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Secure Overlay Cloud Storage with Access
Control and Assured Deletion

Yang Tang, Patrick P. C. Lee, John C. S. Lui, Radia Perlman

Abstract—We can now outsource data backups off-site to third-party cloud storage services so as to reduce data management costs.

However, we must provide security guarantees for the outsourced data, which is now maintained by third parties. We design and

implement FADE, a secure overlay cloud storage system that achieves fine-grained, policy-based access control and file assured

deletion. It associates outsourced files with file access policies, and assuredly deletes files to make them unrecoverable to anyone

upon revocations of file access policies. To achieve such security goals, FADE is built upon a set of cryptographic key operations that

are self-maintained by a quorum of key managers that are independent of third-party clouds. In particular, FADE acts as an overlay

system that works seamlessly atop today’s cloud storage services. We implement a proof-of-concept prototype of FADE atop Amazon

S3, one of today’s cloud storage services. We conduct extensive empirical studies, and demonstrate that FADE provides security

protection for outsourced data, while introducing only minimal performance and monetary cost overhead. Our work provides insights

of how to incorporate value-added security features into today’s cloud storage services.

Keywords—access control, assured deletion, backup/recovery, cloud storage
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1 INTRODUCTION

Cloud storage is a new business solution for remote
backup outsourcing, as it offers an abstraction of infinite
storage space for clients to host data backups in a pay-as-
you-go manner [5]. It helps enterprises and government
agencies significantly reduce their financial overhead of
data management, since they can now archive their data
backups remotely to third-party cloud storage providers
rather than maintain data centers on their own. For
example, SmugMug [30], a photo sharing website, chose
to host terabytes of photos on Amazon S3 in 2006 and
saved thousands of dollars on maintaining storage de-
vices [3]. More case studies of using cloud storage for re-
mote backup can be found in [2]. Apart from enterprises
and government agencies, individuals can also archive
their personal data to the cloud using tools like Dropbox
[10]. In particular, with the advent of smartphones, we
expect that more people will use Dropbox-like tools to
move audio/video files from their smartphones to the
cloud, given that smartphones typically have limited
storage resources.

However, security concerns become relevant as we
now outsource the storage of possibly sensitive data to
third parities. In this paper, we are particularly interested
in two security issues. First, we need to provide guaran-
tees of access control, in which we must ensure that only
authorized parties can access the outsourced data on the
cloud. In particular, we must prohibit third-party cloud
storage providers from mining any sensitive information
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of their clients’ data for their own marketing purposes.
Second, it is important to provide guarantees of assured
deletion, meaning that outsourced data is permanently
inaccessible to anybody (including the data owner) upon
requests of deletion of data. Keeping data permanently
is undesirable, as data may be unexpectedly disclosed
in the future due to malicious attacks on the cloud or
careless management of cloud operators. The challenge
of achieving assured deletion is that we have to trust
cloud storage providers to actually delete data, but they
may be reluctant in doing so [28]. Also, cloud storage
providers typically keep multiple backup copies of data
for fault-tolerance reasons. It is uncertain, from cloud
clients’ perspectives, whether cloud providers reliably
remove all backup copies upon requests of deletion.

The security concerns motivate us, as cloud clients,
to have a system that can enforce access control and
assured deletion of outsourced data on the cloud in a
fine-grained manner. However, building such a system is
a difficult task, especially when it involves protocol or
hardware changes in cloud storage infrastructures that
are externally owned and managed by third-party cloud
providers. Thus, it is necessary to design a secure overlay
cloud storage system that can be overlaid and work
seamlessly atop existing cloud storage services.

In this paper, we present FADE, a secure overlay cloud
storage system that provides fine-grained access control and
assured deletion for outsourced data on the cloud, while work-
ing seamlessly atop today’s cloud storage services. In FADE,
active data files that remain on the cloud are associated
with a set of user-defined file access policies (e.g., time
expiration, read/write permissions of authorized users),
such that data files are accessible only to users who
satisfy the file access policies. In addition, FADE gen-
eralizes time-based file assured deletion [12], [23] (i.e.,
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data files are assuredly deleted upon time expiration)
into a more fine-grained approach called policy-based file
assured deletion, in which data files are assuredly deleted
when the associated file access policies are revoked
and become obsolete. The design intuition of FADE is
to decouple the management of encrypted data and
cryptographic keys, such that encrypted data remains
on third-party (untrusted) cloud storage providers, while
cryptographic keys are independently maintained and
operated by a quorum of key managers that altogether
form trustworthiness. To provide guarantees of access
control and assured deletion, FADE leverages off-the-
shelf cryptographic schemes including threshold secret
sharing [29] and attribute-based encryption [7], [13],
[25], [27], and performs various cryptographic key op-
erations that provide security protection for basic file
upload/download operations. We implement a proof-
of-concept prototype of FADE to justify its feasibility,
and export a set of library APIs that can be used, as
a value-added security service, to enhance the security
properties of general data outsourcing applications.

We point out that the design of FADE is based on the
thin-cloud interface [35], meaning that it only requires the
cloud to support the basic data access operations such as
put and get. Thus, FADE is applicable for general types
of storage backends, as long as such backends provide
the interface for uploading and downloading data. On
the other hand, in the context of cloud storage, we need
to specifically consider the performance metrics that are
inherent to cloud storage, including data transmission
performance (given that a cloud is deployed over the
Internet) and monetary cost overhead (given that a cloud
charges clients for data outsourcing). Thus, we empiri-
cally evaluate FADE according to the specific features of
cloud storage, so as to justify that FADE is actually a
feasible solution for secure cloud storage.

Our contributions are summarized as follows.

• We propose a new policy-based file assured deletion
scheme that reliably deletes files with regard to
revoked file access policies. In this context, we de-
sign the key management schemes for various file
manipulation operations, with the emphasis on fine-
grained security protection.

• On top of policy-based file assured deletion, we
design and implement two new features: (i) fine-
grained access control based on attribute-based en-
cryption and (ii) fault-tolerant key management
with a quorum of key managers based on threshold
secret sharing.

• We implement a working prototype of FADE atop
Amazon S3. Our implementation of FADE exports
a set of APIs that can be adapted into different data
outsourcing applications.

• We empirically evaluate the performance overhead
of FADE atop Amazon S3. Using experiments in a
realistic network environment, we show the feasi-
bility of FADE in improving the security protection
of data storage on the cloud in practice. We also

analyze the monetary cost overhead of FADE under
a practical cloud backup scenario.

In summary, our work seeks to address the access
control and assured deletion problems from a practi-
cal perspective. Our FADE implementation characterizes
and evaluates the performance and monetary cost impli-
cations of applying access control and assured deletion
in a real-life cloud storage environment.

The remainder of the paper proceeds as follows. In
Section 2, we describe and motivate the concept of
policy-based file assured deletion, a major building block
of FADE. In Section 3, we overview the design of FADE,
and define our design goals. In Section 4, we explain the
design of FADE in achieving access control and assured
deletion. In Section 5, we describe the implementation
details of FADE. In Section 6, we evaluate FADE atop
Amazon S3. Section 7 reviews related work on securing
outsourced data storage. Finally, Section 8 concludes.

