
1

Cross-Rack-Aware Single Failure Recovery for
Clustered File Systems

Zhirong Shen, Patrick P. C. Lee, Jiwu Shu, and Wenzhong Guo

Abstract—How to improve the performance of single failure recovery has been an active research topic because of its prevalence in
large-scale storage systems. We argue that when erasure coding is deployed in a clustered file system (CFS), existing single failure
recovery designs are limited in different aspects: neglecting the bandwidth diversity property in a CFS architecture, targeting specific
erasure code constructions, and no special treatment on load balancing during recovery. In this paper, we propose CAR, a
cross-rack-aware recovery algorithm that is designed to improve the performance of single failure recovery of a CFS that employs
Reed-Solomon codes for general fault tolerance. For each stripe, CAR finds a recovery solution that retrieves data from the minimum
number of racks. It also reduces the amount of cross-rack repair traffic by performing intra-rack data aggregation prior to cross-rack
transmission. Furthermore, by considering multi-stripe recovery, CAR balances the amount of cross-rack repair traffic across multiple
racks. Evaluation results show that CAR can effectively reduce the amount of cross-rack repair traffic and the resulting recovery time.

F

1 INTRODUCTION

To process an ever-increasing amount of data, distributed
computing applications often build on a clustered file sys-
tem (CFS), which provides a unified and scalable storage
platform. A CFS is constructed over a number of physically
independent storage servers, which we refer to as nodes in
this paper. Examples of CFSes include Google File System
[13], Hadoop Distributed File System [37], and Windows
Azure Storage [5].

Failures are commonplace in large-scale CFSes [8], [11],
[13], [32], [33]. In particular, most failures found in CFSes
are single node failures (or single failures in short), which can
occupy over 90% of all failure events in real deployment
[11]. To maintain data availability, a common approach is
to store data with redundancy. Compared with traditional
replication, erasure coding is shown to achieve higher fault
tolerance with less redundancy [38], and hence is increas-
ingly used in today’s CFSes for improved storage efficiency.
The mainstream approach of erasure coding takes original
pieces of information of the same size (termed data chunks)
as inputs and produces redundant pieces of information
that are also of the same size (termed parity chunks), such
that if a data or parity chunk is lost, we can still retrieve
other available data and parity chunks to reconstruct the
lost chunk. The collection of data and parity chunks that

• An earlier version of this paper appeared at the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’16)
[36]. In this journal version, we include additional analysis on rack-level
fault tolerance and more evaluation results for CAR.

• Zhirong Shen and Patrick P. C. Lee are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong
Kong (Email: zhirong.shen2601@gmail.com, pclee@cse.cuhk.edu.hk).

• Jiwu Shu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing, China (Emails: shujw@tsinghua.edu.cn).

• Wenzhong Guo is with the College of Mathematics and Computer
Science, Fujian Provincial Key Laboratory of Network Computing and
Intelligent Information Processing, Fuzhou University, China (Emails:
guowenzhong@fzu.edu.cn).

• Corresponding author: Jiwu Shu (shujw@tsinghua.edu.cn).

are connected by the erasure coding forms a stripe. A CFS
stores multiple stripes of information, each of which is
independently encoded.

Given the prevalence of single failures, there have been
a spate of solutions (e.g., [12], [18], [28], [29], [35], [40],
[42], [43]) on improving the performance of single failure
recovery in erasure-coded storage systems. The main idea
of such solutions is to selectively retrieve different portions
of data and parity chunks within a stripe, with a common
objective of minimizing the amount of repair traffic (i.e., the
amount of information retrieved from surviving nodes for
data reconstruction).

On the other hand, when we examine existing single
failure recovery solutions, there remain three limitations
(see Section 2.4 for details). First, typical CFS architectures
organize nodes in multiple racks, yet existing studies on
single failure recovery neglect the bandwidth diversity prop-
erty between intra-rack and cross-rack connections in a CFS
architecture. Second, many single failure recovery solutions
(e.g., [12], [40], [42], [43]) focus on specific code construc-
tions, but cannot be directly applied to today’s CFSes (e.g.,
[1], [11], [24]) that employ Reed-Solomon (RS) codes [30]
for general fault tolerance. Third, existing single failure
recovery solutions do not consider the load balancing issue
during the recovery operation.

To address the above limitations, we reconsider the
single failure recovery problem in a CFS setting. First, we
should specifically minimize the cross-rack repair traffic (i.e.,
the amount of data to be retrieved across racks for data
reconstruction), which plays an important role in improving
the performance of single failure recovery with regard to the
scarce cross-rack bandwidth in a CFS. Second, our single
failure recovery design should address general fault toler-
ance (e.g., based on RS codes). Finally, we should balance the
cross-rack repair traffic at the rack level (i.e., across multiple
racks) while keeping the total amount of cross-rack repair
traffic minimum, so as to ensure that the performance of
single failure recovery is not bottlenecked by a single rack.

To this end, we propose cross-rack-aware recovery (CAR),



2

a new single failure recovery algorithm that aims to reduce
and balance the amount of cross-rack repair traffic for a
single failure recovery in a CFS that deploys RS codes for
general fault tolerance. CAR has three key techniques. First,
for each stripe, CAR examines the data layout and finds a
recovery solution in which the resulting repair traffic comes
from the minimum number of racks. Second, CAR performs
intra-rack aggregation for the retrieved chunks in each rack
before transmitting them across racks, so as to further re-
duce the amount of cross-rack repair traffic. Finally, CAR
examines the per-stripe recovery solutions across multiple
stripes, and constructs a multi-stripe recovery solution that
balances the amount of cross-rack repair traffic across mul-
tiple racks.

Our contributions are summarized as follows.

• We reconsider the single failure recovery problem in
the CFS setting, and identify the open issues that are
not addressed by existing studies on single failure
recovery.

• We propose CAR, a new cross-rack-aware single
failure recovery algorithm for a CFS setting. CAR is
designed based on RS codes. It reduces the amount of
cross-rack repair traffic for each stripe, and addition-
ally searches for a multi-stripe recovery solution that
balances the cross-rack repair traffic across racks. We
also discuss how CAR should be deployed to achieve
general rack-level fault tolerance.

• We implement CAR and conduct extensive testbed
experiments based on different CFS settings with up
to 20 nodes. We show that CAR can reduce 66.9% of
cross-rack repair traffic and 47.9% of recovery time
when compared to a baseline single failure recovery
design that does not consider the bandwidth diver-
sity property of a CFS. Also, we show that CAR ef-
fectively balances the amount cross-rack repair traffic
across multiple racks.

The rest of this paper proceeds as follows. Section 2
presents the background details of erasure coding and re-
views related work on single failure recovery. Section 3
formulates and motivates the problem in the CFS setting.
Section 4 presents the design of CAR. Section 5 presents our
evaluation results on CAR based on testbed experiments.
Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Basics

This paper considers a special type of distributed storage
system architecture called a clustered file system (CFS), which
arranges storage nodes into racks, such that all nodes within
the same rack are connected by a top-of-rack (ToR) switch,
while all racks are connected by a network core that com-
prises layers of aggregation switches. Figure 1 illustrates a
CFS composed of five racks with four nodes each (i.e., 20
nodes in total). Some well-known distributed storage sys-
tems, such as Google File System [13], Hadoop Distributed
File System [37], and Windows Azure Storage [5], realize the
CFS architecture. Such a CFS architecture is also considered
in the literature (e.g., [6], [20]).

Stripe

Rack

Chunk Node

Network Core

Fig. 1. Illustration of a CFS architecture, composed of five racks with
four nodes each. The CFS contains four stripes of 14 chunks encoded
by a (k = 8,m = 6) code, in which the chunks with the same color and
fill pattern belong to the same stripe. Note that the number of chunks in
each node may be different.

We use erasure coding to maintain data availability for
a CFS. We consider a popular family of erasure codes that
are: (1) Maximum Distance Separable (MDS) codes, meaning
that fault tolerance is achievable with the minimum storage
redundancy (i.e., the optimal storage efficiency), and (2)
systematic, meaning that the original data is retained after
encoding. Specifically, we construct a (k,m) code (which
is MDS and systematic) with two configurable parameters
k and m. A (k,m) code takes k original (uncoded) data
chunks of the same size as inputs and produces m (coded)
parity chunks that are also of the same size, such that any
k out of the k + m chunks can sufficiently reconstruct all
original data chunks. The k +m chunks collectively form a
stripe, and are distributed over k +m different nodes. Note
that the placement of chunks should also ensure rack-level
fault tolerance [20], such that there are at least k chunks for
data reconstruction in other surviving racks in the presence
of rack failures.

For an erasure-coded CFS that stores a large amount of
data, it contains multiple stripes of data/parity chunks that
are independently encoded. In this case, each node stores a
different number of chunks that belong to multiple stripes.
For example, referring to the CFS in Figure 1, there are four
stripes spanning over 20 nodes, in which the leftmost node
stores four chunks, while the rightmost node stores only two
chunks.

