the current state and the

most recent backup state, (ii) L, the maximum number of unpro-

cessed non-backup items and (iii) Γ, the maximum number of un-

acknowledged items. It automatically tunes the thresholds θ, l, and

γ at runtime with respect to Θ, L and Γ, respectively, such that the

errors are bounded independent of the number of failures that have

occurred and the number of workers in a distributed environment.

In Appendix, we present both theoretical analysis and numerical

examples on how these parameters are translated to the accuracy of

some streaming algorithms.

AF-Stream currently requires users to have domain knowledge

on configuring the parameters with respect to the desired level of

accuracy. We pose the issue of configuring the parameters without

user intervention as future work.

3.5 Error Analysis
We analyze how AF-Stream bounds the errors upon failures for

different failure scenarios in a distributed environment. We quan-

tify the error bounds in two aspects: (i) the divergence between

the actual and ideal states and (ii) the number of lost output items,

based on our assumptions (§3.1). In particular, we assume that

each lost item brings limited accuracy degradations. To quantify

the degradations, after updating the current state with an item, we

let the divergence between the current state and the most recent

backup state increase by at most α and the number of output items

generated by the update is at most β, where α and β are two con-

stants specific for a streaming algorithm. Note that both α and

β are introduced purely for our analysis, while programmers only

need to configure Θ, L, and Γ for building a streaming algorithm.

Also, our analysis does not assume any probability distribution of

failure occurrences.

3.5.1 Single Failure of a Worker

Suppose that AF-Stream sees only a single failure of a worker

over its lifetime. We consider the worst case when the failed worker

is restored, as shown in Figure 4. First, for the divergence between

the actual and ideal states, the restored state diverges from the ac-

tual state before the failure by at most θ, and each of the lost un-

processed items (with l at most) changes the divergence by at most

α. Thus, the total divergence between the actual and ideal states is

at most θ + lα, which is bounded.

Second, for the number of lost output items, AF-Stream loses at

most γ unacknowledged output items, and each of the unprocessed

items (with l at most) leads to at most β lost output items. Thus,

the total number of lost output items is at most γ + lβ, which is

also bounded.
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Figure 4: Errors due to a single failure of a worker.

3.5.2 Multiple Failures of a Single Worker

Suppose that AF-Stream sees multiple failures of a single worker

over its lifetime, while other workers do not fail. In this case, the

errors after each failure recovery will be accumulated. AF-Stream

bounds the accumulated errors by adapting the three thresholds θ,

l, and γ with respect to the three user-specified parameters Θ, L
and Γ, respectively, and the number of failures denoted by k. First,

a worker initializes the thresholds with θ = Θ

2
, l = L

2
, and γ = Γ

2
.

After each failure recovery, the worker halves each threshold; in

other words, after recovering from k failures, the thresholds be-

come θ = Θ

2k+1 , l = L
2k+1 , and γ = Γ

2k+1 . By summing up the

errors accumulated over k failures, we can show that the divergence

between the actual and ideal states is at most Θ+Lα and the num-

ber of lost output items is at most Γ + Lβ. Note that the errors are

bounded independent of the number of failures k.

Our adaptations imply that the thresholds become very small af-

ter many failures, so AF-Stream reduces to error-free fault toler-

ance and makes frequent backups. AF-Stream addresses this is-

sue by allowing the thresholds to be reset. In particular, many

streaming algorithms work with windowing, and AF-Stream can

use different strategies to reset the thresholds for different window-

ing types (§3.3). For example, for the hopping window, AF-Stream

resets the thresholds to the initial values θ= Θ

2
, l= L

2
, and γ= Γ

2
at

the end of a window; for the sliding window, AF-Stream tracks the

time of the last failure and increases the thresholds once a failure is

not included in the window; for the decaying window, AF-Stream

always keeps θ = Θ, l = L, and γ = Γ and disables threshold

adaptations, as the errors fade over time.

3.5.3 Failures in Multiple Workers

We address the general case when a general number of failures

can happen in multiple workers in a distributed environment. To

make the error bounds independent of the number of workers, AF-

Stream employs small initial thresholds, such that the accumulated

errors are the same as those in the single-worker scenario. Specifi-

cally, for operator duplication with n copies, AF-Stream initializes

each copy with θ = Θ

2n
, l = L

2n
, and γ = Γ

2n
; for a pipeline with

m operators, AF-Stream initializes the i-th operator in the pipeline

with θ= Θ

2βm−i , l= L
2βm−i , and γ= Γ

2βm−i (since each lost item

can lead to at most βm lost output items after m pipeline stages).

By summing the errors over all failures and all workers, we can

obtain the same error bounds as in §3.5.2.