2 POLICY-BASED FILE ASSURED DELETION

FADE seeks to achieve both access control and assured
deletion for outsourced data. The design of FADE is
centered around the concept of policy-based file assured
deletion. We first review time-based file assured deletion
proposed in earlier work. We then explain the more
general concept policy-based file assured deletion and
motivate why it is important in certain scenarios.

2.1 Background

Time-based file assured deletion, which is first intro-
duced in [23], means that files can be securely deleted
and remain permanently inaccessible after a pre-defined
duration. The main idea is that a file is encrypted with
a data key by the owner of the file, and this data key is
further encrypted with a control key by a separate key
manager (known as Ephemerizer [23]). The key manager
is a server that is responsible for cryptographic key man-
agement. In [23], the control key is time-based, meaning
that it will be completely removed by the key manager
when an expiration time is reached, where the expiration
time is specified when the file is first declared. Without
the control key, the data key and hence the data file
remain encrypted and are deemed to be inaccessible.
Thus, the main security property of file assured deletion
is that even if a cloud provider does not remove expired
file copies from its storage, those files remain encrypted
and unrecoverable.

An open issue in the work [23] is that it is uncertain
that whether time-based file assured deletion is feasible
in practice, as there is no empirical evaluation. Later, the
idea of time-based file assured deletion is prototyped
in Vanish [12]. Vanish divides a data key into multiple
key shares, which are then stored in different nodes of
a public Peer-to-Peer Distributed Hash Table (P2P DHT)
system. Nodes remove the key shares that reside in their
caches for a fixed time period. If a file needs to remain
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accessible after the time period, then the file owner needs
to update the key shares in node caches. Since Vanish is
built on the cache-aging mechanism in the P2P DHT, it is
difficult to generalize the idea from time-based deletion
to a fine-grained control of assured deletion with respect
to different file access policies. We elaborate this issue in
the following section.

2.2 Policy-based Deletion

We now generalize time-based deletion to policy-based
deletion as follows. We associate each file with a single
atomic file access policy (or policy for short), or more
generally, a Boolean combination of atomic policies. Each
(atomic) policy is associated with a control key, and all
the control keys are maintained by the key manager.
Suppose now that a file is associated with a single policy.
Then similar to time-based deletion, the file content is
encrypted with a data key, and the data key is further
encrypted with the control key corresponding to the
policy. When the policy is revoked, the corresponding
control key will be removed from the key manager. Thus,
when the policy associated with a file is revoked and
no longer holds, the data key and hence the encrypted
content of the file cannot be recovered with the control
key of the policy. In this case, we say the file is assuredly
deleted. The main idea of policy-based deletion is to
delete files that are associated with revoked policies.

The definition of a policy varies across applications.
In fact, time-based deletion is a special case under our
framework. In general, policies with other access rights
can be defined. To motivate the use of policy-based
deletion, let us consider a scenario where a company
outsources its data to the cloud. We consider four prac-
tical cases where policy-based deletion will be useful.

Storing files for tenured employees. For each employee
(e.g., Alice), we can define a user-based policy “P : Alice
is an employee”, and associate this policy with all files
of Alice. If Alice quits her job, then the key manager
will expunge the control key of policy P . Thus, nobody
including Alice can access the files associated with P on
the cloud, and those files are said to be deleted.

Storing files for contract-based employees. An em-
ployee may be affiliated with the company for only a
fixed length of time. Then we can form a combination
of the user-based and time-based policies for employees’
files. For example, for a contract-based employee Bob
whose contract expires on 2010-01-01, we have two
policies “P1: Bob is an employee” and “P2: valid before 2010-
01-01”. Then all files of Bob are associated with the policy
combination P1 ∧ P2. If either P1 or P2 is revoked, then
Bob’s files are deleted.

Storing files for a team of employees. The company
may have different teams, each of which has more than
one employee. As in above, we can assign each employee
i a policy combination Pi1 ∧ Pi2, where Pi1 and Pi2 de-
note the user-based and time-based policies, respectively.
We then associate the team’s files with the disjunctive
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Fig. 1: The FADE system. Each client (deployed locally
with its own data source) interacts with one or mul-
tiple key managers and uploads/downloads data files
to/from the cloud.

combination (P11 ∧P12)∨ (P21 ∧P22)∨ · · · ∨ (PN1 ∧PN2)
for employees 1, 2, . . . , N . Thus, the team’s files can be
accessed by any one of the employees, and will be
deleted when the policies of all employees of the team
are revoked.

Switching a cloud provider. The company can define
a customer-based policy “P : a customer of cloud provider
X”, and all files that are stored on cloud X are tied
with policy P . If the company switches to a new cloud
provider, then it can revoke policy P . Thus, all files
on cloud X will be deleted. We argue that switching
cloud providers has its potential application, such as in
avoiding vendor lock-ins [1].

3 FADE OVERVIEW

We now overview the design of FADE, a system that
provides guarantees of access control and assured dele-
tion for outsourced data in cloud storage. We present the
necessary components of FADE, and state the design and
security goals that it seeks to achieve.

Figure 1 illustrates an overview of the FADE system.
The cloud hosts data files on behalf of a group of FADE
users who want to outsource data files to the cloud based
on their definitions of file access policies. FADE can be
viewed as an overlay system atop the underlying cloud.
It applies security protection to the outsourced data files
before they are hosted on the cloud.

3.1 Entities

As shown in Figure 1, the FADE system is composed of
two main entities:

• FADE clients. A FADE client (or client for short)
is an interface that bridges the data source (e.g.,
filesystem) and the cloud. It applies encryption
(decryption) to the outsourced data files uploaded
to (downloaded from) the cloud. It also interacts
with the key managers to perform the necessary
cryptographic key operations.

• Key managers. FADE is built on a quorum of key
managers [29], each of which is a stand-alone entity
that maintains policy-based keys for access control
and assured deletion (see Sections 3.3 and 3.4).
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The cloud, maintained by a third-party provider, pro-
vides storage space for hosting data files on behalf of
different FADE clients in a pay-as-you-go manner. Each
of the data files is associated with a combination of file
access policies. FADE is built on the thin-cloud interface
[35], and assumes only the basic cloud operations for
uploading and downloading data files. We emphasize
that we do not require any protocol and implementation
changes on the cloud to support FADE.

3.2 Deployment

In our current design, a FADE client is deployed locally
with its corresponding data source as a local driver or
daemon. Note that it is also possible to deploy the FADE
client as a cloud storage proxy [1], so that it can intercon-
nect multiple data sources. In proxy deployment, we can
use standard TLS/SSL [9] to protect the communication
between each data source and the proxy.

In FADE, the set of key managers is deployed as
a centralized trusted service, whose trustworthiness is
enforced through a quorum scheme. We assume that the
key managers are centrally maintained, for example, by
the system administrators of an enterprise that deploys
FADE for its employees. We note that this centralized
control is opposed to the core design of Vanish [12],
which proposes to use decentralized key management
on top of existing P2P DHT systems. However, as dis-
cussed in Section 2, there is no straightforward solution
to develop fine-grained cryptographic key management
operations over a decentralized P2P DHT system. Also,
the Vanish implementation that was published in [12]
is subject to Sybil attacks [38], which particularly target
DHT systems. In view of this, we propose to deploy a
centralized key management service, and use a quorum
scheme to improve its robustness.