2.2 Erasure Code Constructions
There have been various proposals on erasure code con-
struction in the literature. Practical erasure codes often real-
ize encoding/decoding operations based on the arithmetic
over the Galois field [27]. Reed Solomon (RS) codes [30] are
one representative example. RS codes are MDS, and support
any pair of (k,m) in general. For example, Figure 2 shows a
stripe of the (k = 6, m = 3) RS code, which contains six data
chunks (i.e., k = 6) and three parity chunks (i.e., m = 3). RS
codes have been intensively used for erasure-coded storage
in today’s commercial storage systems for fault tolerance,
such as Google’s ColossusFS [1] and Facebook’s HDFS [4].
In this paper, we design our CAR based on RS codes.

XOR-based erasure codes are a special family of erasure
codes that perform encoding/decoding with XOR opera-
tions only. Examples of XOR-based erasure codes include
RDP Code [7], X-Code [41], STAR Code [17], and HV Code
[34]. XOR-based erasure codes are generally MDS, but they
often have specific restrictions on the parameters k and m.
For example, RDP Code [7] requires (k = p − 1,m = 2),



3

Data Chunks Parity Chunks

0 1 2 3 4 5 0 1 2

Fig. 2. Encoding of (k = 6,m = 3) RS codes for a stripe, in which there
are six data chunks and three parity chunks. If one of the data or parity
chunks fails, any six surviving chunks within the stripe can be retrieved
for reconstruction.

X-Code [41] requires (k = p − 2,m = 2), and STAR Code
[17] requires (k = p,m = 3), where p is a prime number.
Thus, XOR-based erasure codes are mainly used in local
disk arrays.

Single failures (e.g., a single node failure or a single lost
chunk within a stripe) are known to be the most common
failure events in a CFS [11], [16]. In RS codes, k chunks
are needed to be retrieved to recover a single lost chunk.
Some erasure codes are specially designed for improving
the performance of recovering a single failure. Regenerating
codes [10] minimize the amount of repair traffic by allowing
other surviving nodes to send computed data for data
reconstruction, and achieve the optimal tradeoff between
the level of storage redundancy and the amount of repair
traffic. In particular, minimum-storage regenerating (MSR)
codes [10] are MDS, and they minimize the amount of
repair traffic subject to the minimum storage redundancy.
Rashmi et al. [28] propose a new MSR code construction
that also minimizes the amount of I/Os. Huang et al. [16]
and Sathiamoorthy et al. [31] develop local reconstruction
codes to reduce the amount of repair traffic, while incurring
slightly more storage redundancy (and hence the codes are
non-MDS).

Recent erasure codes address mixed failures (e.g., a
combination of disk failures and sector errors) in a storage
efficient way. Examples are SD codes [25] and STAIR Codes
[19]. They are non-MDS, and perform encoding/decoding
operations over the Galois field. They are mainly designed
for local disk arrays.

2.3 Single Failure Recovery
There have been extensive studies in the literature that focus
on improving the performance of single failure recovery. In
addition to new erasure code constructions such as regener-
ating codes and local reconstruction codes (see Section 2.2),
previous studies (e.g., [12], [18], [22], [40], [43]) pay close
attention to XOR-based erasure codes. To reconstruct a
lost chunk, the core idea of their proposals is to examine
the relationship between the data and parity chunks of a
stripe and then read different portions of a stripe, so as to
minimize the amount of I/Os to access the storage nodes,
and hence the amount of repair traffic, in single failure
recovery. Some previous studies target specific XOR-based
erasure code constructions. For example, Xiang et al. [40]
and Xu et al. [42] prove the theoretical lower bound on the
amount of I/Os for a single failure recovery for RDP Code
and X-Code, respectively, both of which tolerate two node
failures.

Some previous studies focus on minimizing the amount
of I/Os for single failure recovery for general XOR-based

erasure codes. Khan et al. [18] propose to enumerate all
possible single failure recovery solutions and select the one
that minimizes the amount of I/Os. Luo et al. [22] and Fu et
al. [12] extend the enumeration approach of Khan et al. [18]
to balance the amount of I/Os to be read from surviving
disks. Note that the enumeration approach is generally NP-
hard. Thus, Zhu et al. [43] and Shen et al. [35] propose a
greedy algorithm to search for the single failure recovery
solution with the near-minimum amount of I/Os, while still
supporting general XOR-based erasure codes.

Some studies also address the performance issue when
deploying erasure codes in a CFS. For example, Li et al. [20]
propose an efficient replica placement algorithm in a CFS to
reduce the amount of cross-rack traffic when transforming
replicated data to erasure-coded data. Xia et al. [39] present
a new approach to switch between two erasure codes to
balance the storage overhead and recovery performance.

There are recent studies that are closely related to ours.
Mitra et al. [23] propose Partial Parallel Repair (PPR), which
decomposes a recovery operation into many small par-
tial operations and schedules those partial operations in
parallel, so as to achieve faster data recovery. The use of
partial recovery operations is similar to our partial decoding
approach (see Section 4.2), but PPR does not address how to
minimize the cross-rack repair traffic. Li et al. [21] propose
to minimize the single failure recovery time by dividing
chunks into small slices and pipelining the repair of these
slices. Hu et al. [14], [15] design Double Regenerating Codes
(DRC) to use two stages to minimize the cross-rack repair
traffic, while achieving the minimum storage efficiency.
Their objective is similar to ours: Hu et al. [14], [15] focus on
deriving a new erasure code construction that matches the
optimal point of regenerating codes [10], while our work
specifically focuses on RS codes, which have been widely
deployed in current CFSes, and accordingly proposes inher-
ently different recovery techniques.

2.4 Open Issues

In summary, there have been extensive studies on improv-
ing the performance of single failure recovery when deploy-
ing erasure coding in disk arrays or CFSes. On the other
hand, we identify three open issues that are still unexplored
when reconsidering the single failure recovery problem in
a CFS setting. We have provided an overview of the open
issues in Section 1, and following discussion provides more
detailed explanations.

2.4.1 Lack of Considerations on Cross-rack Repair Traffic

Existing single failure recovery optimizations [12], [18], [22],
[35], [40], [42], [44], while significantly reducing the amount
repair traffic, do not differentiate intra-rack and cross-rack
data transmissions during recovery. In particular, a CFS
architecture exhibits the property of bandwidth diversity, in
which intra-rack bandwidth is considered to be sufficient,
while cross-rack bandwidth is often over-subscribed. The
typical values of the over-subscription ratio in a data center
network are in the range from 5 to 20 [2]. Thus, cross-rack
bandwidth is often considered to be a scarce resource [6],
[9], [20]. A recovery solution that triggers a large amount



4

of cross-rack traffic will unavoidably delay data reconstruc-
tion. How to minimize the amount of cross-rack repair traf-
fic (i.e., the amount of data traffic triggered during recovery)
should be carefully studied in a CFS setting.

2.4.2 Ineffectiveness for RS Codes
Most existing studies [12], [18], [22], [35], [40], [42], [44] on
single failure recovery mainly focus on XOR-based erasure
codes. While XOR-based erasure codes achieve high encod-
ing/decoding performance by only using XOR operations,
they are not the common choice in a CFS due to their specific
fault tolerance settings (e.g., RDP codes [7] are RAID-6 codes
that are double-fault-tolerant). In view of generality and
flexibility, today’s CFSes (e.g., [1], [11], [24]) usually employ
Reed-Solomon (RS) codes [30] for general fault tolerance.
RS codes perform encoding/decoding operations over finite
fields [27], and have inherently different constructions from
XOR-based erasure codes. In general, RS codes reconstruct a
lost chunk by retrieving any k surviving chunks within the
same stripe. This strategy implies that there are a maximum
of C(k+m− 1, k) possible single failure recovery solutions
(i.e., the number of combinations of selecting k out of
k + m − 1 surviving chunks). Furthermore, how to select
the one with the minimum cross-rack repair traffic remains
unexplored.

2.4.3 Load Balancing of Cross-rack Repair Traffic in a
Multi-stripe Setting
Recall that a CFS often organizes data in multiple stripes,
each of which is independently encoded (see Section 2.1).
Existing single failure recovery solutions mainly focus on a
single stripe. It is possible to further improve load balancing
of a single failure recovery if we can consider a multi-
stripe setting [12], [35], [42]. However, the load balancing
schemes [12], [35], [42] only target XOR-based erasure codes,
and also do not address the bandwidth diversity issue in a
CFS. In a CFS, we are interested in balancing the amount
of cross-rack repair traffic across multiple racks. However,
solving single failure recovery problem for RS codes in a
multi-stripe setting is non-trivial. As discussed above, a
single failure recovery solution for a single stripe has a
maximum of C(k+m−1, k) possible options. If we consider
s > 1 stripes, then the total number of possible options will
increase to [C(k+m−1, k)]s. How to efficiently search for a
multi-stripe single failure recovery solution will be critical.

3 PROBLEM FORMULATION

This paper aims to address the following problem: Given a
CFS that deploys RS codes, can we simultaneously minimize and
balance the amount of cross-rack repair traffic when we perform
single failure recovery in the CFS? In this section, we formulate
the single failure recovery problem in a CFS setting. Table 1
summarizes the major notation used in this paper.

Consider a CFS that deploys a (k,m) RS code over r
racks denoted by {A1, A2, · · · , Ar}. Suppose that a node
fails, and we need to reconstruct the lost chunks in the
failed node. Each stripe contains exactly one lost chunk. To
make our analysis general, we assume that the lost chunks
to be reconstructed in the failed node span s ≥ 1 stripes.
We denote the rack that contains the failed node as Af

TABLE 1
Major notations used in this paper.

