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Abstract—We explore machine learning for accurately predicting imminent disk failures and hence providing proactive fault tolerance for
modern large-scale storage systems. Current disk failure prediction approaches are mostly offline and assume that the disk logs required
for training learning models are available a priori. However, disk logs are often continuously generated as an evolving data stream, in
which the statistical patterns vary over time (also known as concept drift). Such a challenge motivates the need of online techniques that
perform training and prediction on the incoming stream of disk logs in real time, while being adaptive to concept drift. We first measure
and demonstrate the existence of concept drift on various disk models in production. Motivated by our study, we design STREAMDFP, a
general stream mining framework for disk failure prediction with concept-drift adaptation based on three key techniques, namely online
labeling, concept-drift-aware training, and general prediction, with a primary objective of supporting various machine learning algorithms.
We extend STREAMDFP to support online transfer learning for minority disk models with concept-drift adaptation. Our evaluation shows
that STREAMDFP improves the prediction accuracy significantly compared to without concept-drift adaptation under various settings, and
achieves reasonably high stream processing performance.

Index Terms—disk failure prediction, stream mining, concept drift, and online transfer learning
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1 INTRODUCTION

Maintaining storage reliability is a critical yet challenging
requirement for modern cloud-scale data centers, typically
composed of thousands to millions of disks [26], [40]. In
large-scale disk deployment, disk failures are prevalent
[5]. Although traditional redundancy mechanisms, such as
replication and RAID, are widely used for data protection,
they are no longer sufficient for providing strong reliability
guarantees in the face of prevalent failures [26].

To complement existing redundancy mechanisms, we
explore the prediction of imminent disk failures based on
machine learning as a proactive fault tolerance mechanism
to pinpoint and replace soon-to-fail disks, before the actual
disk failures happen. In particular, various machine learning
algorithms (e.g., [5], [23]–[25], [27], [37], [40], [45]) are
shown to achieve highly accurate prediction. Such algorithms
capture disk logs with performance and reliability statistics
(e.g., SMART (Self-Monitoring, Analysis and Reporting
Technology)) as the training data from a set of disks with
known labels (i.e., healthy or failed). They train a prediction
model using the training data, and use the trained prediction
model to predict if any unknown disk (i.e., no label) will
remain healthy or become failed in near future. Evaluation on
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production workloads (e.g., SMART logs from Backblaze [1])
justifies the effectiveness of machine learning; for example,
over 95% of failed disks can be predicted in advance with a
very small false positive rate [5], [23], [27], [45].

Existing disk failure prediction schemes are mostly offline,
meaning that all training data must be available in advance
before training any prediction model. On the other hand, in
practice, disk logs are continuously generated from disks
over time. With the enormous scale of the disk population
in production environments, it is infeasible to keep all past
data for training, rendering offline approaches inadequate
for long-term use. Recent work [37] explores online disk
failure prediction based on the Online Random Forests (ORF)
algorithm, by labeling the healthy and failed disk samples
and updating the prediction model on the fly. We believe that
online prediction is essential for large-scale disk deployment.

However, how to generalize online disk failure pre-
diction for various machine learning algorithms remains
unexplored and non-trivial. As different disk models are
subject to reliability heterogeneity [22], it is impractical to
identify the “best” learning algorithm that applies to all
disk models. More importantly, the statistical patterns of
disk logs vary over time (e.g., due to the aging of disks,
or the additions/removals of disks in production). Such a
phenomenon, known as concept drift [12], implies that we
must carefully identify the proper window of samples for
training: if we choose too few samples, we do not have
sufficient samples to build an accurate prediction model; if
we choose too many samples, the prediction model may be
disturbed by the old samples that no longer correctly capture
the failure characteristics of the current pool of disks due to
concept drift.