3.5.4 Discussion

Our analysis shows that the incurred errors due to approximate

fault tolerance are bounded in terms of state divergence and number

of lost output items. How the error bounds quantify the accuracy

of a streaming algorithm is specific to the algorithmic design and

cannot be directly generalized for all algorithms. In Appendix, we

theoretically analyze two specific algorithms, namely heavy-hitter

detection in Count-Min Sketch [14] and Ripple Join [21], and show

how their accuracy will be degraded under approximate fault toler-

ance with respect to Θ, L, and Γ. We also resort to experiments to

empirically evaluate the accuracy for various parameter choices in

AF-Stream (§4).

3.6 Implementation
We have implemented a prototype of AF-Stream in C++. AF-

Stream connects the controller and all workers using ZooKeeper

[28] to manage fault tolerance. It also includes a backup server,

which is now implemented as a daemon that receives backup states

and items from the workers via TCP and writes them to its local

disk. While we currently implement AF-Stream as a clean-slate

system, we explore how to integrate our approximate fault toler-

ance notion into existing stream processing systems in future work.

Our current prototype has over 45,000 LOC in total.

Our prototype realizes a number of built-in primitive operators

and their corresponding implementations of StateDivergence,

BackupState, and RecoverState, as listed in Table 2. We now

support the numeric variable, vector, matrix, hash table, and set,

and provide them with built-in fault tolerance. For example, we can

keep elements in our built-in hash table, whose fault tolerance is au-

tomatically enabled. Programmers can also build their own fault-

tolerant operators via implementing the above three interfaces.

Communication optimization. Our prototype specifically opti-

mizes both inter-thread and inter-worker communications for high-

throughput stream processing. For inter-thread communications,

we implement a lock-free multi-producer, single-consumer (MPSC)

ring buffer [43]. We assign one MPSC ring buffer per destination,

and group output items from different compute threads by desti-

nations (§3.2). This offloads output item scheduling to compute

threads, and simplifies subsequent inter-worker communications.

Also, we only pass the pointers to the items to the ring buffer, so

that the rate of the number of items that can be shared is indepen-

dent of the item size.

For inter-worker communications, we implement a bi-directional

network queue with ZeroMQ [64]. ZeroMQ itself uses multiple

threads to manage TCP connections and buffers, and the thread

synchronization is expensive. Thus, we modify ZeroMQ to remove

its thread layer, and make the upstream and downstream threads of

a worker directly manage TCP connections and buffers. The modi-

fications enable us to achieve high-throughput stream processing in

a 10 Gb/s network (§4).

Asynchronous backups. We further mitigate the performance degra-

dation of making backups using an asynchronous technique similar

to [19]. Specifically, our prototype employs a dedicated backup

thread for each worker. It collects all backups of a worker and

sends them to the backup server, allowing other threads proceed

normal processing after generating backups. Note that the asyn-

chronous technique does not entirely eliminate backup overhead,

since the backup thread can still be overloaded by frequent backup

operations. Thus, we propose approximate fault tolerance to limit

the number of backup operations.

4. EXPERIMENTS
We evaluate AF-Stream on an Amazon EC2 cluster located in

the us-east-1b zone. The cluster comprises a total of 12 in-

stances: one m4.xlarge instance with four CPU cores and 16 GB

RAM, and 11 c3.8xlarge instances with 32 CPU cores and 60 GB

RAM each. We deploy the controller and the backup server in the
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Table 2: Built-in fault-tolerant primitive operators.
Operator StateDivergence BackupState RecoverState

Numeric variables Difference of two values Returns the variable value Assigns the variable value

Vector and matrix Manhattan distance; Euclidean distance; or maximum dif-
ference of values of an index

Returns a list of (index, value)
pairs and the length of the list

Fills in restored (index, value)
pairs

Hash table Manhattan distance, Euclidean distance, maximum differ-
ence of values of a key, difference of the numbers of keys

Returns a list of (key, value)
pairs and the length of the list

Inserts the restored (key, value)
pairs

Set Difference of the numbers of keys Returns a list of set members
and the length of the list

Inserts the restored set members

Table 3: Summary of streaming algorithms in our evaluation.

Algorithm
Upstream stage Downstream stage State Trace

(# workers) (# workers) (Divergence) Source # items Size

Grep Parse and send the lines with
the matched pattern (10)

Merge matched lines (1) None Gutenberg
[46]

300M 15 GB

WordCount Parse and send words with
intermediate counts (4)

Aggregate intermediate
word counts (7)

Hash table of word counts
(maximum difference of
word counts)

Gutenberg
[46]

300M 15 GB

HH detection Update packet headers into
a local sketch and send the
local sketch and local HHs
(10)

Merge local sketches into a
global sketch, and check if
local HHs are actual HHs
with the global sketch (1)

Matrix of counters
(maximum difference of
counter values in bytes)

Caida [9] 1G 40 GB

Online join Find and send tuples that
have matching packet head-
ers in two streams (2)

Perform join and aggrega-
tion (9)

Set of sampled items
(difference of number of
packets)

Caida [9] 1G 40 GB

Online LR Train and send the local
model, and update the local
model with feedback items
(10)

Merge local models to form
a global one, and send the
global model as feedback
items (1)

Hash table of model pa-
rameters (Euclidean dis-
tance)

KDD Cup
2012 [45]

110M 42 GB

m4.xlarge instance, and a worker in each of the c3.8xlarge in-

stances. We connect all instances via a 10 Gb/s network.