Notation Description

k number of data chunks in a stripe
m number of parity chunks in a stripe
r number of racks in a CFS
s number of stripes associated with the lost chunks
Ai the i-th (1 ≤ i ≤ r) rack
Af the rack where the failed node resides (1 ≤ f ≤ r)
λ load balancing rate
ti,f cross-rack traffic on Ai to repair a failed node in Af

ci,j number of chunks of the j-th stripe in rack Ai

Hi the i-th chunk
H′i the i-th retrieved chunk for data reconstruction
e number of iterations in the greedy algorithm for

load balancing
u tolerable number of failed racks (1 ≤ u ≤ m)

(1 ≤ f ≤ r); also, we call the remaining racks (aside Af )
to be intact racks since the data stored in all their nodes
remains intact. To repair the lost chunks in the failed node,
suppose the cross-rack repair traffic triggered from rack Ai

is ti,f (1 ≤ i 6= f ≤ r). We define the load balancing rate λ as
the ratio of the maximum amount of cross-rack repair traffic
across each rack to the average amount of cross-rack repair
traffic over the (r − 1) intact racks.

λ =
max{ti,f |1 ≤ i 6= f ≤ r}∑

1≤i6=f≤r

ti,f
r−1

.

Obviously, if there exists cross-rack repair traffic, then
λ ≥ 1. Also, we say that the recovery solution is more
balanced if its load balancing rate is closer to 1. Therefore,
we can formulate the following optimization problem:

Minimize λ

subject to ∑
1≤i 6=f≤r

ti,f is minimized.

Our optimization goal is to minimize the load balancing
rate, subject to the condition that the total amount of cross-
rack repair traffic is minimized.

4 CROSS-RACK-AWARE RECOVERY

We thus present CAR, a cross-rack-aware recovery algorithm.
CAR has three design objectives.

• For each stripe, finding a recovery solution that re-
trieves chunks from the minimum number of racks.

• Exploiting intra-rack chunk aggregation.
• Exploiting a greedy approach to search for a load-

balanced multi-stripe recovery solution.

We justify the design objectives as follows. For each
stripe constructed by a (k,m) RS code, any k chunks are
sufficient to reconstruct the lost chunk in the stripe. Here,
we examine the placement of chunks across racks and
identify a recovery solution that retrieves chunks from the
minimum number of racks. To repair the lost chunk, instead



5

Network Core

Replacement 
node

A1 A2 A3 A4 A5

(a) Recovery that retrieves chunks from five racks.

Network Core

Replacement 
node

A1 A2 A3 A4 A5

(b) Recovery that retrieves chunks from three racks.

Fig. 3. Two recovery solutions that retrieve data from different sets of racks. Suppose that intra-rack chunk aggregation is performed. To reconstruct
the lost chunk of a stripe, for (a), four chunks are transmitted across racks, while for (b), only two chunks are transmitted across racks.

of directly retrieving and sending individual chunks from
a rack, we perform intra-rack chunk aggregation on the
retrieved chunks in the same rack and send one aggregated
chunk (which has the same size as each data/parity chunk)
to the replacement node for data reconstruction. Intra-rack
chunk aggregation can be realized by separating the recon-
struction process of RS codes. By retrieving chunks from
the minimum number of racks and performing intra-rack
chunk aggregation, we minimize the amount of cross-rack
repair traffic to reconstruct the lost chunk for each stripe.

For example, suppose that the first node fails in the CFS
shown in Figure 1, which adopts the (k = 8,m = 6) RS code
for fault tolerance. Figure 3 presents two possible recovery
solutions, both of which retrieve k = 8 chunks yet from a
different set of racks to reconstruct the lost chunk of a stripe.
By performing intra-rack chunk aggregation, the requested
chunks within the same rack will be aggregated into a single
chunk. Thus, the recovery solution in Figure 3(a) transmits
four chunks across racks (i.e., from A2, A3, A4, and A5),
while the one in Figure 3(b) only needs to transmit two
chunks across racks (i.e., from A3 and A5). Note that the
retrieval of chunks in A1 only triggers intra-rack data trans-
missions, and we assume that it brings limited overhead to
the overall recovery performance in a CFS.

In addition, we examine the per-stripe recovery solutions
across multiple stripes so as to minimize the load balancing
rate. We propose a greedy algorithm that can search for a
near-optimal solution with low computational complexity.

4.1 Minimizing the Number of Accessed Racks

We first study how to find a recovery solution that retrieves
chunks from the minimum number of racks. Suppose that
the lost chunks span s stripes. For the j-th stripe (1 ≤ j ≤ s),
let ci,j be the number of chunks stored in the i-th rack Ai

(1 ≤ i ≤ r). Note that we also ensure that the placement
of chunks provides rack-level fault tolerance [20]. Here, we
assume that we provide single-rack fault tolerance, and we
address multi-rack fault tolerance in Section 4.4. For the
(k,m) RS code, we require that ci,j ≤ m, so as to tolerate
any single-rack failure; in other words, each stripe should
contain at least k chunks in other intact racks of the CFS for
data reconstruction.

Suppose that a node fails in rack Af (1 ≤ f ≤ r). We use
c′f,j to denote the number of surviving chunks of the j-th
stripe (1 ≤ j ≤ s) in Af in the presence of the node failure.

Since every node keeps at most one chunk for a given stripe,
we have the following equation:

c′f,j =

{
cf,j , if cf,j = 0
cf,j − 1, if cf,j 6= 0

(1)

Meanwhile, for the remaining r − 1 intact racks
(i.e., {A1, · · · , Af−1, Af+1, · · · , Ar}), they still have the
same numbers of chunks in the j-th stripe (i.e.,
{c1,j , · · · , cf−1,j , cf+1,j , · · · , cr,j}). Given this new setting,
Theorem 1 states how to determine the minimum number
of intact racks to be accessed when recovering the lost chunk
in the j-th stripe (1 ≤ j ≤ s).

Theorem 1. For the j-th stripe (1 ≤ j ≤ s), suppose that
the numbers of chunks in the r − 1 intact racks are ranked in
descending order denoted by {cj1 , cj2 , · · · , cjr−1}, where cj1 ≥
cj2 ≥ · · · ≥ cjr−1 . We find the smallest number dj that satisfies:

cj1 + · · ·+ cjdj + c′f,j ≥ k. (2)

Then dj is the minimum number of intact racks to be contacted to
recover the lost chunk in the j-th stripe.

Proof: We prove by contradiction. Suppose that dj is not
the minimum number of intact racks. Let d′j < dj be the
minimum number of intact racks to be accessed. Then we
must have cj1 + · · ·+cjd′

j
+c′f,j ≥ k so that the lost chunk in

the j-th stripe can be reconstructed. However, this violates
our condition that dj is the minimum value for Equation (2)
to be satisfied. �

We elaborate Theorem 1 via an example. Consider the
recovery for the first stripe in the CFS in Figure 4. The CFS
has five racks and employs the (k = 8,m = 6) RS code. For
the first stripe, the first rack A1 originally keeps c1,1 = 4
chunks. Suppose that the first node in A1 fails. Then there
are c′1,1 = c1,1−1 = 3 surviving chunks in A1. The numbers
of surviving chunks in other four intact racksA2,A3,A4 and
A5 are c2,1 = 1, c3,1 = 3, c4,1 = 2, and c5,1 = 4, respectively.
To reconstruct the lost chunk, we need k = 8 surviving
chunks for the reconstruction in RS codes. To determine the
minimum number of intact racks to be accessed, we first sort
the numbers of surviving chunks in the four intact racks,
and obtain (4, 3, 2, 1). We can then find d1 = 2, since 4+3+
c′1,1 = 10 > k = 8. Thus, we should retrieve the surviving
chunks from A5 and A3, as well as the surviving chunks in
A1, to reconstruct the lost chunk.

We say that a recovery solution is valid if it can recover
the lost chunk for the j-th stripe (1 ≤ j ≤ s) by accessing dj
intact racks only. A valid solution of the j-th stripe (1 ≤ j ≤



6

Network Core

3
Surviving chunks 
of the first stripe

1 3 2 4

Replacement 
node

A1 A2 A3 A4 A5

Fig. 4. Example of determining the minimum number of intact racks to
be accessed when recovering the lost chunk in the first stripe. Suppose
that the CFS employs the (k = 8,m = 6) RS code, and that the first
node in A1 fails. The replacement node can retrieve chunks from the
intact racks A3 and A5, as well as from the nodes within the same rack
A1, for data reconstruction.

s) should satisfy the condition that the number of retrieved
chunks from dj intact racks plus the number of surviving
chunks in Af should be no less than k.

We emphasize that a stripe may contain more than one
valid recovery solution. We again consider the example of
Figure 4. In addition to the recovery solution that retrieves
surviving chunks from A3 and A5, we can also find another
recovery solution that retrieves chunks from A3 and A4

instead, since c3,1 + c4,1 + c′1,1 = k = 8. The latter recovery
solution is also valid, since it can also repair the lost chunk
by accessing d1 = 2 intact racks only.