This motivates us to regard disk failure prediction as a
stream mining problem. By viewing disk logs as an evolving
stream of time-series samples, we process the samples
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through the following steps in real time: (i) train the pre-
diction model incrementally over the stream of samples, (ii)
detect concept drift and adapt the prediction model using
a properly tuned number of samples, and (iii) predict the
failure status of any unknown disk. Prior work has proposed
algorithms on adapting machine learning to concept drift in
stream mining (Section 2). An open question is to support
and customize various machine learning algorithms with
concept-drift adaptation for a diverse mix of disk models in
disk failure prediction.

We propose STREAMDFP, a general stream mining frame-
work for disk failure prediction with concept-drift adaptation.
STREAMDFP is designed to support a variety of machine
learning algorithms (rather than specific algorithms), based
on three key techniques: (i) online labeling, which labels the
samples for a disk on the fly; (ii) concept-drift-aware training,
which incorporates concept-drift adaptation when training a
prediction model; and (iii) general prediction, which supports
both classification (i.e., whether a disk will fail in near future)
and regression (i.e., how likely a disk will fail in near future).
To summarize, this paper makes the following contributions:
• We motivate our work via an extensive measurement study

on five SMART datasets on hard-disk drives (HDDs), four
from the public Backblaze dataset [1] and one from Alibaba;
the latter has a much larger disk population than the total
of the four Backblaze datasets. We demonstrate not only
the existence of concept drift in all five datasets, but also the
variation of concept-drift existence across healthy/failed
disks, disk models, and SMART attributes.

• We present the complete design of STREAMDFP as a
general stream mining framework that extracts features,
labels samples, and trains a prediction model, all in real-
time. We also incorporate online transfer learning [43] into
STREAMDFP for the prediction of minority disk models.

• We implement a complete prototype of STREAMDFP based
on Massive Online Analysis (MOA) [4] and integrate
an artificial neural network algorithm, called Multilayer
Perceptron (MLP) [19], into STREAMDFP.

• We evaluate both prediction accuracy and stream process-
ing performance of nine decision-tree-based algorithms
and MLP on 15 datasets in total, including 12 datasets of
HDDs from Backblaze and Alibaba as well as three datasets
of solid-state drives (SSDs) from Alibaba. STREAMDFP
increases the precision, recall, and F1-score by 27.5-71.8%,
15.7-37.4%, and 26.8-53.2%, respectively, through concept-
drift adaptation. It increases the prediction accuracy of
online transfer learning for minority disk models through
concept-drift adaptation (e.g., by up to 51.8% in F1-score).
It supports fast stream processing: it performs training and
prediction in 13.5 seconds on the daily SMART data of 37 K
disks.

We open-source our STREAMDFP prototype at
http://adslab.cse.cuhk.edu.hk/software/streamdfp.

2 BACKGROUND

2.1 Disk Failure Prediction

Our goal is to predict imminent disk failures over a collection
of disks in production based on SMART statistics. SMART
is a widely adopted disk monitoring tool for collecting

performance and reliability statistics of a disk. Modern disks
include SMART in their firmware. With SMART enabled, a
disk periodically reports various numerical values (called
attributes) on operational status and error information. Some
SMART attributes provide useful indicators for soon-to-fail
disks. For example, RAIDShield [26] suggests to proactively
replace a disk in production whose reallocated sector count
(i.e., the attribute SMART-5) exceeds 200. However, checking
SMART attributes against thresholds for disk failure predic-
tion is highly error-prone, as its accuracy heavily depends on
how the thresholds are configured. In this work, we explore
the use of machine learning in disk failure prediction.

Specifically, we formulate our disk failure prediction as
a stream mining problem, by viewing the SMART attributes
emitted by disks as a stream of samples over a time series.
For each disk i, where i is a unique disk identifier, we denote
the SMART attributes emitted by disk i at time t as a vector
xi
t (called the input variable), and denote the failure status

of disk i at time t as a scalar variable yit (called the target
variable). We assume that the SMART attributes are generated
at the granularity of days, so each time t refers to a particular
day. We feed xi

t into a prediction model (denoted by M) to
predict the future failure status of disk i (denoted by ŷit)
(e.g., within the next 30 days). As the true output for yit is
known, we updateM over time with (xi

t, y
i
t) (called a labeled

sample). We also refer to the samples that correspond to the
failed disks and healthy disks as positive samples and negative
samples, respectively.