Our experiments consider five streaming algorithms: Grep, Word-

Count, heavy hitter detection, online join, and online logistic re-

gression. The latter three algorithms are chosen as the represen-

tatives for data synopsis, stream database queries, and online ma-

chine learning, respectively (§2.2). We pipeline each streaming al-

gorithm in two stages, in which the upstream stage reads traces,

processes items, and sends intermediate outputs to the downstream

stage for further processing. Each stage contains one or multiple

workers. We evenly partition a trace into subsets and assign each

subset to an upstream worker, which partitions its intermediate out-

puts to different downstream workers if more than one downstream

worker is used. Table 3 summarizes each algorithm, including the

functionalities and number of workers for both upstream and down-

stream stages, the definitions of the state and the corresponding

state divergence, as well as the source, number of items, and size

of each trace. We elaborate the algorithm details later when we

present the results.

Each experiment shows the average results over 20 runs. Before

each measurement, we load traces into the RAM of each upstream

worker, which then reads the traces from RAM during processing.

This eliminates the overhead of reading on-disk traces, and moves

the bottleneck to AF-Stream itself. In some of our experiments, we

may observe throughput on the order of GB/s.

We evaluate the throughput and accuracy of AF-Stream for each

algorithm, and show the trade-off with respect to Θ, L, and Γ. For

throughput, we measure the rate of the amount of data processed in

each upstream worker, and compute the sum of rates in all upstream

workers as the resulting throughput. For accuracy, we provide the

specific definition for each algorithm when we present the results.

4.1 Baseline Performance
We benchmark the baseline performance of AF-Stream using

two algorithms: Grep, which returns the input lines that match a

pattern, and WordCount, which counts the occurrence frequency of

each word. Note that Grep does not need any state to be kept in

a worker, while WordCount defines a state as a hash table of word

counts. We implement both algorithms based on their implementa-

tions in open-source Spark Streaming [62]. We use the documents

on Gutenberg [46] as the inputs, with the total size 15 GB.

Experiment 1 (Comparisons with existing fault tolerance ap-

proaches). We compare AF-Stream with two open-source stream

processing systems: Storm [55] and Spark Streaming [62]. We

consider three setups for each of them. The first setup disables

fault tolerance to provide baseline results. The second setup uses

their own available fault tolerance mechanisms. Specifically, Storm

tracks every item until it is fully processed (via a component called

Acker), yet it only achieves only best-effort fault tolerance as it

does not support state backups. On the other hand, Spark Stream-

ing achieves error-free fault tolerance by making state backups as

RDDs in mini-batches and making item backups via write-ahead

logging [63]. We set the mini-batch interval of Spark Streaming as

1 second (see details in §2.1). For both setups, we configure the sys-

tems to read traces from memory to avoid the disk access overhead.

Finally, the third setup achieves fault tolerance through Kafka [6], a

reliable messaging system that persists items to disk for availability.

We configure the systems to read input items from the disk-based

storage of Kafka, so that Kafka serves as an extra item backup sys-

tem to replay items upon failures. We configure the fault tolerance

mechanisms of Storm and Spark Streaming based on the official

documentations; for Kafka integration, we refer to [54, 56]. In par-

ticular, Kafka and write-ahead logging in Spark Streaming have the

same functionality, so for performance efficiency, it is suggested to

disable write-ahead logging when Kafka is used [54]. On the other

hand, other fault tolerance approaches can be used in conjunction

with Kafka. We present all combinations in our results.
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Table 4: Experiment 1 (Comparisons with existing fault toler-

ance approaches).