4.2 Intra-rack Chunk Aggregation

After finding the minimum number of intact racks to be
accessed for recovery, we perform intra-rack chunk aggre-
gation on the retrieved chunks in the same rack. We call the
aggregation operation partial decoding, as it performs part of
the decoding steps to reconstruct the lost chunk of a stripe.

To describe how partial decoding works, we first review
the encoding and decoding procedures of the (k,m) RS
code. Suppose there are k data chunks {H1, H2, · · · , Hk}.
Note that most practical storage systems deploy systematic
erasure codes (see Section 2.1), meaning that the origi-
nal data chunks are kept in uncoded form after encod-
ing and hence read requests can directly access the orig-
inal data. To generate the m parity chunks (denoted by
{Hk+1, · · · , Hk+m}), the encoding operation can be realized
by multiplying a (k+m)×k matrix G =

(
g1 · · ·gk+m

)T with
the k data chunks, i.e.,

g1

...
gk

...
gk+m

 ·
H1

...
Hk

 =



H1

...
Hk

...
Hk+m

 (3)

Here, gi (1 ≤ i ≤ k + m) is a row vector and its size
is 1 × k. To make the original data kept in uncoded form,(
g1 · · ·gk

)T should be a k × k identity matrix, where T
denotes a matrix or vector transpose operation.

In the decoding operation, RS codes can always use
any k surviving chunks (denoted by {H ′1, · · · , H ′k}) to re-

construct the original data chunks. This implies that there
always exists a k × k invertible matrix X , such that

X ·

H ′1
...

H ′k

 =

H1

...
Hk

 (4)

Therefore, to reconstruct a chunk Hi (1 ≤ i ≤ k+m), we
can derive the following equation based on Equations (3)
and (4).

Hi = gi ·

H1

...
Hk

 = gi · X ·

H ′1
...

H ′k

 (5)

Let y = gi · X . As the sizes of gi and X are 1 × k and
k×k, respectively, y =

(
y1 · · · yk

)
is a 1×k vector. Then we

can derive the following equation based on Equation (5).

Hi = yi ·

H ′1
...

H ′k

 =
(
y1 · · · yk

)
·

H ′1
...

H ′k

 (6)

Equation (6) implies that the reconstruction of Hi is
actually realized by the linear operations performed on the k
retrieved chunks. Therefore, to mitigate the cross-rack data
transmissions for recovery, we can “aggregate” the retrieved
chunks in the same rack before performing cross-rack data
transmissions. For example, without loss of generality, sup-
pose that the first j requested chunks {H ′1, · · · , H ′j} are
stored in the same rack. Then we can specify a node in that
rack to perform the linear operations based on Equation (6)
and obtain the following result:

j∑
i=1

yiH
′
i (7)

The aggregation in Equation (7) is called partial decoding
and the output is referred to as the partially decoded chunk,
which has the identical size as each data/parity chunk. The
partially decoded chunk will then be sent to the replacement
node to complete the reconstruction of the lost chunk. The
replacement node simply adds all the partially decoded
chunks received from Af and other intact racks that are
accessed, in order to reconstruct the lost chunk. We can
observe that after applying partial decoding, the amount
of cross-rack repair traffic per stripe in CAR equal to the
number of partially decoded chunks transmitted from the
accessed intact racks, or equivalently, the number of intact
racks to be accessed for recovery. Algorithm 1 summarizes
the details of recovering the lost chunk of a stripe.

Figure 5 shows an example of how we reconstruct the
lost chunk of a stripe via partial decoding. Suppose we
need to retrieve k = 8 chunks, and the requested chunks
are denoted by {H ′1, H ′2, · · · , H ′8} (from left to right). To
recover the lost chunk in rack A1, we first perform the
partial decoding by aggregating the requested chunks inA1,
A4, and A5 to be

∑2
i=1 yiH

′
i ,
∑4

i=3 yiH
′
i , and

∑8
i=5 yiH

′
i ,

respectively. Then the replacement node reads the three
partially decoded chunks to reconstruct the lost chunk. In
this example, there are only two chunks transmitted across
racks.



7

Algorithm 1: Reconstruction for a stripe.

Input: The set of requested chunks {H ′1, · · · , H ′k} for
recovering the lost chunk of a stripe.

1 for each rack do
2 if this rack stores requested chunks then
3 Specify a node in this rack to retrieve the

requested chunks
4 Perform partial decoding on the requested chunks
5 Send the partially decoded chunk to the

replacement node

6 Add the received partially decoded chunks at the
replacement node to recover the lost chunk.

Network Core

Replacement 
node

A1 A2 A3 A4 A5

Fig. 5. Example of reconstructing the lost chunk in the first stripe via
partial decoding. For example, four chunks in rack A5 are selected
for reconstruction. One node in A5 performs partial decoding on the
four selected chunks and sends the partially decoded chunk to the
replacement node.

4.3 Load Balancing

As stated in Section 4.1, each stripe can have multiple valid
per-stripe recovery solutions. Here, we examine the valid
per-stripe recovery solutions across multiple stripes, so as
to balance the amount of cross-rack repair traffic across the
racks (i.e., minimizing the load balancing rate in Section 3).
However, enumerating all possible valid per-stripe recovery
solutions can be expensive. To elaborate, suppose that we
consider the recovery of s stripes, and there are nj valid
recovery solutions for recovering the lost chunk in the j-th
stripe (1 ≤ j ≤ s). Then the enumeration approach would
require n1 × n2 × · · · × ns trials. Depending on the number
of valid recovery solutions in each stripe, the enumeration
approach can involve a significantly large number of trials.

To mitigate the computation complexity into smaller, we
propose a greedy algorithm to search for a near-optimal
multi-stripe recovery solution for balancing the amount
of cross-rack repair traffic across racks. Having a greedy
recovery algorithm enables us to identify recovery solutions
on the fly, especially under a dynamic environment with
constant changing network conditions (e.g., the changing
available network bandwidth) [43], [44]. The main idea
is to iteratively replace the currently selected multi-stripe
recovery solution with another one that introduces a smaller
load balancing rate.

Algorithm 2 shows the details of our greedy algorithm.
Suppose that a node in Af fails (1 ≤ f ≤ r). We first
select a valid recovery solution to repair the lost chunk in
each stripe, and construct an initial multi-stripe recovery
solution R (steps 1-3). Here, for each stripe, we can follow
Theorem 1 to choose the valid recovery solution whose
intact racks have the most chunks for the stripe. We then
replace the per-stripe recovery solutions in R over a config-

Algorithm 2: Greedy algorithm for load balancing.

Input: Number of iterations e; number of stripes s
Output: A multi-stripe recovery solution R.

1 for j = 1 to s do
2 Select a valid recovery solution Rj for the j-th stripe

3 Initialize R = {R1, R2, · · · , Rs}
4 for iteration 1 to e do
5 Find the intact rack Al (1 ≤ l 6= f ≤ r) with the

highest tl,f
6 for each intact rack Ai (1 ≤ i 6= f ≤ r) do
7 if Ai 6= Al and tl,f − ti,f ≥ 2 then
8 Find Rj and another valid recovery solution

R′j that retrieves no data from Al but from Ai

instead
9 if both Rj and R′j exist then

10 Set R = {R1, · · · , Rj−1, R
′
j , Rj+1, · · · , Rs}

11 Jump to the next iteration of the for-loop
in step 4

12 Exit the for-loop in step 4 if there is no substitution in
R

urable number of iterations (denoted by e), so as to reduce
the load balance rate. The selection of e depends on both
the system’s computational capacity and the expected load
balancing rate. In general, there are two ways to determine
the value of e: (i) the system can choose the maximum value
of e that is allowed, subject to the computational capacity
constraint; or (ii) the system defines the expected gap of
load balancing rates obtained in any two adjacent iterations,
such that the algorithm terminates once the reduction of the
load balancing rate is lower than the given gap. Specifically,
in each iteration, we locate the rack Al (1 ≤ l 6= f ≤ r)
with the highest tl,f (i.e., generating the most cross-rack
repair traffic) (steps 4-5). To find a more balanced recovery
solution, we scan the remaining intact racks except Al and
select one of the intact racks Ai (i 6= l and 1 ≤ i 6= f ≤ r)
that satisfies the following condition:

tl,f − ti,f ≥ 2. (8)

Once identifying Al and Ai, the algorithm scans the
current per-stripe recovery solutions in R. If the per-stripe
recovery solution Rj for the j-th stripe (1 ≤ j ≤ s)
reads chunks from rack Al, then we check if there exists
another valid recovery solution R′j that can read chunks
in Ai, meaning that it can substitute the retrieval from Al

(step 8). If both Rj and R′j exist, we can substitute Rj with
R′j (steps 9-11). With partial decoding (see Section 4.2), we
ensure that we retrieve one less partially decoded chunk
from Al while one more from Ai. Thus, Equation (8) ensures
that tl,f ≥ ti,f after the substitution, and that the rack with
the maximum amount of cross-rack repair traffic generated
by a rack is monotonically decreasing. After the substitution,
the algorithm resumes another iteration of the for-loop in
Step 4 (step 11). If there is no substitution in R, the algorithm
exits the for-loop (step 12). As Algorithm 2 proceeds, the
load balancing rate λ of R iteratively decreases.