3.3 Cryptographic Keys

FADE defines three types of cryptographic keys to pro-
tect data files stored on the cloud:

• Data key. A data key is a random secret that is
generated and maintained by a FADE client. It is
used for encrypting or decrypting data files via
symmetric-key encryption (e.g., AES).

• Control key. A control key is associated with a par-
ticular policy. It is represented by a public-private
key pair, and the private control key is maintained
by the quorum of key managers. It is used to
encrypt/decrypt the data keys of the files protected
with the same policy. The control key forms the basis
of policy-based assured deletion.

• Access key. Similar to the control key, an access
key is associated with a particular policy, and is
represented by a public-private key pair. However,
unlike the control key, the private access key is
maintained by a FADE client that is authorized to
access files of the associated policy. The access key

is built on attribute-based encryption [7], and forms
the basis of policy-based access control.

Intuitively, to successfully decrypt an encrypted file
stored on the cloud, we require the correct data key,
control key, and access key. Without any of these keys, it
is computationally infeasible to recover an outsourced
file being protected by FADE. The following explains
how we manage such keys to achieve our security goals.

3.4 Security Goals

We formally state the security goals that FADE seeks to
achieve in order to protect the outsourced data files.

Threat model. Here, we consider an adversary that seeks
to compromise the privacy of two types of files that
are outsourced and stored on the cloud: (i) active files,
i.e., the data files that the adversary is unauthorized to
access and (ii) deleted files, i.e., the data files that have
been requested to be deleted by the authorized parties.
Clearly, FADE needs to properly encrypt outsourced data
files to ensure that their information is not disclosed to
unauthorized parties. The underlying assumption is that
the encryption mechanism is secure, such that it is com-
putationally infeasible to recover the encrypted content
without knowing the cryptographic key for decryption.

Security properties. Given our threat model, we focus
on two specific security goals that FADE seeks to achieve
for fine-grained security control:

• Policy-based access control. A FADE client is au-
thorized to access only the files whose associated
policies are active and are satisfied by the client.

• Policy-based assured deletion. A file is deleted (or
permanently inaccessible) if its associated policies
are revoked and become obsolete. That is, even if
a file copy that is associated with revoked policies
exists, it remains encrypted and we cannot retrieve
the corresponding cryptographic keys to recover the
file. Thus, the file copy becomes unrecoverable by
anyone (including the owner of the file).

Assumptions. To achieve the above security goals, we
make the following assumptions regarding the key man-
agement in FADE. FADE is built on a quorum of key
managers based on Shamir’s (M,N) threshold secret
sharing [29], in which we create N key shares for a key,
such that any M ≤ N of the key shares can be used
to recover the key. First, to access files associated with
active policies, we require at least M out of N key man-
agers keep the key shares of the required control keys
and correctly perform the cryptographic key operations.
Second, to assuredly delete files, at least N−M+1 out of
N key managers must securely erase the corresponding
control keys of the revoked policies, such as via secure
overwriting [14], which we believe is feasible for smaller-
size keys as opposed to larger-size data files.

The parameters M and N determine the trade-off be-
tween the fault tolerance assumptions of key managers
when accessing and deleting files. If M is small (large),
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then we need fewer (more) key managers to be active
in order to access a file, but we need more (fewer) key
managers to purge the revoked control keys in order
to delete a file. How to adjust the trade-off depends on
different application needs.

We assume that a key manager is subject to only
fail-stop failures (e.g., system crashes, data losses), so
the quorum scheme enables our key management to
be robust against fail-stop failures. On the other hand,
we do not consider the case of arbitrary (or Byzantine)
failures in key managers (e.g., tampering with control
keys or policies), where the security threats are beyond
the scope of this work. We pose the protection against
arbitrary failures in future studies.

In addition, we require that each FADE client does
not keep the raw copy of the data key that is used
to protect a data file. Once it successfully encrypts or
decrypts a data file, it must discard the raw copy of
the corresponding data key; otherwise, the file may be
recoverable should the raw copy of the data key be
disclosed. Only the encrypted copy of the data key,
together with the encrypted data files, will be kept and
stored on the cloud.

In our threat model, we only focus on protecting the
data files stored on the cloud. Therefore, we do not
consider the case where the FADE client discloses the
successfully decrypted data files that are retrieved from
the cloud, as such files are outside our protection scope.

4 FADE DESIGN

In this section, we present the design of FADE. In par-
ticular, we propose several cryptographic key operations
that enable FADE to achieve our security goals.

4.1 Basic Operations of FADE

We start with the basic design of FADE. To simplify our
discussion, we make two assumptions. First, only a sin-
gle key manager is used. Second, before accessing a file,
a client needs to present authentication credentials (e.g.,
based on public key infrastructure certificates) to the
key manager to show that it satisfies the proper policies
associated with the files, so that the key manager will
perform cryptographic key operations. We explain in
Section 4.2 how to relax both of the assumptions through
multiple key managers with threshold secret sharing and
access control with attribute-based encryption.

4.1.1 File Upload/Download

We now introduce the basic operations of how a client
uploads/downloads files to/from the cloud. We start
with the case where each file is associated with a single
policy, and then explain how a file is associated with
multiple policies in Section 4.1.3.

Our design is based on blinded RSA [32] (or blinded
decryption [23]), in which the client requests the key
manager to decrypt a blinded version of the encrypted
data key. If the associated policy is satisfied, then the key

Notation Description

F Data file generated by the client

K Data key used to encrypt file F

Pi Policy with index i

pi, qi RSA prime numbers for policy Pi (kept secret by the
key manager)

ni ni = piqi, known to the public

(ei, di) RSA public/private control key pair for policy Pi

Si Secret key corresponding to policy Pi

{.}KEY Symmetric-key encryption with key KEY

R The random number used for blinded RSA

TABLE 1: Notation used in this paper.

Pi

ei , ni

Pi , {K}Si
 , Si

ei, {F}K

Cloud Client Key manager

Fig. 2: File upload.

manager will decrypt and return the blinded version of
the original data key. The client can then recover the data
key. The motivation of using this blinded decryption
approach is that the actual content of the data key
remains confidential to the key manager as well as to
any attacker that sniffs the communication between the
client and the key manager.

Table 1 summarizes the notation used in this paper. We
first summarize the major notation used throughout the
paper. For each policy i, the key manager generates two
secret large RSA prime numbers pi and qi and computes
the product ni = piqi

1. The key manager then randomly
chooses the RSA public-private control key pair (ei, di).
The parameters (ni, ei) will be publicized, while di is
securely stored in the key manager. On the other hand,
when the client encrypts a file F , it randomly generates
a data key K, and a secret key Si that corresponds
to policy Pi. We let {.}KEY denote the symmetric-key
encryption operation (e.g., AES) with key KEY . We let
R be the blinded component when we use blinded RSA
for the exchanges of cryptographic keys.

Suppose that F is associated with policy Pi. Our goal
here is to ensure that K, and hence F , are accessible only
when policy Pi is satisfied. Note that we only present
the operations on cryptographic keys, while the imple-
mentation subtleties, such as the metadata that stores
the policy information, will be discussed in Section 5.
Also, when we raise some number to exponents ei or di,
it must be done over modulo ni. For brevity, we drop
“mod ni” in our discussion.

File upload. Figure 2 shows the file upload operation.