Grep WordCount

Storm

No fault tolerance 262.04 MB/s 901.47 MB/s

With item backup only 100.65 MB/s 571.31 MB/s

With Kafka only 85.79 MB/s 192.66 MB/s

With Kafka + item backup 80.14 MB/s 174.30 MB/s

Spark Streaming

No fault tolerance 178.61 MB/s 754.02 MB/s

With RDD + write-ahead logging 93.61 MB/s 466.07 MB/s

With Kafka only 81.49 MB/s 147.28 MB/s

With Kafka + RDD 75.09 MB/s 140.80 MB/s

AF-Stream implementation

No fault tolerance 3.55 GB/s 1.92 GB/s

Mini-batch 358.16 MB/s 380.49 MB/s

Upstream backup 379.61 MB/s 373.89 MB/s

Approximate fault tolerance 3.48 GB/s 1.88 GB/s

In addition, we implement existing fault tolerance approaches

in AF-Stream and compare them with approximate fault tolerance

under the same implementation setting. We consider mini-batch

and upstream backup. Mini-batch follows Spark Streaming [62]

and makes backups for mini-batches. To realize the mini-batch ap-

proach in AF-Stream, we divide a stream into mini-batches with

the same number of items, such that the number of items per mini-

batch is the maximum number while keeping the system stable

(§2.1). Our approach generates around 800 mini-batches. Our

modified AF-Stream then issues state and item backups for each

mini-batch. On the other hand, upstream backup [29] provides

error-free fault tolerance by making backups in upstream workers.

To realize upstream backup, we issue a backup for every data item,

while we issue a state backup every 1% of data items. In addition

to saving items via the backup server, both approaches also keep

the items in memory for ACKs. Once the memory usage exceeds a

threshold (1 GB in our case), we save any new item to local disk.

Finally, we set Θ= 104, L= 103, and Γ= 103 in AF-Stream for

approximate fault tolerance.

Table 4 shows the throughput of different fault tolerance ap-

proaches. Both Storm and Spark Streaming see throughput drops

when fault tolerance is used. Compared to the throughput without

fault tolerance, even the most modest case degrades the throughput

by around 37% (i.e., Storm’s item backup for Grep). We find that

the bottlenecks of both systems are mainly due to frequent item

backups. Also, Kafka integration achieves even lower throughput

since Kafka incurs extra I/Os to read traces from disk. In contrast,

AF-Stream with approximate fault tolerance issues fewer backup

operations. It achieves 3.48 GB/s for Grep and 1.78 GB/s for Word-

Count, both of which are close to when AF-Stream disables fault

tolerance. Note that AF-Stream outperforms Spark Streaming and

Storm even when they disable fault tolerance. The reason is that

AF-Stream has a more simplified implementation.

Experiment 2 (Impact of thresholds on performance). We ex-

amine how the thresholds Θ, L, and Γ affect the performance of

AF-Stream in different aspects. Since Grep does not keep any state,

we focus on WordCount. We vary Θ and L, and fix Γ=103. When

Θ and L are sufficiently large (i.e., close to infinity), we in essence

disable both state and item backups, respectively.

Figure 5(a) presents the throughput of AF-Stream versus L for

different settings of Θ and the case of disabling state backups.

Compared to disabling state backups, the throughput loss is 33%
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Figure 5: Experiment 2 (Impact of thresholds on WordCount).

when Θ = 1, but we reduce the loss to 10% by setting Θ = 10.

Figure 5(b) also presents the recovery time when recovering a

worker failure, starting from the time when a new worker process

is resumed until it starts normal processing. A smaller Θ implies a

longer recovery time, as we need to make backups for more updated

state values in partial backup (§3.4.1). Nevertheless, the recovery

time in all cases is less than one second.

We reason the throughput by showing the fractions of state and

item backup operations over the total number of items. Figure 5(c)

shows that AF-Stream issues state backups for less than 30% of

items when Θ ≥ 10 (where we fix L=1). Figure 5(d) shows that

increasing Θ also reduces the fraction of item backups (e.g., to less

than 20% when Θ ≥ 10), mainly because the compute threads have

more available resources to process items rather than perform state

backups. This reduces the number of unprocessed items, thereby

issuing fewer item backups.

4.2 Performanceaccuracy Tradeoffs
We examine how AF-Stream trades between performance and

accuracy. We evaluate its throughput when no failure happens,

while we evaluate its accuracy after recovering from system fail-

ures in which all workers fail. To mimic a system failure, we inject

a special item in the stream to a worker. When the worker reads

the special item, it sends a remote stop signal to kill all worker pro-

cesses. We then resume all worker processes, recover all backup

states, and replay the backup items. We inject the special item mul-

tiple times to generate multiple failures over the entire stream. We

consider the other three streaming algorithms, which are more com-

plicated than Grep and WordCount.

In the following, we vary Θ and L, and fix Γ = 103. Here,

Γ represents the maximum number of unacknowledged items in

upstream workers. We observe that the actual number of unac-

knowledged items is small and they have limited impact on both

performance and accuracy in our experiments. Thus, we focus on

the physical meanings of L and Θ in each algorithm and justify our

choices of the two parameters.