Figure 6 shows an example of how our load balanc-
ing scheme works. We consider a CFS that has the same
architecture and data layout as in Figure 1. The CFS also



8

Replacement 
node

Cross-rack traffic

Network Core

4 1 2 2

A1 A2 A3 A4 A5

The 3rd stripe

(a) Initial recovery solution: the load balancing rate is 16
9

.

Replacement 
node

Cross-rack traffic

Network Core

3 2 2 2

A1 A2 A3 A4 A5

The 3rd stripe

(b) Recovery solution after a replacement: the load balancing rate is 12
9

.

Fig. 6. Example of how to substitute a per-stripe recovery solution in Algorithm 2. The chunks with the same color and fill patterns denote the
retrieved chunks for recovery of the same stripe. Compared with the initial multi-stripe recovery solution, the updated multi-stripe recovery solution
has a lower load balancing rate, by substituting the per-stripe recovery solution for the third stripe.

employs the (k = 8,m = 6) RS code for fault tolerance. For
brevity, we only illustrate the chunks retrieved for recovery.
Suppose that the first node fails, Figure 6(a) first gives an
initial multi-stripe recovery solution that recovers the lost
chunks of four stripes. With partial decoding, the amount of
cross-rack repair traffic can be represented by the number
of partially decoded chunks transmitted from each intact
rack. For example, A2 transmits four partially decoded
chunks (i.e., t2,1 = 4) to recover the four lost chunks. Thus,
the load balancing rate of the initial recovery solution is
λ =

t2,1
(t2,1+t3,1+t4,1+t5,1)/4

= 16
9 . Obviously, in Figure 6(a),

A2 (i.e., Al in Algorithm 2) is the rack with the most cross-
rack traffic t2,1 = 4 (i.e., tl,f ). To find a more balanced
solution, Algorithm 2 locates A3 that satisfies the condition
t2,1 − t3,1 = 3 ≥ 2. The algorithm selects the per-stripe
recovery solution for the third stripe, such that it retrieves a
partially decoded chunk from A3 instead of A2. Figure 6(b)
shows the new multi-stripe recovery solution. We can see
that after the substitution, the load balancing rate of the
updated recovery solution is λ =

t2,1
(t2,1+t3,1+t4,1+t5,1)/4

= 12
9 ,

which is smaller than that in Figure 6(a).
Complexity analysis: We now analyze the complexity

of Algorithm 2. In each iteration, the algorithm finds the
intact rack with the most cross-rack repair traffic, and search
for another intact rack and per-stripe recovery solution for
substitution (steps 6-11). The whole iteration needs no more
than r × s trials. Since the algorithm repeats e iterations, its
overall complexity is O(e × r × s), which is in polynomial
time.

4.4 Multi-rack Fault Tolerance

We thus far assume that CAR achieves only single-rack fault
tolerance, by placing no more than m chunks in each rack
(see Section 4.1). We now generalize the rack-level fault
tolerance problem and examine how to arrange the chunk
placement so that CAR can tolerate multiple rack failures.

Our insight is that using intra-rack chunk aggregation
(see Section 4.2), we can reduce more cross-rack repair traffic
by placing more chunks of each stripe in a rack. However,
to provide rack-level fault tolerance, we must spread the
chunks of each stripe across multiple racks. Our goal is
to formalize the chunk placement requirement so as to
distribute the chunks of each stripe as “compact” as possible
(i.e., spanning the least number of racks), while satisfying
the required rack-level fault tolerance.

We now define the notation. For a (k,m) RS code, we
disperse the k+m chunks of each stripe over r racks, where
1 ≤ r ≤ k +m. Suppose that our goal is to tolerate u rack
failures, where 1 ≤ u ≤ min{r,m}. Theorem 2 states how
we place the chunks of a stripe over the minimum number
of racks.

Theorem 2. For a (k,m) RS code, we can tolerate the failures of
any u out of r racks if and only if the number of racks spanned by
a stripe satisfies the following condition:

r ≥ u+ d k

bmu c
e. (9)

Proof: We first prove the “Only if” part. Without loss
of generality, we rank the numbers of chunks of the j-
th stripe in the r racks in descending order denoted by
{cj1 , cj2 , · · · , cjr}, where cj1 ≥ cj2 ≥ · · · ≥ cjr . To tolerate
any u rack failures, we require that

cj1 + cj2 + · · ·+ cju ≤ m. (10)

Equation (10) states that we must store no more than m
chunks in any u racks for fault tolerance. From Equa-
tion (10), we can also show the following:

cju ≤
cj1 + cj2 + · · ·+ cju

u
≤ bm

u
c. (11)

Suppose that the u racks that store the most chunks of
the j-th stripe now all fail. The remaining k+m−

∑u
i=1 cji

chunks are stored in the remaining r − u surviving racks.
Since each surviving rack stores no more than cju chunks,
the number of surviving racks r − u must satisfy:

r − u ≥ dk +m−
∑u

i=1 cji
cju

e ≥ d k

bmu c
e, (12)

due to Equations (10) and (11). The “Only if” part holds.
We now prove the “If” part. The intuition is to find a

chunk placement that satisfies Equation (9). We fix r = r∗,
where r∗ = u + d k

bmu c
e. To place k + m chunks of the j-th

stripe over r∗ racks, we set cj2 = cj3 = · · · = cjr∗−1
=

bmu c, cj1 = m − (cj2 + cj3 + · · · + cju), and cjr∗ = k −
(cju+1 + · · · + cjr∗−1

). We can easily verify that cj1 is the
largest, cjr∗ is the smallest and non-negative, and hence the
list cj1 , cj2 , · · · , cjr∗ are in descending order. Now, we can
show that cj1 + cj2 + · · · + cju ≤ m, and hence for every u
out of r∗ racks, there must be no more than m chunks. Thus,



9

0 50 100 150 200 250 300 350 400

0.4

0.8

1.2

1.6

2.0

Cross-Rack Bandiwidth (Mb/s)

Fig. 7. The reconstruction time when the cross-rack bandwidth varies.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

Number of Tolerated Rack Failures

Fig. 8. The amount of cross-rack recovery traffic when the number of
tolerated rack failures varies.

this chunk placement can tolerate any u rack failures. The
“If” part holds. �

For example, suppose that we deploy a (k = 7,m =
5) RS code and want to tolerate any u = 2 rack failures.
Then we should choose r∗ = 2 + d 7

b 52 c
e = 6 racks. We set

cj2 = cj3 = · · · = cjr∗−1
= b 52c = 2, cj1 = 5 − 2 = 3,

and cjr∗ = 7 − (2 + 2 + 2) = 1, such that the distribution
of chunks is (3, 2, 2, 2, 2, 1). We can verify that this chunk
placement can tolerate any u = 2 rack failures.

4.5 Analysis
We conduct analysis on the design implications of CAR
under different settings.

4.5.1 Impact of Cross-Rack Bandwidth
We first analyze how the recovery time of CAR varies
with the cross-rack bandwidth. Let C be the chunk size
and B be the available cross-rack bandwidth. Here, we
assume that the recovery time is mostly dominated by the
cross-rack transfer time instead of by other factors, such
as CPU encoding/decoding time and intra-rack transfer
time. Suppose that CAR retrieves one chunk from each of
other r′ racks through intra-rack chunk aggregation (where
r′ < r). The recovery time of CAR is r′C

B . To illustrate
the implication, suppose that all nodes are interconnected
by a 1Gb/s Ethernet, and that the over-subscription ratio
ranges from 2.5 to 20 (i.e., the cross-rack bandwidth ranges
from 50Mb/s to 400Mb/s). Figure 7 plots the recovery time
versus the cross-rack bandwidth. We can observe that the
recovery time increases when the over-subscription ratio
becomes larger (i.e., the cross-rack bandwidth is smaller).

4.5.2 Impact of Rack Fault Tolerance
We also analyze how CAR makes a design trade-off between
the amount of cross-rack recovery traffic and the number
of rack failures that can be tolerated (i.e., u). We select a
(k = 10,m = 8) erasure code and assume that the size of a
chunk is 4MB. Given an expected number of tolerated rack
failures, we first derive a chunk distribution based on the

method in Section 4.4. We then measure the average amount
of cross-rack repair traffic caused by CAR to recover each
chunk. The results are shown in Figure 8, which indicates
that the amount of cross-rack repair traffic increases as the
number of tolerable rack failures increases.
Discussion: When under the same chunk distribution and
failure rates, CAR needs less recovery time than the random
recovery (i.e., randomly select k surviving chunks and di-
rectly send them to the replacement node, see Section 5 for
details), and makes the system stay at the reliable state for
longer time. Therefore, CAR can improve the system relia-
bility when compared with traditional random recovery.

4.6 Extension of CAR
CAR mainly focuses on node recovery based on the net-
work topology of CFSes. Nevertheless, the design principle
of CAR can still provide a valuable reference for node
recovery for general network topologies, provided that
over-subscription exists. Specifically, if the recovery has to
deliver the requested data to the replacement node over
a bandwidth-limited connection, then the system can first
perform partial decoding (as in CAR) and send the partial
decoded result to the replacement node, so as to mitigate the
congestion on the bandwidth-limited connection and reduce
the overall recovery time.