1. We require that each policy i uses a distinct ni to avoid the
common modulus attack on RSA [19].
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Pi , Si

eiR
ei

SiR

Pi , {K}Si
 , Si

ei, {F}K

Cloud Client Key manager

Fig. 3: File download.

The client first requests the public control key (ni, ei)
of policy Pi from the key manager, and caches (ni, ei)
for subsequent uses if the same policy Pi is associated
with other files. Then the client generates two random
keys K and Si, and sends {K}Si

, Sei
i , and {F}K to

the cloud2. Then the client must discard K and Si (see
Section 3.4 for justifications). To protect the integrity of
a file, the client computes an HMAC signature on every
encrypted file and stores the HMAC signature together
with the encrypted file in the cloud. We assume that the
client has a long-term private secret value for the HMAC
computation.

File download. Figure 3 shows the file download op-
eration. The client fetches {K}Si

, Sei
i , and {F}K from

the cloud. The client will first check whether the HMAC
signature is valid before decrypting the file. Then the
client generates a secret random number R, computes
Rei , and sends Sei

i ·Rei = (SiR)ei to the key manager to
request for decryption. The key manager then computes
and returns ((SiR)ei)di = SiR to the client, which can
now remove R and obtain Si, and decrypt {K}Si

and
hence {F}K .

4.1.2 Policy Revocation for File Assured Deletion

If a policy Pi is revoked, then the key manager com-
pletely removes the private control key di and the secret
prime numbers pi and qi. Thus, we cannot recover Si

from Sei
i , and hence cannot recover K and file F . We

say that file F , which is tied to policy Pi, is assuredly
deleted. Note that the policy revocation operations do
not involve interactions with the cloud.

4.1.3 Multiple Policies

FADE supports a Boolean combination of multiple poli-
cies. We mainly focus on two kinds of logical connec-
tives: (i) the conjunction (AND), which means the data is
accessible only when every policy is satisfied; and (ii) the
disjunction (OR), which means if any policy is satisfied,
then the data is accessible. Our following operations
on a Boolean combination of policies are similar to
those in [24], while the focus of [24] is on digital rights
management rather than file assured deletion.

• Conjunctive Policies. Suppose that F is associ-
ated with conjunctive policies P1 ∧ P2 ∧ · · · ∧ Pm.

2. We point out that the encrypted keys (i.e., {K}Si
, S

ei
i

) can
be stored in the cloud without creating risks of leaking confidential
information.

To upload F to the cloud, the client first ran-
domly generates a data key K, and different secret
keys S1, S2, . . . , Sm. It then sends the following to
the cloud: {{K}S1

}S2
· · ·Sm

, Se1
1

, Se2
2

, . . ., Sem
m , and

{F}K . On the other hand, to recover F , the client
generates a random number R and sends (S1R)e1 ,
(S2R)e2 , . . ., (SmR)em to the key manager, which
then returns S1R,S2R, . . . , SmR. The client can then
recover S1, S2, . . . , Sm, and hence K and F .

• Disjunctive Policies. Suppose that F is associated
with disjunctive policies Pi1 ∨ Pi2 ∨ · · · ∨ Pim . To
upload F to the cloud, the client will send the fol-
lowing: {K}S1

, {K}S2
, . . ., {K}Sm

, Se1
1

, Se2
2

, . . ., Sem
m ,

and {F}K . Therefore, the client needs to compute m

different encrypted copies of K. On the other hand,
to recover F , we can use any one of the policies to
decrypt the file, as in the above operations.

To delete a file associated with conjunctive policies,
we simply revoke any of the policies (say, Pj). Thus, we
cannot recover Sj and hence the data key K and file
F . On the other hand, to delete a file associated with
disjunctive policies, we need to revoke all policies, so
that S

ej
j cannot be recovered for all j. Note that for

any Boolean combination of policies, we can express
it in canonical form, e.g., in the disjunction (OR) of
conjunctive (AND) policies.

4.1.4 Policy Renewal

We conclude this section with the discussion of policy
renewal. Policy renewal means to associate a file with
a new policy (or combination of policies). For example,
if a user wants to extend the expiration time of a file,
then the user can update the old policy that specifies an
earlier expiration time to the new policy that specifies a
later expiration time.

In FADE, policy renewal merely operates on keys,
without retrieving the encrypted file from the cloud. The
procedures can be summarized as follows: (i) download
all encrypted keys (including the data key for the file
and the set of control keys for the associated Boolean
combination of policies) from the cloud, (ii) send them
to the key manager for decryption, (iii) recover the data
key, (iv) re-encrypt the data key with the control keys of
the new Boolean combination of policies, and finally (v)
send the newly encrypted keys back to the cloud.

In some special cases, we can simplify the key op-
erations of policy renewal. Suppose that the Boolean
combination structure of policies remains unchanged,
but one of the atomic policies Pi is changed to Pj . For
example, when we extend the contract date of Bob (see
Section 2.2), we may need to update the particular time-
based policy of Bob without changing other policies.
Then instead of decrypting and re-encrypting the data
key with the control keys that correspond to the new
Boolean combination of policies, we can simply update
the control key that corresponds to the particular atomic
policy. Figure 4 illustrates this special case of policy
renewal. In this case, the client simply sends the blinded
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Pi , Si

ei

Cloud Client Key manager

Pj , Si
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Fig. 4: A special case of policy renewal - when policy Pi

is renewed to policy Pj .

version Si
eiRei to the key manager, which then returns

SiR. The client then recovers Si. Now, the client re-
encrypts Si into S

ej
i (mod nj), where (nj , ej) is the

public control key of policy Pj , and sends it to the cloud.
Note that the encrypted data key K remains intact.

4.2 Extensions of FADE

We now discuss two extensions to the basic design of
FADE. The first extension is to use attribute-based encryp-
tion (ABE) [27], [7], [13], [25] in order to authenticate
clients through policy-based access control. The second
extension is to use threshold secret sharing [29] in order
to achieve better reliability for key management.

By no means do we claim the protocol designs of ABE-
based access control and threshold secret sharing are
our contributions. Instead, our contribution here is to
demonstrate a proof of applicability of existing security
mechanisms in a real-life cloud storage environment,
and characterize their performance overheads via our
empirical experiments (see Section 6).

4.2.1 Access Control with ABE

To recover a file from the cloud, a client needs to
request the key manager (assuming that only a single
key manager is deployed) to decrypt the data key. The
client needs to present authentication credentials to the
key manager to show that it indeed satisfies the policies
associated with the files. One implementation approach
for this authentication process is based on the public-key
infrastructure (PKI). However, this client-based authen-
tication requires the key manager to have accesses to the
association of every client and its satisfied policies. This
limits the scalability and flexibility if we scale up the
number of supported clients and their associations with
policies.

To resolve the scalability issue, attribute-based encryp-
tion (ABE) [27], [7], [13], [25] turns out to be the most
appropriate solution (see Section 2.2). In particular, our
approach is based on Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) [7]. We summarize the essential
ideas of ABE that are sufficient for our FADE design,
while we refer readers to [7] for details. Each client
first obtains, from the key issuing authority of the ABE
system, an ABE-based private access key that corresponds

to a set of attributes3 the client satisfies. This can be done
by having the client present authentication credentials
to the key issuing authority, but we emphasize that
this authentication is only a one-time bootstrap process.
Later, when a client requests the key manager to decrypt
the data key of a file on the cloud, the key manager
will encrypt the response messages using the ABE-based
public access key that corresponds to the combination
of policies associated with the file. If the client indeed
satisfies the policy combination, then it can use its ABE-
based private access key to recover the data key. Note
that the key manager does not have to know exactly each
individual client who requests decryption of a data key.