Experiment 3 (Heavy hitter detection). We perform heavy hit-

ter (HH) detection in a stream of packet headers from Caida [9],

where the total packet header size is 40 GB. We define an HH as

a source-destination IP address pair whose total payload size ex-

8



0

5

10

15

1 10 100 1k Inf
L

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Θ=0
Θ=10k
Θ=100k
Θ=Inf

0.875

0.900

0.925

0.950

0.975

1.000

1 2 3 4 5 6 7 8 9 10
Number of system failures

P
re

c
is

io
n

Error−free
Θ=10k, L=100
Θ=100k, L=1k

(a) Throughput (b) Precision

Figure 6: Experiment 3 (Heavy hitter detection).

ceeds 10 MB. We implement HH detection based on Count-Min

Sketch [14]. Each worker holds a Count-Min Sketch with four

rows of 8,000 counters each as its state. Each packet increments

one counter per row by its payload size. We maintain the counters

in a matrix that has built-in fault tolerance (§3.6). Also, an upstream

worker sends local sketches and detection results to a downstream

worker as punctuation items, for which we ensure error-free fault

tolerance (§3.4.2).

In our implementation, Θ is the maximum difference of counter

values (in bytes) between the current state and the most recent

backup state and L is the maximum number of unprocessed non-

backup packets. We choose Θ ≤ 105 and L ≤ 103. If the packet

size is at most 1,500 bytes, our choices account for at most 1.5 MB

of counter values, much smaller than our selected threshold 10 MB.

We measure the throughput of AF-Stream as the total packet

header size processed per second. To measure the accuracy, one

important fix is that we need to address the missing updates due

to approximate fault tolerance. In particular, the missing updates

cause the restored counter values to be smaller than the original

counter values before a failure. To compensate the missing updates,

we add each counter by Θ/2k + Lα/2k when restoring counter

values after the k-th failure (where k ≥ 1). This ensures the zero

false negative rate of Count-Min Sketch, while increasing the false

positive rate by a bounded value. We measure the accuracy by the

precision, defined as the ratio of the number of actual HHs to the

number of returned HHs (which include false positives).

Figure 6 presents the throughput and precision of AF-Stream for

HH detection. If we disable both state and item backups (i.e., Θ
and L are close to infinity), the throughput is 12.33 GB/s, and the

precision is 98.9% when there is no failure. With approximate fault

tolerance, if Θ=105 and L=103, the throughput decreases by up

to 4.7%, yet the precision only decreases to 92.8% after 10 system

failures. If we set Θ=104 and L=100, the throughput drops by

around 15%, while the precision decreases to 95.5%.

Experiment 4 (Online join). Online join is a basic operation in

stream database queries. This experiment considers an online join

operation that correlates two streams of packet headers of differ-

ent cities obtained from Caida [9], with the total packet header size

40 GB. Our goal is to return the tuples of destination IP address and

timestamp (in units of seconds) that have matching packet headers

in both streams, meaning that both streams visit the same host at

about the same time. We partition the join operator into multiple

workers, each of which runs a Ripple Join algorithm [21] to sample

a subset of packets for online join at a sampling rate 10%. Each

worker keeps the sampled packets in a set with built-in fault toler-

ance (§3.6).

Here, Θ represents the maximum difference of the numbers of

packets between the current state and the most recent backup state,

and L is the maximum numbers of unprocessed non-backup pack-

ets. We find that our sampling rate can obtain around 100 million
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Figure 7: Experiment 4 (Online join).

packets. Thus, we set Θ≤105 and L≤103 to account for at most

0.1% of sampled packets.

We again measure the throughput of AF-Stream as the total packet

header size processed per second. To measure the accuracy, we

issue an aggregation query for the total number of joined tuples.

Ripple join returns the estimated number of tuples by dividing the

number of joined tuples in the sampled set by the sampling rate.

We measure the accuracy as the relative estimation error, defined

as the percentage difference of the estimated number from the ac-

tual number without any sampling.

Figure 7 presents the throughput and relative estimation error

of AF-Stream for online join. If we disable both state and item

backups, the throughput is 6.96 GB/s. The relative estimation error

is 9.1% when no failure happens. If we enable approximate fault

tolerance, the throughput drops by 5.2% for Θ=105 and L=103,

and by 12% for Θ=104 and L=100, while the relative estimation

error only increases to 11.3% and 10.6%, respectively, even after

10 system failures.

Experiment 5 (Online logistic regression). Logistic regression

(LR) is a classical algorithm in machine learning. We use online

LR to predict advertisement click-throughs for a public trace in

KDD Cup 2012 Track 2 [45], which contains a list of 110 million

tuples with a total size 42 GB. Each tuple is associated with a label

and multiple features. We evenly divide the entire trace into two

halves, one as a training set and another as a test set. We train the

model with a distributed stochastic gradient descent (SGD) tech-

nique [34], in which each upstream worker trains its local model

with a subset of the training set, and regularly sends its local model

to a single downstream worker (every 103 tuples in our case) in the

form of a punctuation item (§3.4.2). The online LR algorithm has a

feedback loop, in which the downstream worker computes the aver-

age of the model parameters to form a global model, and sends the

global model to each upstream worker in the form of a feedback

item. The upstream worker updates its local model accordingly.