Currently, CAR mainly focuses on RS code, and we
accordingly design three techniques for CAR. In fact, the
first two techniques (i.e., minimizing the number of accessed
racks and intra-rack chunk aggregation) can also help to
reduce the cross-rack data transfer if we use XOR-based
erasure codes (see Section 2.2). We can first find the min-
imum number of accessed racks given the distribution of
surviving chunks and the decoding rules of a specific XOR-
based erasure code, followed by aggregating the data within
each rack based on XOR operations. For load balancing,
we may need a different greedy algorithm for XOR-based
erasure codes; we pose it as future work.

5 PERFORMANCE EVALUATION

5.1 Implementation Overview
We implement a prototype of CAR in C on Linux. We imple-
ment RS codes, whose encoding and decoding operations
are realized based on the open-source library Jerasure 1.2.
[27]. We configure the size of a chunk in CAR ranging from
4MB to 16MB. In failure recovery, each selected chunk will
be partitioned into many sub-chunks whose sizes are the
order of kilobytes (e.g., 4KB), and the recovery operation is
performed in a pipelined manner. In each rack, we select one
node to perform partial decoding. Each other node (except
the replacement node and the partial decoding node) will
establish a socket connection and transfers a sub-chunk
to the partial decoding node, which uses aio library [3]
to perform asynchronous reads to collect the sub-chunks.
After that, the partial decoding node computes the partial
decoded sub-chunk based on the received sub-chunks and
sends it to the replacement node via a socket connection.
The replacement node will recover a sub-chunk after adding
all the partial decoded sub-chunks. We repeat the procedure
for all sub-chunks until the lost chunk is successfully re-
paired.



10

TABLE 2
Configurations of three CFS settings.

CFSes A1 A2 A3 A4 A5 RS code

CFS1 4 3 3 k = 4,m = 3

CFS2 4 3 3 3 k = 6,m = 3

CFS3 6 4 5 3 2 k = 10,m = 4

5.2 Evaluation Results

We conduct extensive testbed experiments to evaluate the
performance of CAR. We would like to answer the following
questions:

1) How much cross-rack traffic and the time of single
failure recovery can be reduced by CAR?

2) Will CAR sustain its effectiveness when deployed
over different CFS configurations, including the
number of racks, the number of nodes per rack, and
the erasure code parameters?

3) How do the iteration steps affect the load balancing
rate?

4) Will CAR increase the computational overhead for
recovery?

Evaluation environment1: We conduct our evaluation on
three CFS settings with different architectures and RS code
parameters. Table 2 shows the configurations of the CFS
settings for our evaluation, including the selected RS codes
and the number of nodes in each rack. For example, CFS1
is deployed over three racks with 10 nodes and it selects
the (k = 4,m = 3) RS code. In practical deployment,
even a CFS contains a large number of nodes, the erasure
coding parameters are often configured to make k + m
not to be too large so as to limit the encoding overhead
and the amount of repair traffic, while maintaining fault
tolerance [26]. For example, Google Colossus FS [1], [4]
uses the (k = 6,m = 3) RS Code and HDFS-RAID [1],
[4] uses the (k = 10,m = 4) RS Code. Thus, each stripe
with k + m chunks will only span a limited number of
nodes in real-world storage systems, while multiple stripes
are independently encoded and repaired under failures. We
configure the stripe size k + m in our evaluation to range
from 7 to 14, such that this range covers typical system
configurations of existing storage systems [1], [4]. Thus, we
expect that our CFS configurations are sufficiently practical
to reflect the repair performance in real-world deployment.

Table 3 also lists the hardware configurations of the
nodes in different racks. We configure the nodes in the same
rack to have the same hardware configurations. The racks
are connected by the TP-LINK TL-SG1016D 16-Port Gigabit
Ethernet switches.
Methodology: We construct 100 stripes and randomly dis-
tribute the data and parity chunks of each stripe across all
nodes in each CFS, while ensuring single-rack fault toler-
ance (see Section 4.1). To evaluate the recovery performance,
we randomly select a node to erase its stored chunks. We
use the same node as the replacement node, and trigger
the recovery operation. We apply CAR to find the recovery

1. Note that we rerun all our experiments and hence our performance
results is slightly different from those in our conference version [36],
although the key conclusions remain the same.

TABLE 3
Configurations of nodes in each rack.

Servers CPU Memory OS Disk

Nodes
in A1

AMD
Opteron(tm)
800MHz 2378

Quad-Core
processors

16GB Fedora 11 1TB

Nodes
in A2

an Intel Xeon
X5472 3.00GHz

Quad-Core CPU

8GB SUSE Linux
Enterprise
Server 11

4TB

Nodes
in A3

an Intel Xeon
E5506 2.13GHz

Quad-Core CPU

8GB Fedora 10 1TB

Nodes
in A4

an Intel Xeon
E5420 2.50GHz

Quad-Core CPU

4GB Fedora 10 300GB

Nodes
in A5

an Intel Xeon
X5472 3GHz

Quad-Core CPU

8GB Ubuntu
10.04.3 LTS

4TB

solution and recover the lost chunk of each stripe. For
comparisons, we also consider a baseline approach called
random recovery (RR), which finds the recovery solution
by randomly choosing k surviving chunks of a stripe and
sending them to the replacement node for recovery. To start
recovery, the replacement node first contacts k surviving
nodes for each stripe to simultaneously launch the trans-
missions of the chunks. For CAR, the replacement node also
selects a node in each rack to perform partial decoding,
such that the surviving nodes first send their chunks to the
selected node in each rack for partial decoding, and then
the selected node in each rack sends the aggregated chunk
to the replacement node. On the other hand, for RR, the k
surviving nodes directly send the chunks to the replacement
node. Each of our results is averaged over multiple trials
(generally 5 trails to 10 trails). We find that the standard
deviation is small, so we do not plot the standard deviation
in the figures.
Experiment 1 (Recovery Performance in Different CFS
Settings). We first evaluate the amounts of cross-rack repair
traffic due to CAR and RR when recovering a single lost
chunk. We conduct the evaluation in the three CFS settings
shown in Table 2. Figure 9 shows the results of cross-
rack traffic versus the chunk size. We make the following
observations.

In all cases, CAR significantly reduces the amount of
cross-rack repair traffic when compared to RR. For example,
when the chunk size is 4MB, CAR can reduce 52.4% of cross-
rack repair traffic in CFS1 (see Figure 9(a)). The reason is
that CAR not only finds the recovery solution that involves
the minimum number of racks, but also performs partial
decoding in each rack before cross-rack data transmissions.
Both techniques guarantee the minimum amount of cross-
rack data transmissions when reconstructing the lost chunk
in each stripe. As a comparison, RR simply retrieves the
chunks from other surviving nodes to the replacement node,
thereby triggering a considerable amount of cross-rack re-
pair traffic.

In addition, the performance gain of CAR is influenced
by the parameter k used in RS codes. In general, when
the number of racks is fixed, CAR can reduce more cross-



11

4MB 8MB 16MB
0

10

20

30

40

50

60

Chunk Size

CAR
RR

4MB 8MB 16MB
0

20

40

60

80

Chunk Size

CAR
RR

4MB 8MB 16MB
0

20

40

60

80

100

120

Chunk Size

CAR
RR

(a) CFS1 (10 nodes, k = 4,m = 3) (b) CFS2 (13 nodes, k = 6,m = 3) (c) CFS3 (20 nodes, k = 10,m = 4)

Fig. 9. Experiment 1: Comparisons of the amounts of cross-rack traffic between CAR and RR over different CFSes.

4MB 8MB 16MB
0.0

0.4

0.8

1.2

1.6

Chunk Size

CAR
RR

4MB 8MB 16MB
0

1

2

3

4

Chunk Size

CAR
RR

4MB 8MB 16MB
0

2

4

6

8

Chunk Size

CAR
RR

(a) CFS1 (10 nodes, k = 4,m = 3) (b) CFS2 (13 nodes, k = 6,m = 3) (c) CFS3 (20 nodes, k = 10,m = 4)

Fig. 10. Experiment 1: Comparisons of recovery times between CAR and RR over different CFSes.

rack data transmissions when k increases. The reason is that
in RR, the number of retrieved chunks increases when k
becomes larger. On the other hand, CAR ensures that each
rack only needs to send one chunk across racks under partial
decoding. For example, when the chunk size is 16MB, the
saving of cross-rack repair traffic due to CAR increases to
66.9% in CFS3 (see Figure 9(c)).

We further compare CAR and RR in terms of the re-
covery time per lost chunk in different CFS settings. We
measure the overall duration starting from the time when all
surviving nodes send the chunks until the time when all lost
chunks are completely reconstructed. We divide the overall
duration by the number of lost chunks being reconstructed
to obtain the recovery time per lost chunk.