In practice, we collect SMART attributes and predict
failures over a collection of disks simultaneously at each time
point. For brevity of discussion, we omit the superscript i
and use xt and yt to refer to the SMART attributes and the
failure status of the whole collection of disks, respectively.

We consider two types of prediction: (i) classification, in
which we predict if disk i is either failed or healthy in the
future, and yit is equal to either 1 or 0, respectively; and (ii)
regression, in which we predict the likelihood that disk i is
failed, and set yit as some continuous value between 0 and 1.

2.2 Concept Drift

Concept drift [12] describes the phenomenon that the rela-
tionship between the input variables and the target variable
continuously changes over time. Mathematically, let t0 and
t1 be two time points in a stream (assuming t0 < t1), and
p(xt, yt) be the joint probability of xt and yt at time t. We
say that concept drift occurs if p(xt0 , yt0) 6= p(xt1 , yt1); in
this case, the prediction modelM can no longer accurately
map xt1 to yt1 .

In our problem, we focus on detecting the concept drift in
p(yt|xt) (i.e., the posterior probability of the target variable
yt given the input variable xt), as it describes the change of
our prediction results. Based on the Bayesian decision theory,
we can express p(yt|xt) = p(yt)p(xt|yt)

p(xt)
, where p(xt) is the

marginal probability of xt, p(yt) is the prior probability of
yt, and p(xt|yt) is the conditional probability of xt given
yt. Thus, the change of p(yt|xt) can be characterized as the
changes in the components p(yt), p(xt), and p(xt|yt). We
measure the changes in such components (Section 3.2). Our
goal is to adapt the prediction modelMwith p(yt|xt), whose
change can affect the prediction accuracy.
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Category Algorithm Change detec-
tor

Classification
tree

Hoeffding tree (HT) [9] None
Hoeffding adaptive tree (HAT)
[3]

ADWIN [2]

Regression
tree

Fast incremental model trees
with drift detection (FIMT-DD)
[21]

PH test [29]

Ensemble
learning

Oza’s bagging (Bag) [31] None
Oza’s boosting (Boost) [31] None
Online random forests (RF) [14] None
Bagging with ADWIN (BA) [3] ADWIN [2]
Boosting-like online ensemble
(BOLE) [8]

DDM [11]

Adaptive random forests (ARF)
[14]

ADWIN [2]

Neural net-
works

Multilayer perceptron (MLP) [19] Backpropagation
[17]

TABLE 1: Overview of incremental learning algorithms.

2.3 Change Detection
We perform change detection in stream mining to identify the
existence of concept drift in p(yt|xt). Specifically, we define
the absolute error, denoted by εit, at time t as εit = |ŷit − yit|,
where ŷit and yit denote the predicted and true output for
disk i at time t, respectively. We take a stream of εit’s over a
time window as input in change detection.

We can apply different change detectors. For example,
ADaptive sliding WINdow (ADWIN) [2] keeps a variable-
size sliding detection window of the most recent samples.
It partitions the detection window into two sub-windows
and monitors each of their average values. If the two sub-
windows have significantly different average values1, then
it implies that a change happens, and ADWIN drops the
older sub-window and replaces the detection window with
the newer sub-window. Other change detectors include the
Page-Hinckley (PH) test [32] and the Drift Detection Model
(DDM) [11].