Each upstream worker stores the model parameters in a hash table

as its state.

Here, Θ represents the Euclidean distance of the model param-

eters, and L is the maximum number of unprocessed non-backup

tuples for model training. As our model has more than 106 fea-

tures, we set Θ≤ 10 and L≤ 103 to limit the errors to the model

parameters. This setting implies an average Euclidean distance of

less than
√

Θ/106 = 0.01 for each feature parameter and at most

L/(110× 106)=0.001% of lost tuples.

We measure the throughput as the number of tuples processed

per second. To measure the accuracy, we predict a label for each

tuple in the test set based on its features by LR, and check if the

predicted label is identical to the true label associated with the tu-

ple. We measure the accuracy as the prediction rate, defined as the

fraction of correctly predicted tuples over all tuples in the test set.

Figure 8 presents the throughput and prediction rate of AF-Stream
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Figure 8: Experiment 5 (Online logistic regression).

Table 5: Comparisons of fault tolerance approaches for HH

detection, online join and online LR with L=103 and Γ=103.
HH detection, Online join, Online LR,

Θ = 105 Θ = 105 Θ = 10

No fault tolerance 12.33 GB/s 6.96 GB/s 62,699 tuples/s

Mini-batch 0.91 GB/s 0.89 GB/s 14,770 tuples/s

Upstream backup 0.89 GB/s 0.87 GB/s 12,827 tuples/s

Approximate fault
tolerance

11.77 GB/s 6.59 GB/s 62,292 tuples/s

for online LR. The throughput is 62,000 tuples/s when we disable

state backups. If we set Θ=10 and L=103, or Θ=1 and L=100,

the throughput is only less than that without state and item back-

ups by up to 0.3%. The reason is that the model has a large size

with millions of features and incurs intensive computations. Thus,

the throughput drops due to state backups become insignificant. In

addition, the prediction rate is 94.3% when there is no failure. The

above two settings of Θ and L decrease the prediction rate to 90.4%

and 92.9%, respectively, after 10 system failures.

Discussion. Our results demonstrate how AF-Stream addresses the

trade-off between performance and accuracy for different parame-

ter choices. We also implement the three algorithms under existing

fault tolerant approaches as in Experiment 1, and Table 5 summa-

rizes the results. We observe that both mini-batch and upstream

backup approaches reduce the throughput to less than 25% com-

pared to disabling fault tolerance, while approximate fault tolerance

achieves over 95% of the throughput.

5. RELATED WORK

Best-effort fault tolerance. Some stream processing systems only

provide best-effort fault tolerance. They either discard missing

items (e.g., [44]) or missing states (e.g., [5, 33, 55]), or simply

monitor data loss and return the data completeness to developers

(e.g., [31, 39]). These systems may have unbounded errors in the

face of failures, making the processing results useless. In contrast,

AF-Stream bounds errors upon failures with theoretical guarantees.

Error-free fault tolerance. Early stream processing systems ex-

tend traditional relational databases to distributed stream databases

to support SQL-like queries on continuous data streams. They

support error-free fault tolerance, and often adopt active standby

(e.g., [7, 50]) or passive standby (e.g., [10, 29, 30, 32]). Active

standby employs backup nodes to execute the same computations

as primary nodes, while passive standby makes periodic backups

for states and items to backup nodes. Both approaches, however,

are expensive due to maintaining redundant resources (for active

standby) or issuing frequent backup operations (for passive standby).

Some stream processing systems realize upstream backup, in

which an upstream worker keeps the items that are being processed

in its downstream workers until all downstream workers acknowl-

edge the completion of the processing. The upstream worker re-

plays the kept items when failures happen. This approach is used

extensively by previous studies [4, 18, 26, 37, 42, 48, 57, 58]. Up-

stream backup generally incurs significant overhead to normal pro-

cessing, as a system needs to save a large number of items for pos-

sible replays (§3.4.2).

To mitigate the impact on normal processing, asynchronous state

checkpoints [19, 41] allow normal processing to be performed in

parallel with state backups. However, they are not designed for

stream processing and do not address item backups, which could

be expensive. StreamScope [36] provides an abstraction to handle

failure recovery, but does not address how to trade between perfor-

mance and accuracy in fault tolerance as in AF-Stream.