Figure 10 shows the recovery time per lost chunk versus
the chunk size. It indicates that CAR greatly reduces the
recovery time when compared to RR. For example, when
the chunk size is 8MB, to recover a lost chunk in CFS2,
CAR reduces 46.2% of recovery time (see Figure 10(b)). The
reasons are three-fold. First, CAR reduces the amount of
cross-rack repair traffic. Second, CAR balances the amount
of cross-rack repair traffic across multiple racks, while RR
randomly selects k surviving chunks to recover a lost chunk
and hence leads to an uneven distribution of cross-rack
repair traffic in general. Third, CAR offloads the recovery
process to a node in each rack due to partial decoding, while
RR requires the replacement node to perform the whole
recovery process for all lost chunks.
Experiment 2 (Impact of Number of Racks). We next
evaluate the performance of CAR when it is deployed
over different number of racks. We consider a new CFS
setting as follows. We select the (k = 6,m = 3) RS code
and perform the evaluation when the number of racks
increases from three to five, in which we use {A1, A2, A3},
{A1, A2, A3, A4}, and {A1, A2, A3, A4, A5} in Table 3, re-
spectively. Each rack consists of three nodes, and the nodes
in the same rack have the same hardware configurations
and operating system (see Table 3). The chunk size is set as
4MB. In the evaluation, we erase the data on each node and

3 4 5
0

5

10

15

20

25

30

Number of Racks

CAR
RR

3 4 5
0.0

0.5

1.0

1.5

2.0

Number of Racks

CAR
RR

(a) Cross-rack repair traffic (b) Recovery time

Fig. 11. Experiment 2: Impact of number of racks.

invoke failure recovery. We measure the average amounts
of cross-rack repair traffic and recovery time to reconstruct
a lost chunk. Figure 11 shows the evaluation results.

Figure 11(a) first presents the amount of cross-rack traffic
to repair a lost chunk under different number of racks. We
make three observations. First, there will be more cross-
rack traffic in CAR when the number of racks increases.
The reason is that the distribution of chunks will be more
“sparse” (i.e., fewer chunks in a rack) if they are dispersed
across more racks, which will limit the effectiveness of intra-
rack chunk aggregation. Second, RR will also introduce
more cross-rack repair traffic when the number of rack
increases. As shown before, RR needs to directly read any
k chunks to repair a lost chunk. Increasing the number
of racks will place more chunks in the intact racks, and
hence produce more cross-rack repair traffic. Third, CAR
still keeps its effectiveness even when the number of racks
varies. For example, compared with RR, CAR reduces about
55.3% of cross-rack repair traffic when the CFS has three
racks. This saving will be 54.9% when the number of racks
increases to five.

Figure 11(b) presents the average recovery time to repair
a chunk versus the number of racks. We see that both CAR
and RR incurs more recovery time when there are more
racks. For example, CAR needs 0.60 seconds to repair a lost
chunk when there are three racks, and the recovery time
increases to 1.04 seconds when the number of racks is five.
CAR still sees performance gain; for example, its recovery



12

k=4 k=5 k=6 k=7 k=8
0

5

10

15

20

25

30

Number of Data Chunks in a Stripe

CAR
RR

k=4 k=5 k=6 k=7 k=8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of Data Chunks in a Stripe

CAR
RR

(a) Cross-rack repair traffic (b) Recovery time

Fig. 12. Experiment 3: Impact of number of data chunks.

m=3 m=4 m=5 m=6
0

5

10

15

20

25

Number of Parity Chunks in a Stripe

CAR
RR

m=3 m=4 m=5 m=6
0.0

0.5

1.0

1.5

2.0

2.5

Number of Parity Chunks in a Stripe

CAR
RR

(a) Cross-rack repair traffic (b) Recovery time

Fig. 13. Experiment 3: Impact of number of parity chunks.

time is 33.7% less than that of RR when there are five racks.
Experiment 3 (Impact of Erasure Coding Configurations).
We further investigate the impact of selected parame-
ters in erasure coding schemes. We consider a new CFS
setting as follows. We configure a CFS over four racks
{A1, A2, A3, A4}, each of which includes three nodes with
configurations shown in Table 3. We set the chunk size to
be 4MB and select the (k = 6,m = 3) RS code. We then
evaluate the cross-rack traffic and the time to repair a lost
chunk when k and m vary respectively. The evaluation
results are respectively shown in Figures 12 and 13.

Figure 12(a) first gives the amount of caused cross-rack
repair traffic when the number of data chunks (i.e., k) in a
stripe varies. We make three observations. First, both CAR
and RR incur more cross-rack repair traffic when the value
of k becomes larger. The reason is that to repair a lost chunk,
k surviving chunks are required in RS Codes. Second, CAR
is more insensitive with the change of k when compared to
RR. Third, CAR can still reduce the amount of cross-rack
repair traffic when the value of k varies.

Figure 12(b) shows the time to repair a lost chunk when
the value of k varies. We make two observations. First,
both of CAR and RR incur more time to reconstruct a
chunk when the value of k is larger, mainly because of
the increased amount of cross-rack traffic during recovery.
Second, CAR incurs less recovery time compared to RR. For
example, when k = 4, CAR requires about 47.9% less time
to repair a chunk when compared with RR.

Figure 13(a) shows the amount of cross-rack repair traffic
when the number of parity chunks (i.e., m) in a stripe
changes. We see that the selection of m in our evaluation
does not have significant impact on the amount of cross-
rack repair traffic for both RR and CAR. The reason is that
the configuration of m does not affect the number of chunks
to be read for recovery, even though it may increase the
number of chunks in a stripe. Following the same reason,
Figure 13(b) also indicates that the number of parity chunks
has limited influence on the recovery time.

3 4 5
0

5

10

15

Number of Nodes per Rack

CAR
RR

3 4 5
0.0

0.5

1.0

1.5

Number of Nodes per Rack

CAR
RR

(a) Cross-rack repair traffic (b) Recovery time

Fig. 14. Experiment 4: Impact of number of nodes per rack.

Experiment 4 (Impact of Number of Nodes Per Rack). We
further study the impact of number of nodes per rack. We
select the (k = 4,m = 3) RS code and fix the chunk size
as 4MB. The evaluated CFS in this test is constructed over
three racks {A1, A2, A3} in Table 3, where each rack has
three nodes. We then erase the data on a randomly selected
node, vary the number of nodes in each rack from three to
five, and measure the average amounts of cross-rack traffic
and recovery time to repair a lost chunk. The evaluation
results are shown in Figure 14.

Figure 14(a) shows that the amounts of cross-rack repair
traffic to repair a lost chunk in both CAR and RR will not
be significantly affected when the number of nodes per rack
varies. The reason is that each rack always has the same
number of nodes (i.e., from three to five) in each test, and
this results in the same likelihood of placing a chunk in
any one of the racks during the distribution of chunks. As a
result, the number of chunks in each rack will not be affected
even when the number of nodes per rack varies. Combined
with the recovery principle of RR and CAR, their amounts
of cross-rack repair traffic will not be influenced.

Figure 14(b) shows the recovery time of CAR and RR
versus the number of nodes per rack. As the recovery time
is closely related to the amount of cross-rack repair traffic,
we observe that the recovery time of both CAR and RR will
be stable when the number of nodes per rack changes.
Experiment 5 (Load Balancing). In this evaluation, we
measure the capability of CAR to balance the amount of
cross-rack repair traffic across multiple racks. We configure
the number of iterations (i.e., e) to be 50 and the number of
stripes (i.e., s) to be 100 in Algorithm 2. In each CFS setting,
we measure the load balancing rate (i.e., λ) of CAR after
each number of iterations.

Figure 15 presents the average results and the stan-
dard deviations for CAR with and without performing
load balancing (the latter means that we do not execute
Algorithm 2). In all cases, CAR can effectively balance the
amount of cross-rack repair traffic. For example, in CFS1
(see Figure 15(a)), if we do not perform load balancing,
the load balancing rate is 1.22 even though CAR retrieves
chunks from the minimum number of racks and performs
partial decoding. With load balancing enabled, the load
balancing rate of the optimized solution can reduce to 1.02.
In addition, as we increase the number of iterations, the load
balancing rate first decreases significantly and then becomes
stable, mainly because the resulting solution is closer to the
minimum with the increase of iteration steps.
Experiment 6 (Computation Time and Transmission Time).
We further provide a breakdown on the recovery time, in



13

10 20 30 40 50

1.0

1.1

1.2

1.3

1.4

Iteration Steps

Solution Balanced by CAR
Unbalanced Solution

10 20 30 40 50

1.0

1.1

1.2

1.3

1.4

1.5

Iteration Steps

Solution Balanced by CAR
Unbalanced Solution

10 20 30 40 50

1.2

1.4

1.6

1.8

2.0

Iteration Steps

Solution Balanced by CAR
Unbalanced Solution

(a) CFS1 (10 nodes, k = 4,m = 3) (b) CFS2 (13 nodes, k = 6,m = 3) (c) CFS3 (20 nodes, k = 10,m = 4)

Fig. 15. Experiment 5: Load balancing rate (and the standard deviation) versus the number of iteration steps in CAR. For brevity, we only show the
standard deviations in the positive direction.

CFS3-RR

CFS2-RR

CFS1-RR

CFS3-CAR

CFS2-CAR

CFS1-CAR

0.0 0.2 0.4 0.6 0.8 1.0

Ratio

Computation Time
Transmission Time

(a) Ratios of transmission time and computation time

CFS3

CFS2

CFS1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Computation Time

RR
CAR

(b) Computation time (normalized with respect to that of RR)

Fig. 16. Evaluation of transmission time and computation time for recov-
ering a lost chunk.

terms of the transmission time and the computation time
to recover a lost chunk. The transmission time records the
duration of data transmissions over the CFS, while the
computation time records the duration to perform required
decoding operations over finite fields for reconstructing the
lost chunk. We fix the chunk size as 8MB.