2.4 Incremental Learning Algorithms
To support adaptive disk failure prediction, we consider
several state-of-the-art incremental learning algorithms that
perform prediction on an input data stream and continuously
update the prediction model using the labeled samples.
Table 1 summarizes the incremental learning algorithms
that we consider in the paper. Such algorithms are used
to train a prediction model for classification or regression.
We can classify them into two categories: decision-tree-based
algorithms and neural networks. We can further classify the
decision-tree-based algorithms into two sub-categories: single
decision trees and ensemble learning. Instead of advocating a
specific incremental learning algorithm for prediction, whose
effectiveness highly varies across disk brands and models
(Section 1), we focus on supporting general incremental
learning algorithms for disk failure prediction.
Single decision trees. Several incremental learning algo-
rithms maintain a single decision tree for prediction. The
Hoeffding Tree (HT) [9] recursively updates the tree structure
using a small subset of labeled samples and decides how
many labeled samples are modeled by each tree node using

1. It is tested against the null hypothesis that the change between
two average values is upper-bounded by a threshold (based on the
Hoeffding bound [18]) with a significance level (set as 0.002 by default).

the Hoeffding bound [18]. The Hoeffding Adaptive Tree
(HAT) [3] builds on HT and associates ADWIN with each
tree node. If ADWIN detects concept drift at a tree node,
HAT creates an alternate tree rooted at the tree node and
trains it separately. If the original tree has a larger error than
the alternate tree, it will be replaced by the alternate tree.
Both HT and HAT are designed for classification. On the
other hand, FIMT-DD [21] is a regression tree that uses the
PH test [29] as the change detector at each tree node. It has
similar operations of creating and managing alternate trees
like HT and HAT.
Ensemble learning. Single decision trees are limited in both
diversity and lookahead ability for large amounts of data
[33]. Ensemble learning is proposed to combine multiple
decision trees as base learners in prediction. Classical (of-
fline) ensemble learning methods include bagging [6], which
draws random samples with replacements during training to
improve the overall accuracy; boosting [10], which trains
prediction models iteratively by increasing the weights
for less accurate learners to improve the overall accuracy;
and random forests [7], which train multiple base learners
on re-sampled data (similar to bagging) and randomly
select subsets of attributes for tree updates. To support
online ensemble learning, we adopt Oza’s online versions of
bagging and boosting [31] and the online random forests in
[14], such that they update the prediction models based on
incoming labeled samples; however, these online methods
do not address concept drift.

Bagging with ADWIN (BA) [3], Boosting-like online
ensemble (BOLE) [8], and Adaptive Random Forests (ARF)
[14] add concept-drift adaptation to the online versions of
bagging, boosting, and random forests, respectively. Their
idea is to associate a change detector with each decision tree
in an ensemble of trees. If a tree has concept drift detected, it
will be removed and substituted by a new tree root (e.g., in
BA and BOLE) or a newly trained tree (e.g., in ARF).
Neural networks. We first consider Multilayer Perceptron
(MLP) [19], a classical artificial neural network learning
algorithm. Specifically, the MLP neural network comprises
interconnected units called neurons. The neurons are con-
nected by weights to form multiple learning layers, including
an input layer, one or more hidden layers, and an output
layer. The MLP neural network is often trained via stochastic
gradient descent [34], and uses backpropagation [17] as
concept-drift adaptation to propagate the errors between the
predicted and true outputs backward to the neural network.
Here, we consider MLP with backpropagation on stream
mining, as opposed to offline neural network learning (e.g.,
[45]). We also consider Recurrent Neural Network (RNN) on
stream mining in the digital supplementary file. However,
we do not consider Convolutional Neural Network (CNN) on
stream mining, as it needs to buffer much more time-series
samples for training than the other incremental learning
algorithms and hence incurs high memory overhead; we
pose the design of CNN for stream mining as future work.

3 CONCEPT-DRIFT ANALYSIS

3.1 Datasets
We present a measurement study of the existence of concept
drift on production datasets. Our concept-drift analysis
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Dataset ID Disk model Capacity Disk count # failures Period Duration (months)
D1 Seagate ST3000DM001 3 TB 4,516 1,269 2014-01-31 to 2015-10-31 21
D2 Seagate ST4000DM000 4 TB 37,015 3,275 2013-05-10 to 2018-12-31 68
D3 Seagate ST12000NM0007 12 TB 35,462 740 2017-09-06 to 2019-06-30 22
D4 Hitachi HDS722020ALA330 2 TB 4,601 226 2013-04-10 to 2016-12-31 45
D5 Private disk model of Alibaba 6 TB ∼250 K ∼1,000 2019-01-01 to 2019-05-31 5

TABLE 2: Overview of datasets for concept-drift analysis.

builds on five SMART datasets collected from two inde-
pendent sources, as shown in Table 2. Our datasets are
diverse, covering different disk models, manufacturers, and
production environments. Thus, they allow us to validate
the generality of our findings. We will consider additional
SMART datasets2 for more comprehensive evaluation of
STREAMDFP (Section 7).