Incremental processing. Incremental processing systems extend

batch processing systems for streaming data, by incrementally batch-

ing processing at small timescales. Some systems extend MapRe-

duce [16] by pipelining mapper and reducer tasks (e.g., [11]), while

others explicitly divide a stream into mini-batches and run batch-

based processing for each mini-batch (e.g., [8, 22, 38, 62]). Incre-

mental processing systems inherently support error-free fault toler-

ance because all data is available to regenerate states upon failures,

but they incur high I/O overhead in saving all items for availability.

Approximation techniques. Recent distributed systems have ex-

tensively adopted approximation techniques to improve performance.

For example, BlinkDB [2] is a database which samples a subset of

data to reduce query latency. Some machine learning systems (e.g.,

[35, 59, 60]) defer synchronization to reduce communication costs.

In the context of stream processing, JetStream [49] deploys tunable

operators that automatically trade accuracy for bandwidth saving

in wide-area stream processing. Approximate Spark Streaming [3]

samples a subset of items in continuous streams for actual process-

ing. AF-Stream differs from them by leveraging approximations in

fault tolerance for distributed stream processing.

Zorro [47] introduces approximation techniques to handle fail-

ures in graph processing. It exploits vertex replication in distributed

graph processing to reconstruct lost states with a high probability.

While the idea is similar to approximate fault tolerance, it is not ap-

plicable for stream processing since streaming data does not exhibit

such replication nature.

6. CONCLUSIONS
We propose AF-Stream, a distributed stream processing system

that realizes approximate fault tolerance for both internal states and

unprocessed items. AF-Stream achieves not only high performance

by reducing the number of backup operations, but also high accu-

racy by bounding errors upon failures with theoretical guarantees.

It provides an extensible programming model and exports user-

specified threshold parameters for configuring the performance-

accuracy trade-off. Experiments on our AF-Stream prototype demon-

strate its high performance and high accuracy in various streaming

algorithms. The source code of our AF-Stream prototype is avail-

able at: http://ansrlab.cse.cuhk.edu.hk/software/afstream.
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APPENDIX

A. ANALYSIS
In this section, we extend the analysis in §3.5 to derive the error

bounds of two streaming algorithms with respect to Θ, L, and Γ.

A.1 Heavy Hitter Detection
We consider the heavy hitter (HH) detection with Count-Min

Sketch [14]. Count-Min Sketch maintains a matrix of counters

with r rows and w counters per row to keep track of the values

of the keys. Given a threshold φ, a key x is reported as an HH if its

estimated value exceeds φ. Lemma 1 presents the error probability

of HH detection for an arbitrary key x with the true value T (x).

LEMMA 1 ( [14]). Consider a Count-Min Sketch with r =
log

1/2 δ rows and w = U
ǫφ

counters per row, where U denotes

the sum of the values of all keys, and ǫ and φ are error parameters.

It reports every HH x where T (x) ≥ φ without any error. For a

non-HH x with T (x) < (1 − ǫ)φ, it is reported as an HH with an

error probability at most δ.

THEOREM 1. Suppose that AF-Stream deploys a Count-Min Sketch

with the same setting as Lemma 1 and the compensation method in

Experiment 3 (§4.2). The sketch reports all HHs. On the other

hand, upon a single failure, for an arbitrary key x with the true

value T (x) < (1− ǫ)φ−Θ−αL, it is reported as an HH with an

error probability at most δ.

PROOF. With the compensation method, AF-Stream overesti-

mates a key by at most Θ + αL, but does not underestimate any

keys. Thus, we ensure that every HH x with T (x) ≥ φ. On the

other hand, let T̃ (x) denote the estimated value of key x. For a

non-HH x with T (x) < (1 − ǫ)φ − Θ − αL, it is reported as an

HH if and only if its estimate value T̃ (x) ≥ φ. Thus, Pr{T̃ (x) ≥

φ} = Pr{T̃ (x) − T (x) ≥ φ − T (x)} ≤ Pr{T̃ (x) − T (x) ≥
ǫφ+Θ+ αL} ≤ δ, due to Markov’s inequality [14].

Example. Consider a network traffic stream where the total vol-

ume of flows in a window is U = 40 GB and flows exceeding

φ = 10MB are HHs. Let δ = 1/16 and ǫ = 1/2. By setting

r = log
1/2 δ = 4 and w = U

ǫφ
= 8192, a Count-Min Sketch

reports all HHs. For any non-HH less than 5 MB (i.e., (1 − ǫ)φ),

it is falsely reported as an HH with an error probability at most

δ = 1/16 based on Lemma 1.

Suppose that we run HH detection with Count-Min Sketch on

AF-Stream. Here, we assume α = 1,500, denoting the maximum

packet size in bytes. If we configure L = 103 and Θ = 105, then

the keys with sizes less than 3.5 MB (i.e., (1 − ǫ)φ − Lα − Θ)

will be falsely reported as HHs with an error probability at most

δ = 1/16 based on Theorem 1.

