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The following materials provide supplementary results
to our main file.

1 IMPACT OF PARAMETERS

In this section, we evaluate the impact of two parameters,
including the extra labeled days DL and the FPR threshold.
Exp#S1 (Sensitivity of extra labeled days). We study how
the extra labeled days DL affects the accuracy. We vary
DL from zero to 30 days; the zero days mean that we only
label the samples as positive on the day when the failure
occurs. Here, we focus on D2 and D4, which are derived
from different disk manufacturers, and the three ensemble
learning algorithms with concept-drift adaptation, i.e., BA,
BOLE, and ARF.

Figure 1 shows the prediction accuracy versus DL. In
general, introducing extra labeled days (i.e., DL > 0)
increases the prediction accuracy especially for ARF in both
D2 and D4 (by 23.4% and 19.9% F1-score, respectively) and
BOLE in D2 (by 23.9% F1-score) when DL = 20 days (our
default setup). However, for D4, a smaller DL for BOLE and
BA achieves higher prediction accuracy. For example, the
top two F1-scores are 63.4% and 61.8% for BA are on zero
and five days, respectively. This implies that the optimal
value of DL varies across algorithms and datasets. Thus,
STREAMDFP opts to allow users to flexibly tune DL based
on production needs.
Exp#S2 (Impact of FPR thresholds). Machine learning mod-
els can be configured with a higher recall through increasing
the FPR threshold (and vice versa). We study how different
FPR thresholds affect the prediction accuracy, and examine if
concept-drift adaptation still achieves accuracy gains. We
focus on D2 as the representative dataset and bagging
(including Bag and BA) as the representative algorithms.

Figure 2 shows the prediction accuracy of Bag and BA
for D2 versus the FPR threshold (varied from 0.5% to 2.0%)
and the FPR threshold of 1.0% is our default setup. BA
improves the precision and F1-score of Bag by 64.0-71.8%
and 32.5-63.3%, respectively, while its recall is less than Bag
by 10.5% when the FPR is 0.5% but becomes higher than Bag
by 6.3% when the FPR is 2.0%. It shows that BA improves
the precision and F1-score significantly, while preserving
the recall. We also emphasize that the relative differences
between Bag and BA are consistent with our findings in
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Fig. 1: Exp#S1 (Sensitivity of extra label days). We focus on D2
and D4.
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Fig. 2: Exp#S2 (Impact of FPR thresholds). We focus on Bag and
BA for D2. Note that the error bars are not visible when the FPR
is at least 1%.

Exp#1. We make similar observations for other datasets and
algorithms under different FPR thresholds.

2 RECURRENT NEURAL NETWORK

In addition to MLP, we consider Recurrent Neural Network
(RNN) [1], a state-of-the-art artificial neural network learning
algorithm. Specifically, RNN comprises not only intercon-
nected neurons like MLP, but also has recurrent connections
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(g) D3; precision (h) D3; recall (i) D3; F1-score (j) D4; precision (k) D4; recall (l) D4; F1-score
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(m) D5; precision (n) D5; recall (o) D5; F1-score (p) D6; precision (q) D6; recall (r) D6; F1-score

0

20

40

60

80

100

H
A

T

B
A

B
O

L
E

A
R

F

M
L

P

R
N

N

P
re

ci
si

o
n

 (
%

)

0

20

40

60

80

100

H
A

T

B
A

B
O

L
E

A
R

F

M
L

P

R
N

N

R
e

ca
ll 

(%
)

0

20

40

60

80

100

H
A

T

B
A

B
O

L
E

A
R

F

M
L

P

R
N

N

F
1

-s
co

re
 (

%
)

0

20

40

60

80

100

H
A

T

B
A

B
O

L
E

A
R

F

M
L

P

R
N

N

P
re

ci
si

o
n

 (
%

)
0

20

40

60

80

100

H
A

T

B
A

B
O

L
E

A
R

F

M
L

P

R
N

N

R
e

ca
ll 

(%
)

0

20

40

60

80

100

H
A

T

B
A

B
O

L
E

A
R

F

M
L

P

R
N

N

F
1

-s
co

re
 (

%
)

(s) D7; precision (t) D7; recall (u) D7; F1-score (v) D8; precision (w) D8; recall (x) D8; F1-score

Fig. 3: Exp#S3 (Prediction accuracy of RNN).

between hidden neurons. These recurrent connections are
used to store the past information and feed it together
with the current inputs into the hidden layer. RNN forms
a directed neural network along a temporal sequence, so
it also exhibits temporally dynamic behavior. It can be
also trained via stochastic gradient descent [2], and uses
backpropagation through time (BPTT) [3] as concept-drift
adaptation to propagate the errors between the predicted and
true outputs to the neural network. As opposed to offline
RNN learning that is used in disk failure prediction (e.g.,
[4]), we consider RNN with BPTT on stream mining and
realize RNN with BPTT via stochastic gradient descent in
STREAMDFP.

Exp#S3 (Prediction accuracy of RNN). We evaluate the
prediction accuracy of RNN on the datasets D1-D8. Figure 3
shows the prediction accuracy of RNN with BPTT compared
with the other classification algorithms with concept-drift
adaptation. We observe that RNN with BPTT achieves the
highest F1-score on D4 and D7. The F1-scores of RNN are
similar to those of MLP on the datasets with the absolute
differences ranging from 0.0066% to 10.8%. The reason
of small differences between RNN and MLP is that the
correlations between the samples from different disks on each
day may be limited, although RNN is used to capture the
correlations for a sequence of time-series data. We point out
that RNN is not always the “best” algorithm across datasets.
This conforms to the main design goal of STREAMDFP that
it serves as a general framework to support various machine
learning algorithms instead of a specific machine learning
algorithm.
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