The first group of datasets is collected and made publicly
available by Backblaze [1], which has released SMART
datasets for various HDD models in its data centers since
2013. Here, we select the datasets namely D1, D2, D3, and
D4, on four disk models that are among the largest disk
populations with the highest disk failure rates. Note that the
disk models are also selected and evaluated by prior studies
[5], [27], [37].

The remaining dataset is a private SMART dataset
collected at Alibaba. The dataset, namely D5, belongs to
a specific HDD model with around 250 K disks, which are at
least 6× as many as D2 and D3 and nearly 55× as many as
D1 and D4. However, it only has around 1,000 failures (even
fewer than those of D1 and D2), implying that the dataset is
highly imbalanced as the failure rate is extremely low.

Table 3 provides an overview of the collected SMART
attributes. The datasets span 29 SMART attributes in total.
Each collected SMART attribute includes both the raw and
normalized values.

3.2 Measurement of Concept Drift
We now study the existence of concept drift in each dataset.
Recall from Section 2.2 that the change of p(yt|xt) can be
characterized through the three components p(yt), p(xt), and
p(xt|yt). In the following, we measure the changes of each
component to motivate the need of adapting to the change
of p(yt|xt) in our disk failure prediction problem3. Here, we
focus on binary classification (i.e., a disk is healthy or failed).
Measurement of p(yt). To understand the change of p(yt),
we measure the percentage of failed disks over time (i.e.,
the percentage of yit = 1 over the whole collection of disks)
for each dataset. Given the long duration of each Backblaze
dataset, we conduct the measurement on D1, D2, D3, and
D4 on a monthly basis; on the other hand, we conduct the
measurement on D5 on a daily basis.

Figure 1 shows the results. The percentage of failed disks
highly oscillates over time. For example, the percentages of
failed disks of D1 and D4 can reach as high as 9.7% and 9.1%,
respectively; for D5, its daily percentage of failed disks ranges
from 0 to 0.09%. One main reason for the highly varying
failure rates is that new disks are kept being added, or old

2. Our findings of concept-drift analysis still hold on these datasets,
but we omit the results from the paper in the interest of space.

3. Note that the changes of all three components do not necessarily
imply the change of p(yt|xt). However, we claim that this is unlikely,
and our evaluation in Section 7 shows that adapting to the change of
p(yt|xt) is critical to improve the prediction accuracy.

ID SMART attribute name D1 D2 D3 D4 D5
S1 Read error rate r|n r|n r|n r|n r|n
S2 Throughput performance – – – r|n –
S3 Spin-up time r|n r|n r|n r|n r|n
S4 Start/stop count r|n r|n r|n r|n r|n
S5 Reallocated sector count r|n r|n r|n r|n r|n
S7 Seek error rate r|n r|n r|n r|n r|n
S8 Seek time performance – – – r|n –
S9 Power-on hours r|n r|n r|n r|n r|n
S10 Spin retry count r|n r|n r|n r|n r|n
S12 Power cycle count r|n r|n r|n r|n r|n
S183 SATA downshift error count r|n r|n – – –
S184 End-to-end error r|n r|n – – r|n
S187 Reported uncorrectable errors r|n r|n r|n – r|n
S188 Command timeout r|n r|n r|n – r|n
S189 High fly writes r|n r|n – – r|n
S190 Airflow temperature r|n r|n r|n – r|n
S191 G-sense error rate r|n r|n – – r|n
S192 Power-off retract count r|n r|n r|n r|n r|n
S193 Load cycle count r|n r|n r|n r|n r|n
S194 Temperature celsius r|n r|n r|n r|n r|n
S195 Hardware ECC recovered – – r|n – r|n
S196 Reallocation event count – – – r|n –
S197 Current pending sector r|n r|n r|n r|n r|n
S198 Uncorrectable sector count r|n r|n r|n r|n r|n
S199 UltraDMA CRC error count r|n r|n r|n r|n r|n
S200 Write error rate – – r|n – –
S240 Head flying hours r|n r|n r|n – r|n
S241 Total LBAs written r|n r|n r|n – r|n
S242 Total LBAs read r|n r|n r|n – r|n