FADE uses two independent keys for each policy. The
first one is the private control key that is maintained by
the key manager for assured deletion. If the control key
is removed from the key manager, then the client cannot
recover the files associated with the corresponding pol-
icy. Another one is the ABE-based access key that is used
for access control. The ABE-based private access key is
distributed to the clients who satisfy the corresponding
policy, as in the ABE approach, while the key manager
holds the ABE-based public access key and uses it to
encrypt the response messages returned to the clients.
The use of the two sets of keys for the same policy
enables FADE to achieve both access control and assured
deletion.

We now modify the FADE operations to include the
ABE feature as follows. We assume that we operate on
a file that is associated with a single policy.

File Upload. The file upload operation remains un-
changed, since we only need the public parameters from
the key manager for this operation, and hence we do not
need to authenticate the client.

File Download. The file download operation requires
authentication of the client. When the client requests
the key manager to decrypt Sei

i Rei , the key manager
encrypts its answer SiR with ABE based on the policy
of the file. Therefore, if the client satisfies the policy, then
it can decrypt the response message and get SiR.

Policy Renewal. Similar to above, the key manager
encrypts SiR with ABE when the client requests it to
decrypt the old policy. For the re-encryption with the
new policy, there is no need to enforce access control
since we only need the public parameters.

Policy Revocation. Here we use a challenge-response
mechanism in order for the key manager to authenticate
the client. Figure 5 shows the revised policy revocation
protocol. In the first round, the client tells the key
manager that it wants to revoke policy Pi. The key man-
ager then generates a random number r as a challenge,
encrypts it with ABE that corresponds to policy Pi, and
gives it to the client. Next, if the client is genuine, then
it can decrypt r and send its hash to the key manager as

3. An attribute is equivalent to an atomic policy that we define for
policy-based file assured deletion (see Section 2).
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Fig. 5: Policy revocation with ABE.
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Key manager N...
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Fig. 6: File upload with multiple key managers.

the response to that challenge. Finally, the key manager
revokes the policy and acknowledges the client.

4.2.2 Multiple Key Managers

We point out that the use of a single key manager will
lead to the single-point-of-failure problem. An untrust-
worthy key manager may either prematurely removes
the keys before the client requests to revoke them, or
fail to remove the keys when it is requested to. The
former case may prevent the client from getting its data
back, while the latter case may subvert assured deletion.
Therefore, it is important to improve the robustness of
the key management service to minimize its chance of
being compromised. Here, we apply Shamir’s (M,N)
threshold secret sharing scheme [29], where M ≤ N (see
Section 3.4). Using Shamir’s scheme, we divide a secret
into N shares and distribute them over N independent
key managers, such that we must obtain the correct
shares from at least M out of N key managers in order
to reconstruct the original secret.

In FADE, we need to address the challenge of how
to manage the control keys with N > 1 key managers.
For each policy Pi, the jth key manager (where 1 ≤
j ≤ N ) will independently generate and maintain an RSA
public/private control key pair (eij , dij) corresponding
to a modulus nij . We point out that this key pair is
independent of the key pairs generated by other key
managers, although all such key pairs correspond to the
same policy Pi. Also, each key manager keeps its own
key pair and will not release it to other key managers.

Let us consider a file F that is associated with policy
Pi. We now describe the file/policy operations of FADE
using multiple key managers.

File Upload. Figure 6 shows the file upload operation
with multiple key managers. Instead of storing Sei

i on
the cloud as in the case of using a single key manager,
the client now splits Si into N shares, Si1, Si2, . . . , SiN

Pi , S
ei1

i1R
ei1

[Si1R]ABE

Cloud Client

Pi , {K}Si
 , S

ei1

i1 , ..., S
eiN

iN , {F}K

Key manager 1 Key manager N

...

...

...

[SiNR]ABE

Pi , S
eiN

iNR
eiN

Fig. 7: File download with multiple key managers and
ABE.

Pi , S
ei1

i1 , ..., S
eiN

iN

Cloud Client Key manager 1 Key manager N...

Pi , S
ei1

i1R
ei1, Pj

...

...

Pi , S
eiN

iNR
eiN, Pj

Pj, S
ej1

i1 , ..., S
ejN

iN

[Si1R]ABE , ej1, nj1

[SiNR]ABE , ejN, njN

Fig. 8: A special case of policy renewal with multiple
key managers and ABE - when policy Pi is renewed to
policy Pj .

using Shamir’s scheme. Next, the client requests each
key manager j for the public control key (nij , eij). Then
the client computes S

eij
ij (mod nij) for each j, and

sends {K}Si
, Sei1

i1 , Sei2
i2 , . . . , SeiN

iN , and {F}K to the cloud.
Finally, the client discards K, Si, and Si1, Si2, . . . , SiN .

File Download. Figure 7 shows the file download oper-
ation with multiple key managers. After retrieving the
encrypted key shares Sei1

i1 , Sei2
i2 , . . . , SeiN

iN from the cloud,
the client needs to request each key manager to decrypt
a share. For the jth share S

eij
ij (j = 1, 2, . . . , N), the

client blinds it with a randomly generated number R,
and sends S

eij
ij Reij to key manager j. Then, key manager

j responds the client with SijR. It also encrypts the
response with ABE. After unblinding, the client knows
Sij . After collecting M decrypted shares of Sij , the client
can combine them into S, and hence decrypts K and F .

Policy Renewal. The policy renewal operation is similar
to our original operation discussed in Section 4.1.4. The
only difference is that the client needs to renew every
share of Si. Note that in this operation we do not need
to combine or split the shares. Figure 8 shows a special
case of renewing a policy Pi to another Pj (cf. Figure 4
in Section 4).

Policy Revocation. The client needs to ask every key
manager to revoke the policy. As long as at least (N −
M + 1) key managers remove the private control keys
corresponding to the policy, all files associated with this
policy become assuredly deleted.
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4.3 Security Analysis

FADE is designed to protect outsourced data from unau-
thorized access and to assuredly delete outsourced data.
We now briefly summarize how FADE achieves its se-
curity properties as described in Section 3.4.

In our context, the cloud storage is untrusted and
insecure. The cloud may still keep backup copies of any
outsourced file after it is requested for deletion. Suppose
that an attacker gains access to the cloud storage and
obtains the (encrypted) copies of all active and deleted
files. Now we argue that the attacker cannot recover any
data from those files protected with FADE.

Active files. An active file on the cloud is encrypted
with a data key, which can only be decrypted by the
key manager. In order to reveal the original data, the
attacker has to request the key manager to decrypt the
data key. As discussed in Section 4.2.1, the response from
the key manager is protected with the ABE-based access
key. As long as the attacker does not have the access key,
it cannot decrypt the data key, and hence cannot decrypt
the original data.