Figure 16 presents the results. Figure 16(a) shows that
the transmission time dominates the overall recovery time,
justifying the need of reducing the transmission overhead
in CAR. Also, the ratio of computation time in both RR
and CAR decreases when the parameter k in RS codes
increases. For example, for CAR in CFS1 (where k = 4), the
computation time occupies 11.3% of recovery time, while in
CFS3, the ratio decreases to 7.1% (where k = 10).

Figure 16(b) shows that the computation time of CAR
normalized over that of RR. The computation times of both
CAR and RR are similar (e.g., with up to around 10% of
difference). Note that CAR does not change the decoding
operations in RS codes, but only breaks down a decoding
operation into multiple partial decoding operations.

6 CONCLUSIONS

This paper reconsiders the single failure recovery problem
in a clustered file system (CFS) with over-subscribed cross-
rack bandwidth, and propose CAR, a cross-rack-aware re-
covery algorithm. CAR includes three key techniques. First,
CAR examines the data layout in a CFS and determines
the recovery solution that accesses the minimum number
of racks for each stripe. Second, CAR performs partial

decoding by aggregating the requested chunks in the same
rack before cross-rack data transmissions. Third, CAR uses a
greedy algorithm to find the recovery solution that balances
the amount of cross-rack repair traffic across racks. Exper-
imental results show that CAR can reduce both cross-rack
data transmissions and the overall recovery time.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 61602120, 61672159,
61232003, 61433008), the Technology Innovation Platform
Project of Fujian Province (Grant No. 2014H2005), the Fujian
Collaborative Innovation Center for Big Data Application
in Governments, the Fujian Engineering Research Center of
Big Data Analysis and Processing, and the Fujian Provincial
Natural Science Foundation (Grant No. 2017J05102). This
work is also supported by the Research Grants Council of
Hong Kong (GRF 14216316 and CRF C7036-15G).

REFERENCES

[1] Colossus, successor to google file system.
http://static.googleusercontent.com/media/research.google.com/
en/us/university/relations/facultysummit2010/storage architec
ture and challenges.pdf.

[2] T. Benson, A. Akella, and D. A. Maltz. Network traffic character-
istics of data centers in the wild. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, 2010.

[3] S. Bhattacharya, S. Pratt, B. Pulavarty, and J. Morgan. Asyn-
chronous i/o support in linux 2.5. In Proceedings of the Linux
Symposium, pages 371–386, 2003.

[4] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling. Hdfs
raid. In Hadoop User Group Meeting, 2010.

[5] B. Calder, J. Wang, A. Ogus, et al. Windows azure storage: a highly
available cloud storage service with strong consistency. In Proc. of
ACM SOSP, 2011.

[6] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging endpoint
flexibility in data-intensive clusters. In Proc. of ACM SIGCOMM,
2013.

[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. Row-diagonal parity for double disk failure correc-
tion. In Proc. of USENIX FAST, 2004.

[8] J. Dean. Software engineering advice from building large-scale
distributed systems. CS295 Lecture at Stanford University, July, 2007.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. USENIX OSDI, 2004.

[10] A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran. Network coding for distributed storage systems. IEEE
Transactions on Information Theory, 56(9):4539–4551, 2010.

[11] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed
storage systems. In Proc. of USENIX OSDI, 2010.

[12] Y. Fu, J. Shu, and X. Luo. A stack-based single disk failure recovery
scheme for erasure coded storage systems. In Proc. of IEEE SRDS,
2014.



14

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
In Proc. of ACM SOSP, 2003.

[14] Y. Hu, P. P. Lee, and X. Zhang. Double regenerating codes for
hierarchical data centers. In Proc. of IEEE International Symposium
on Information Theory, 2016.

[15] Y. Hu, X. Li, M. Zhang, P. P. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal repair layering for erasure-coded data centers: From
theory to practice. ACM Transactions on Storage, 2017.

[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in windows azure storage. In
Proc. of USENIX ATC, 2012.

[17] C. Huang and L. Xu. Star: An efficient coding scheme for correct-
ing triple storage node failures. Computers, IEEE Transactions on,
57(7):889–901, 2008.

[18] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang.
Rethinking erasure codes for cloud file systems: minimizing i/o
for recovery and degraded reads. In Proc. of USENIX FAST, 2012.

[19] M. Li and P. P. Lee. Stair codes: a general family of erasure
codes for tolerating device and sector failures in practical storage
systems. In Proc. of USENIX FAST, 2014.

[20] R. Li, Y. Hu, and P. P. Lee. Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems. In
Proc. of IEEE/IFIP DSN, 2015.

[21] R. Li, X. Li, P. P. Lee, and Q. Huang. Repair pipelining for erasure-
coded storage. In Proc. of USENIX ATC, 2017.

[22] X. Luo and J. Shu. Load-balanced recovery schemes for single-disk
failure in storage systems with any erasure code. In Proc. of IEEE
ICPP, 2013.

[23] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-parallel-repair
(ppr): a distributed technique for repairing erasure coded storage.
In Proceedings of the Eleventh European Conference on Computer
Systems, 2016.

[24] S. Muralidhar, W. Lloyd, S. Roy, et al. F4: Facebooks warm blob
storage system. In Proc. of USENIX OSDI, 2014.

[25] J. S. Plank, M. Blaum, and J. L. Hafner. Sd codes: erasure codes
designed for how storage systems really fail. In Proc. of USENIX
FAST, 2013.

[26] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn,
et al. A performance evaluation and examination of open-source
erasure coding libraries for storage. In In Proc. of USENIX FAST,
2009.

[27] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A li-
brary in c/c++ facilitating erasure coding for storage applications-
version 1.2. University of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[28] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran.
Having your cake and eating it too: Jointly optimal erasure codes
for i/o, storage, and network-bandwidth. In Proc. of USENIX
FAST, 2015.

[29] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers. In Proc. of ACM
SIGCOMM, 2014.

[30] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial & Applied Mathematics,
8(2):300–304, 1960.

[31] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, and A. e. a.
Dimakis. Xoring elephants: Novel erasure codes for big data. In
Proceedings of the VLDB Endowment, 2013.

[32] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file system
for large computing clusters. In Proc. of USENIX FAST, 2002.

[33] B. Schroeder and G. Gibson. Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you? In Proc. of USENIX
FAST, 2007.

[34] Z. Shen and J. Shu. Hv code: An all-around mds code to improve
efficiency and reliability of raid-6 systems. In Proc. of IEEE/IFIP
DSN, 2014.

[35] Z. Shen, J. Shu, and Y. Fu. Seek-efficient i/o optimization in single
failure recovery for xor-coded storage systems. In Proc. of IEEE
SRDS, 2015.

[36] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering single failure
recovery in clustered file systems. In Proc. of IEEE/IFIP DSN, 2016.

[37] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proc. of IEEE MSST, 2010.

[38] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Proc. of IPTPS, 2002.

[39] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two
erasure codes in hdfs. In Proc. of USENIX FAST, 2015.

[40] L. Xiang, Y. Xu, J. Lui, and Q. Chang. Optimal recovery of
single disk failure in rdp code storage systems. In Proc. of ACM
SIGMETRICS, 2010.

[41] L. Xu and J. Bruck. X-code: Mds array codes with optimal
encoding. IEEE Transactions on Information Theory, 45(1):272–276,
1999.

[42] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. Lui. Single disk
failure recovery for x-code-based parallel storage systems. IEEE
Trans. on Computers, 63(4):995–1007, 2014.

[43] Y. Zhu, P. P. Lee, Y. Hu, L. Xiang, and Y. Xu. On the speedup of
single-disk failure recovery in xor-coded storage systems: Theory
and practice. In Proc. of IEEE MSST, 2012.

[44] Y. Zhu, P. P. Lee, L. Xiang, Y. Xu, and L. Gao. A cost-based
heterogeneous recovery scheme for distributed storage systems
with raid-6 codes. In Proc. of IEEE/IFIP DSN, 2012.

Zhirong Shen received the BS degree from
University of Electronic Science and Technology
of China, the Ph.D degree with Department of
Computer Science and Technology at Tsinghua
University in 2016. He is now a postdoctoral
fellow at The Chinese University of Hong Kong.
His current research interests include storage
reliability and storage security.

Patrick P.C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an associate professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests are in cloud storage, dis-

tributed systems and networks, and security/resilience.

Jiwu Shu received the Ph.D degree in com-
puter science from Nanjing University in 1998,
and finished the postdoctoral position research
at Tsinghua University in 2000. Since then, he
has been teaching at Tsinghua University. His
current research interests include storage se-
curity and reliability, non-volatile memory based
storage systems, and parallel and distributed
computing. He is an senior member of the IEEE.

Wenzhong Guo received the BS and MS de-
grees in computer science, and the PhD de-
gree in communication and information system
from Fuzhou University, Fuzhou, China, in 2000,
2003, and 2010, respectively. He is currently a
full professor with the College of Mathematics
and Computer Science at Fuzhou University. His
research interests include intelligent information
processing, sensor networks, network comput-
ing, and network performance evaluation.