“r”: Raw value; “n”: Normalized value.
– The SMART attribute is not collected or the value is not provided.

TABLE 3: Overview of collected SMART attributes.

disks are kept being retired, over the entire measurement
span, so the number of healthy disks varies significantly.
Measurement of p(xt). We now measure the change of p(xt).
Here, we use the two-sample Kolmogorov-Smirnov (KS) test
[28] to measure the change of each SMART attribute (based
on its raw values) in p(xt). Specifically, we compare the
samples in two time periods, denoted by t0 and t1 under the
null hypothesis that the samples of t0 and t1 are both drawn
from the same probability distribution. We measure the p-
value, such that a p-value that is smaller than a threshold
(currently set as 5%) will reject the null hypothesis. Here,
we measure how many SMART attributes have changed
distributions (i.e., their null hypotheses are rejected).

We set the granularity of time periods for the Backblaze
datasets as years, while that for the dataset D5 as months.
Our datasets are imbalanced, with much fewer failed disks
than healthy disks. Thus, we downsample the healthy disks to
prevent them from dominating the overall distributions (we
also apply downsampling in prediction; see Section 4.4). For
failed disks, we take all their (positive) samples over a time
period, while for healthy disks, we only take their (negative)
samples at the last day of a time period.

Table 4 shows the number of SMART attributes with
changed distributions in p(xt) over the total number of
SMART attributes being collected (we will discuss the
changes of p(xt|failed) and p(xt|healthy) later). We see
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Fig. 1: Percentage of failed disks of each dataset in each month (for D1, D2, D3, and D4) or each day (for D5) in the whole duration.

D1 Total p(xt) p(xt|healthy) p(xt|failed)
2014 vs. 2015 24 15 10 8

D2 Total p(xt) p(xt|healthy) p(xt|failed)
2013 vs. 2014 5 2 2 2
2014 vs. 2015 24 15 8 16
2015 vs. 2016 24 15 7 10
2016 vs. 2017 24 14 6 8
2017 vs. 2018 24 14 7 8

D3 Total p(xt) p(xt|healthy) p(xt|failed)
2017 vs. 2018 22 13 13 8
2018 vs. 2019 22 14 13 11

D4 Total p(xt) p(xt|healthy) p(xt|failed)
2013 vs. 2014 5 2 1 1
2014 vs. 2015 17 6 4 5
2015 vs. 2016 17 6 4 3

D5 Total p(xt) p(xt|healthy) p(xt|failed)
Jan. vs. Feb. 24 13 13 1
Feb. vs. Mar. 24 13 13 4
Mar. vs. Apr. 24 13 11 15
Apr. vs. May 24 13 13 13

“Total”: total number of collected SMART attributes; “p(xt)”,
“p(xt|healthy)”, “p(xt|failed)”: numbers of SMART attributes
with changed distributions. Note that ST4 and HD2 only collect
five SMART attributes (S1, S5, S9, S194, and S197) in 2013.

TABLE 4: Number of SMART attributes with changed distribu-
tions.

that a significant fraction of SMART attributes has changed
distributions. For example, D2 has more than half of the
SMART attributes with changed distributions.