Deleted files. A file becomes deleted when its associ-
ated policy is revoked. A deleted file is still encrypted
with a data key. However, since the key manager has
purged the control key for the revoked policy per-
manently, it loses the ability to decrypt the data key.
Therefore, the attacker cannot recover the original data.
Moreover, even if the attacker is powerful enough to get
the ABE access key or compromise the key manager to
get all control keys, the original data of the deleted file
is still unrecoverable as the corresponding control key is
already disposed.

5 IMPLEMENTATION

We implement a working prototype of FADE using C++
on Linux. Our implementation is built on off-the-shelf
library APIs. Specifically, we use the OpenSSL library
[22] for the cryptographic operations, the cpabe library
[34] for the ABE-based access control, and the ssss

library [31] for sharing control keys to a quorum of
key managers. The ssss library is originally designed
as a command-line utility to deal with keys in ASCII
format. We slightly modify ssss and add two functions
to split and combine keys in binary format, so as to make
it compatible with other libraries. In addition, we use
Amazon S3 [4] as our cloud storage backend.

In the following, we define the metadata of FADE
being attached to individual data files. We then describe
how we implement the client and a quorum of key
managers and how the client interacts with the cloud.

5.1 Representation of Metadata

For each data file protected by FADE, we include the
metadata that describes the policies associated with the
file as well as a set of cryptographic keys. More precisely,
the metadata contains the specification of the Boolean

combination of policies, and the corresponding crypto-
graphic keys including the encrypted data key of the file
and the control keys associated with the policies. Here,
we assume that each (atomic) policy is specified by a
unique 4-byte integer identifier. To represent a Boolean
combination of policies, we express it in disjunctive canon-
ical form, i.e., the disjunction (OR) of conjunctive policies,
and use the characters ‘*’ and ‘+’ to denote the AND and
OR operators. We upload the metadata as a separate file
to the cloud. This enables us to renew policies directly
on the metadata file without retrieving the entire data
file from the cloud.

In our implementation, individual data files have their
own metadata, each specifying its own data key. To
reduce the metadata overhead as compared to the data
file size, we can form a tarball of multiple files under
the same policy combination and have all files protected
with the same data key.

5.2 Client

Our client implementation uses four function calls to
enable end users to interact with the cloud:

• Upload(file, policy). The client encrypts the
input file according to the specified policy (or a
Boolean combination of policies). Here, the file is
encrypted using the 128-bit AES algorithm with
the cipher block chaining (CBC) mode. After en-
cryption, the client also appends the encrypted file
size (8 bytes long) and the HMAC-SHA1 signature
(20 bytes long) to the end of encrypted file for
integrity checking in later downloads. It then sends
the encrypted file and the metadata onto the cloud.

• Download(file). The client retrieves the file and
policy metadata from the cloud. It then checks the
integrity of the encrypted file, and decrypts the file.

• Revoke(policy). The client tells the key man-
agers to permanently revoke the specified policy.
All files associated with the policy will be assuredly
deleted. If a file is associated with the conjunctive
policy combination that contains the revoked policy,
then it will be assuredly deleted as well.

• Renew(file, new_policy). The client first
fetches the metadata of the given file from the
cloud. It updates the metadata with the new policy.
Finally, it sends the metadata back to the cloud.
Note that the operation does not involve transfer
of the input file.

We export the above function calls exported as library
APIs. Thus, different implementations of the client can
call the library APIs and have the protection offered by
FADE. In our current prototype, we implement the client
as a user-level program that can access files under a
specified folder.

The above interfaces wrap the third-party APIs for
interacting with the cloud. As an example, we use
LibAWS++ [18], a C++ library for interfacing with Ama-
zon S3 using plain HTTP.
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5.3 Key Managers

We implement a quorum of key managers, each of which
supports two major types of functions: (i) policy manage-
ment, in which a key manager creates or revokes policies,
as well as their associated control keys (for assured
deletion) and access keys (for access control), and (ii)
key management, in which a key manager performs the
encryption or decryption on the (blinded) data key.

We implement the basic functionalities of a key man-
ager so that it can perform the required operations
on the cryptographic keys. In particular, all the policy
control keys are built upon 1024-bit blinded RSA (see
Section 4.1.1). Besides, each individual key manager
supports ABE for access control.

6 EVALUATION

We now evaluate the empirical performance of our
implemented prototype of FADE atop Amazon S3. It
is crucial that FADE does not introduce substantial
performance or monetary overhead that will lead to a
big increase in data management costs. In addition, the
cryptographic operations of FADE should only bring
insignificant computational overhead. Therefore, our ex-
periments aim to answer the following questions: What
is the performance and monetary overhead of FADE? Is
it feasible to use FADE to provide file assured deletion
for cloud storage?

Our experiments use Amazon S3 APAC servers that
reside in Singapore for our cloud storage backend. Also,
we deploy the client and the key managers within a uni-
versity department network in Hong Kong. We evaluate
FADE on a per-file basis, that is, when it operates on an
individual file of different sizes. We can proportionally
scale our results for the case of multiple files.

6.1 Time Performance of FADE

We first measure the time performance of our FADE
prototype. In order to identify the time overhead of
FADE, we divide the running time of each measurement
into three components:

• file transmission time, the uploading/downloading
time for the data file between the client and the
cloud.

• metadata transmission time, the time for upload-
ing/downloading the metadata, which contains the
policy information and the cryptographic keys as-
sociated with the file, between the client and the
cloud.

• cryptographic operation time, the total time for crypto-
graphic operations, which includes the total compu-
tational time used for performing AES and HMAC
on the file, and the time for the client to coordinate
with the quorum of key managers on operating the
cryptographic keys.

We average each of our measurement results over 10
different trials.
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Fig. 9: Experiment A.1 (Performance of file up-
load/download operations).

6.1.1 Evaluation of Basic Design

We first evaluate the time performance of the basic
design of FADE (see Section 4), in which we use a single
key manager and do not involve ABE.

Experiment A.1 (Performance of file upload/download
operations). In this experiment, we measure the running
time of the file upload and download operations for
different file sizes (including 1KB, 3KB, 10KB, 30KB,
100KB, 300KB, 1MB, 3MB, and 10MB).

Figure 9 shows the results. First, the cryptographic
operation time increases with the file size, mainly due
to the symmetric-key encryption applied to a larger
file. Nevertheless, we find that in all cases of file up-
load/download operations, the time of cryptographic
operations is no more than 0.2s (for a file size within
10MB), and accounts for no more than 2.6% of the file
transmission time. We expect that FADE only introduces
a small time overhead in cryptographic operations as
compared to the file transmission time, where the latter
is inevitable even without FADE.

Also, the metadata transmission time is always around
0.2s, regardless of the file size. This is expected, since
the metadata file only stores the policy information and
cryptographic keys, both of which are independent of
the data files. The file transmission time is comparable to
the metadata transmission time for small files. However,
for files larger than 100KB, the file transmission time
becomes the dominant factor. For instance, to upload
or download a 10MB file, the sum of the metadata
transmission time and the cryptographic operation time
(both are due to FADE) account for 4.1% and 0.7% of the
total time, respectively.

Note that the upload and download operations are
asymmetric and use different times to complete the oper-
ations. Nevertheless, the performance overhead of FADE
drops when the size of the data file being protected is
large enough, for example, on the megabyte scale.