A.2 Stream Database Queries
We study Ripple Join [21], an online join algorithm that samples

a subset of items in two streams and performs join operations on

the sampled subset. Let n be the number of sampled items. For

aggregation queries (e.g., SUM, COUNT, and AVG), we denote

the true value and estimate value by µ and µ̂, respectively. Ripple

Join provides the following guarantee of the aggregation error.

LEMMA 2 ( [21]). When Ripple Join is applied to n sampled

items, it guarantees that Pr{µ̂ ∈ [µ − ǫn, µ + ǫn]} ≥ 1 − δ,

where ǫn = z√
n

and z is a constant number depending on δ and

the specific aggregation.

AF-Stream loses sampled items in failure recovery, which is equiv-

alent to decreasing the sampling rate in Ripple Join. Therefore,

AF-Stream (slightly) increases the aggregation error as fewer items

are sampled. Theorem 2 quantifies the new aggregation error.

THEOREM 2. When AF-Stream applies Ripple Join to n sam-

pled items, it guarantees that Pr{µ̂ ∈ [µ− ǫn, µ+ ǫn]} ≥ 1− δ,

where ǫn = z√
n−Θ−Lβ−Γ

and z is a constant depends on δ, n and

the specific aggregation.

PROOF. Recall that AF-Stream defines the state divergence as

the difference of the numbers of items between the current state

and the most recent backup state in Experiment 4. Thus, α = 1,

since each lost item implies a difference of one in the number of

items. AF-Stream ensures that the total number of lost sampled

items is at most Θ+ α(Γ + Lβ) = Θ + Γ + Lβ. By replacing n
in Lemma 2 with n−Θ− Γ− Lβ, the theorem concludes.

Example. Consider two streams with 109 items in a window and

Ripple Join employs a sampling rate 10%, leading to an average of

108 sampled items. In this case, the error is less than z
10,000

with a

probability at least 1− φ based on Lemma 2.

Suppose that we run Ripple Join on AF-Stream. Here, β is the

maximum number of items with which an item can join. Its value

depends on how fast a stream is generated and the number of items

that we apply the join operation. For example, in Experiment 4

(§4.2), we find that the number of items being joined is no more

than 100, so we let β = 100. Suppose that we configure Θ =
105, L = 103, Γ = 103, AF-Stream loses at most 201, 000 (i.e.,

Θ+Lβ +Γ) sampled items and increases the error from z
10,000

to
z

9,989
based on Theorem 2.
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B. INTERFACES AND BUILTIN PRIMITIVE OPERATORS IN AFSTREAM

Table 6: Composing Interfaces in C++ Syntax.

Entities Functions Descriptions

Worker void AddUpstreamWorker(string& upName) Adds an upstream worker

void AddDownstreamWorker(string& downName) Adds a downstream worker

void AddUpstreamThread(Thread& thread) Plugs in the upstream thread

void AddDownstreamThread(Thread& thread) Plugs in the downstream thread

void AddComputeThread(Thread& thread) Plugs in a compute thread

void PinCPU(Thread& thread, int core) Pins a thread to a CPU core

void SetWindow(int type, int length) Sets the type and length of a window (the window type can
be the hopping window, the sliding window, or the decay-
ing window)

void Start() Starts the execution of the worker

Compute void ConnectFromUpstreamThread() Associates the compute thread with the upstream thread

thread void ConnectToDownstreamThread() Associates the compute thread with the downstream thread

void ConnectToComputeThread(Thread& dstThread) Connects the compute thread to another compute thread

void SendToUp(string& upName, Item& feedback) Sends a feedback item to an upstream worker

void SendToDown(string& downName, Item& data) Sends a data item to a downstream worker

Table 7: User-defined Interfaces in C++ Syntax.
Entities Functions Descriptions

Upstream thread Item ReceiveDataItem() Receives an input item from data sources or upstream
workers

int GetDestComputeThread(Item& item) Returns the compute thread which an item is dispatched

void SendFeedbackItem(Item& feedback) Sends a feedback item to an upstream worker

Downstream thread void SendDataItem(Item& feedback) Sends output items

Item ReceiveFeedbackItem() Receives a feedback item from downstream workers

Compute thread bool ProcessData(Item& data) Processes a data item

bool ProcessFeedback(Item& feedback) Processes a feedback item

bool ProcessPunctuation(Item& punc) Processes a punctuation item

Fault-tolerant operator double StateDivergence() Gets the divergence of the up-to-date state and the backup
state

State BackupState() Returns the state to be saved by AF-Stream

void RecoverState(State& state) Obtains the most recent backup state from AF-Stream
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