Experiment A.2 (Performance of policy updates). Ta-
ble 2 shows the time used for renewing a single policy
of a file (see Figure 4 in Section 4.1.4), in which we
update the policy metadata on the cloud with the new
set of cryptographic keys. We conduct the experiment on
various file sizes ranging from 1KB to 10MB. Our exper-
iments show that the total time is generally small (about
0.3 seconds) regardless of the file size, since we operate
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File size Total time
Metadata transmission Crypto operations

Download (%) Upload (%) Time (%)

1KB 0.294s 0.117s 39.9% 0.173s 58.8% 0.004s 1.3%

10KB 0.268s 0.089s 33.0% 0.176s 65.6% 0.004s 1.3%

100KB 0.259s 0.083s 32.2% 0.171s 66.3% 0.004s 1.5%

1MB 0.252s 0.082s 32.7% 0.166s 65.8% 0.004s 1.6%

10MB 0.275s 0.106s 38.5% 0.165s 60.2% 0.004s 1.3%

TABLE 2: Experiment A.2 (Performance of policy updates).
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Fig. 10: Experiment A.3 (Performance of multiple poli-
cies).

on the policy metadata only. Also, the cryptographic
operation time only takes about 0.004s in renewing a
policy, and this value is independent of the file size.

Experiment A.3 (Performance of multiple policies). We
now evaluate the performance of FADE when multiple
policies are associated with a file (see Section 4.1.3).
Here, we focus on the file upload operation, as we have
similar observation for the file download operation. We
look at two specific combinations of policies, one on the
conjunctive case and one on the disjunctive case.

Figure 10a shows the cryptographic operations time
for different numbers of conjunctive policies, and Fig-
ure 10b shows the case for disjunctive policies. A key
observation is that for each file size, the cryptographic
operation time is more or less constant (less than 0.22s)
within five policies. It is reasonable to argue that the time
will increase when a file is associated with a significantly
large number of policies. On the other hand, we expect
that in practical applications, a file is associated with
only a few policies, and the overhead of cryptographic
operations is still minimal.

6.1.2 Evaluation of Extensions

We now evaluate the time performance of the extensions
that we add to FADE (see Section 4.2). This includes the
use of ABE and a quorum of key managers.

Experiment B.1 (Performance of CP-ABE). In the file
download operations, the key manager encrypts the de-
crypted keys with the ABE-based key of the correspond-
ing policy (or combination of policies) (see Section 4.2).
In this experiment, we examine the overhead of this
additional encryption. We focus on downloading a file
that is associated with a single policy, assuming that a
single key manager is used.

Figure 11 shows the cryptographic operation time for
downloading a file with CP-ABE and without CP-ABE.
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Fig. 12: Experiment B.2 (Performance of multiple key
managers).

We find that CP-ABE introduces a constant overhead of
0.06-0.07 seconds, which is reasonable. This shows the
trade-off between better performance and better security.

Experiment B.2 (Performance of multiple key man-
agers). We now analyze the performance of using multi-
ple key managers. Here, we do not enforce access control
with ABE, in order to focus on the overhead introduced
by multiple key managers. In particular, we use the N -
out-of-N scheme for key sharing, i.e., the client needs to
retrieve key shares from all key managers. This puts the
maximum load on the key managers.

Figure 12 shows the cryptographic operation time
using different number of key managers. For the file
upload operation, the cryptographic operation time stays
nearly constant (less than 0.22s) when the number of
key managers increases. For the file download operation,
the cryptographic operation time only increases by about
0.01s when the number of key managers increases from
one to five. Again, this value is less significant for
uploading/downloading larger data files.

Experiment B.3 (Combining everything together).
Lastly, we combine multiple policies, CP-ABE, and mul-
tiple key managers together. The enables us to under-
stand the maximum load of FADE with all the available
security protection schemes. In this experiment, we mea-
sure the time overhead when downloading a 10MB file
with different number of policies and key managers. We
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Fig. 13: Experiment B.3 (Performance of multiple policies
and multiple key managers with CP-ABE).

consider the case where all policies are conjunctive. For
the multiple key managers, we use the N -out-of-N key
sharing scheme.

Figure 13 shows the cryptographic operation time for
each case. We find that when turning on CP-ABE, the
time of cryptographic operations increases almost lin-
early with both the number of policies and the number of
key managers. Even for the worst case (five policies and
five key managers), the cryptographic operation time is
still less than two seconds, which is small compared with
the file transmission time.

6.2 Space Utilization of FADE

We now assess the space utilization. As stated in Sec-
tion 5.1, each data file is accompanied with its file size
(8 bytes), the HMAC-SHA1 signature (20 byte), and
a metadata file that stores the policy information and
cryptographic keys. For the metadata file, its size differs
with the number of policies and the number of key
managers used. Here, we analyze the space overhead
due to the metadata introduced by FADE.

Table 3 and Table 4 show the different sizes of the
metadata based on our implementation prototype for a
variable number of (a) conjunctive policies (P1 ∧ P2 ∧
· · ·∧Pm), and (b) disjunctive policies (P1∨P2∨· · ·∨Pm).
To understand how each metadata size is obtained, we
consider the simplest case where there is only a single
policy and a single key manager. Then we need: (i)
128 bytes for each share of the policy-based secret key
Sei
i for policy i, (ii) 16 bytes for the encrypted copy

of K based on 128-bit AES, (iii) 4 bytes for the policy
identifier, and (iv) 1 byte for the delimiter between the
policy identifier and the keys. In this case, the metadata
size is 149 bytes. Note that in the case of multiple
policies, we need to store more policy identifiers as well
as more cryptographic keys, and hence the metadata
size increases. Also, the metadata size increases with the
number of key managers (see Section 4.2.2). This space
overhead becomes less significant if the file size is large
enough (e.g., on the megabyte scale).

6.3 Cost Model

We now evaluate the monetary overhead of FADE us-
ing a simple pricing model. Here, we use a simplified
pricing scheme of Amazon S3 in Singapore, in which
we assume that our storage usage is less than 1TB

Num. of key managers

Num. of policies 1 2 3 4 5

1 149 277 405 533 661

2 282 538 794 1050 1306

3 415 799 1183 1567 1951

4 548 1060 1572 2084 2596

5 681 1321 1961 2601 3241

TABLE 3: Size of the policy metadata for conjunctive
policies (in bytes).

Num. of key managers

Num. of policies 1 2 3 4 5

1 149 277 405 533 661

2 298 554 810 1066 1322

3 447 831 1215 1599 1983

4 596 1108 1620 2132 2644

5 745 1385 2025 2665 3305

TABLE 4: Size of the policy metadata for disjunctive
policies (in bytes).

and our monthly data outbound transfer size is less
than 10TB. We estimate the cost of FADE based on
Cumulus [35], a snapshot-based backup system. In [1],
it is shown that a typical compressed snapshot consists
of hundreds of segments, each of which is around five
megabytes. Here, we assume that our data source has
s files (segments) and each file is f bytes. Suppose that
each segment is associated with p policies4, and there
are N key managers. We evaluate the cost when each
file is uploaded u times and downloaded d times. We
denote by meta(p,N) the size of the metadata, which is
a function of p (number of policies) and N (number of
key managers).

Table 5 shows our simplified pricing scheme (as of July
2011) and the corresponding cost results. To illustrate,
we plug in some example values as follows. We let s =
300 and f = 5MB, for a total of 1.5GB data. We use 3
conjunctive policies and 3 key managers. We assume that
each file is uploaded once and downloaded once. From
the table, we can see that the extra cost that FADE incurs
is less than 1.3% per month.

6.4 Lessons Learned

In this section, we evaluate the performance of FADE
in terms of the overheads of time, space utilization, and
monetary cost. It is important to note that the perfor-
mance results depend on the deployment environment.
For instance, if the client and the key manager all reside
in the same region as Amazon S3, then the transmission
times for files and metadata will significantly reduce; or
if the metadata contains more descriptive information,
the overhead will increase. Nevertheless, we emphasize
that our experiments can show the feasibility of FADE in

4. In Cumulus, each segment may be composed of multiple small
files. We assume the simplest case that all the files are associated with
the same combination of policies.
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Pricing Without FADE With FADE

Storage (cs) $0.14 per GB cs · s · f = $0.210 cs · s · (f + 28 +meta(p,N)) = $0.210

Data transfer in (ci) $0.00 per GB ci · s · f · u = $0.000 ci · s · (f + 28 +meta(p,N)) · u = $0.000

Data transfer out (co) $0.19 per GB with first 1GB free co · s · f · d = $0.095 co · s · (f + 28 +meta(p,N)) · d = $0.095

PUT requests (cp) $0.01 per 1,000 requests cp · s · u = $0.003 cp · s · 2u = $0.006

GET requests (cg) $0.01 per 10,000 requests cg · s · d = $0.000 cg · s · 2d = $0.001

Total cost $0.308 $0.312

TABLE 5: A simplified pricing scheme of Amazon S3 in Singapore and the corresponding cost report (in US dollars).
All numbers are rounded off to 3 decimal places. Note that FADE only adds very small overheads to the storage
and data transfer costs, which are rounded off to the same values as in without FADE.

providing an additional level of security protection for
today’s cloud storage.

We note that the performance overhead of FADE
becomes less significant when the size of the actual data
file content increases (e.g. on the order of megabytes or
even bigger). Thus, FADE is more suitable for enterprises
that need to archive large files with a substantial amount
of data. On the other hand, individuals may generally
manipulate small files on the order of kilobytes. In this
case, we may consider associating the same metadata
with a tarball of multiple files (see Section 5) to reduce
the overhead of FADE.

7 RELATED WORK

In this section, we review other related work on how to
apply security protection to outsourced data storage.

Cryptographic protection on outsourced storage. Recent
studies (see survey in [17]) propose to protect outsourced
storage via cryptographic techniques. Plutus [16] is a
cryptographic storage system that allows secure file
sharing over untrusted file servers. Ateniese et al. [6] and
Wang et al. [36] propose an auditing system that verifies
the integrity of outsourced data. Wang et al. [37] propose
a secure outsourced data access mechanism that sup-
ports changes in user access rights and outsourced data.
However, all the above systems require new protocol
support on the cloud infrastructure, and such additional
functionalities may make deployment more challenging.

Secure storage solutions for public clouds. Secure so-
lutions that are compatible with existing public cloud
storage services have been proposed. Yun et al. [40]
propose a cryptographic file system that provides pri-
vacy and integrity guarantees for outsourced data using
a universal-hash based MAC tree. They prototype a
system that can interact with an untrusted storage server
via a modified file system. JungleDisk [15] and Cumulus
[35] protect the privacy of outsourced data, and their im-
plementation use Amazon S3 [4] as the storage backend.
Specifically, Cumulus focuses on making effective use of
storage space while providing essential encryption on
outsourced data. On the other hand, such systems do
not consider file assured deletion in their designs.

Access control. One approach to apply access control
to outsourced data is by attribute-based encryption (ABE),
which associates fine-grained attributes with data. ABE

is first introduced in [27], in which attributes are associ-
ated with encrypted data. Goyal et al. [13] extend the idea
to key-policy ABE, in which attributes are associated
with private keys, and encrypted data can be decrypted
only when a threshold of attributes are satisfied. Pirretti
et al. [25] implement ABE and conduct empirical studies,
and also point out th. Nair et al. [20] consider a similar
idea of ABE, and they seek to enforce a fine-grained
access control of files based on identity-based public key
cryptography.

Policy-based deletion follows the similar notion of
ABE, in which data can be accessed only if the corre-
sponding attributes (i.e., atomic policies in our case) are
satisfied. However, policy-based deletion has a different
design objective from ABE. Policy-based deletion focuses
on how to delete data, while ABE focuses on how to
access data based on attributes. A major feature of ABE
is to issue users the decryption keys of the associated
attributes so that they can access files that satisfy the
attributes, and hence existing studies of ABE seek to
ensure that no two users can collude if they are tied
with different sets of attributes.

On the other hand, in policy-based deletion, since
each policy is possessed by multiple users, revoking a
policy requires a centralized administrator to manage
the revocation [25]. Boldyreva et al. [8] and Yu et al. [39]
combine ABE with attribute revocation, and both of the
studies require the use of some centralized key server to
manage the attributes and the corresponding keys (i.e.,
policy-based control keys in our case). For example, in
[39], there is a semi-trustable on-line proxy server, in
which data is re-encrypted with new keys upon attribute
revocation.

In FADE, each policy is associated with two keys.
One is the access key, which is issued to users, and
another is the control key, which is maintained by the
key server. Both access and control keys are required to
decrypt a file. This type of separation is similar to the
approaches in [8], [39]. On the other hand, the main focus
of our work is to empirically evaluate the feasibility of
our system via practical implementation, while [8], [39]
mainly focus on security analysis.

Assured deletion. In Section 2.1, we discuss time-based
deletion in [12], [23], which we generalize into policy-
based deletion. There are several related systems on as-
sured deletion (which come after our conference version
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of the paper [33]). Keypad [11] protects data in theft-
prone devices (e.g., laptops, USB sticks) by encrypting
such data and maintaining keys in an independent, cen-
tralized key server, similar to FADE. It removes all data
of a protected device upon requests of deletion, and does
not consider fine-grained deletion as in FADE. Nasuni
announced the support of assured deletion in backup
snapshots in March 2011 [21]. However, there is no
formal study about their implementation methodologies
and performance evaluation. In our recent work [26],
we extend the idea of assured deletion to cloud backup
systems with version control, but the work [26] does
not consider access control and the use of multiple key
managers for key management.

8 CONCLUSIONS

We propose a practical cloud storage system called
FADE, which aims to provide access control assured
deletion for files that are hosted by today’s cloud storage
services. We associate files with file access policies that
control how files can be accessed. We then present
policy-based file assured deletion, in which files are
assuredly deleted and made unrecoverable by anyone
when their associated file access policies are revoked.
We describe the essential operations on cryptographic
keys so as to achieve access control and assured deletion.
FADE also leverages existing cryptographic techniques,
including attribute-based encryption (ABE) and a quo-
rum of key managers based on threshold secret sharing.
We implement a prototype of FADE to demonstrate its
practicality, and empirically study its performance over-
head when it works with Amazon S3. Our experimental
results provide insights into the performance-security
trade-off when FADE is deployed in practice.

Source code of FADE (including the new
features of this journal paper) is available at
http://ansrlab.cse.cuhk.edu.hk/software/fade.
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