We further study the changes of several critical SMART
attributes defined by Backblaze, which provide strong in-
dicators for disk failures [1]. Table 5 shows the presence
of changed distributions for each critical SMART attribute
based on the KS test. We observe the change of p(xt) for D1
and D2 in S187 and S188 for most time periods. However,
D3, D4, and D5 do not show a change of p(xt) in all critical
SMART attributes, meaning that the change mainly appears
in other non-critical SMART attributes.
Measurement of p(xt|yt). Finally, we study the change in
p(xt|yt). We consider two conditional probability distribu-
tions, p(xt|healthy) and p(xt|failed), for healthy and failed
disks, respectively. We revisit Tables 4 and 5 on the changed
distributions across the SMART attributes.

From Table 4, a significant fraction of SMART attributes
(e.g., at least one-fourth for D2) has changed distributions
for healthy and failed disks. However, in D2 and D4, failed
disks generally have more SMART attributes with changed
distributions than healthy disks, but in D1, D3, and D5, it
is opposite. Thus, the effects of changed distributions vary
across disk models.

From Table 5, failed disks generally show changed
distributions in some of the critical SMART attributes (and
in all critical SMART attributes for D2 from 2014 to 2015).
For example, Figure 2 shows the cumulative distributions
of the S5 raw values for the failed disks in D2 from 2014 to
2016, and it shows clear shifts in the cumulative distributions.

D1 S5 S10 S184 S187 S188 S197 S198
2014 vs. 2015 © ‡ © † ‡ ‡ ‡

D2 S5 S10 S184 S187 S188 S197 S198
2013 vs. 2014 – – – – ‡ –
2014 vs. 2015 ‡ ‡ ‡ ‡ © † ‡ ‡ ‡
2015 vs. 2016 ‡ ‡ © † ‡ ‡
2016 vs. 2017 ‡ © ‡ ‡ ‡
2017 vs. 2018 ‡ ‡ © † ‡ ‡

D3 S5 S10 S184 S187 S188 S197 S198
2017 vs. 2018 ‡ –
2018 vs. 2019 ‡ – ‡ ‡

D4 S5 S10 S184 S187 S188 S197 S198
2013 vs. 2014 – – – – –
2014 vs. 2015 ‡ – – – ‡
2015 vs. 2016 – – –

D5 S5 S10 S184 S187 S188 S197 S198
Jan. vs. Feb.
Feb. vs. Mar.
Mar. vs. Apr. ‡ ‡ ‡ ‡
Apr. vs. May ‡ ‡ ‡ ‡
© p(xt) shows a changed distribution.
† p(xt|healthy) shows a changed distribution.
‡ p(xt|failed) shows a changed distribution.
– The SMART attribute is not collected.

TABLE 5: Changed distributions for critical SMART attributes.
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Fig. 2: Changed distributions of S5 for failed disks in D2.

One reason is that failed disks tend to show various failure
symptoms on different critical SMART attributes (which
measure the error counts), so the distributions of the critical
SMART attributes also have high variations. However, the
changed behaviors across disk models are highly varying for
different critical SMART attributes.
Summary. Our measurement study shows two major obser-
vations. First, we observe the presence of changed distribu-
tions in p(yt), p(xt), and p(xt|yt), indicating that the change
of p(yt|xt) (i.e., concept drift) also likely exists. Second, the
changed behaviors cannot be readily predicted, as they vary
across healthy and failed disks, disk models, as well as
SMART attributes. Thus, the mechanism for adapting to
concept drift needs to be generally applicable for various
changed behaviors.

4 DESIGN

We present the design of STREAMDFP, a general stream
mining framework for disk failure prediction with concept-
drift adaptation. Specifically, STREAMDFP aims to address
the following challenges:
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Fig. 3: Architecture of STREAMDFP.

• Online labeling. Unlike offline learning, STREAMDFP
accesses a stream of samples from a collection of disks and
labels the samples on the fly. It should accurately label the
samples as either positive (for failed disks) or negative (for
healthy disks) based on the current disk failure patterns.

• Concept-drift-aware training. STREAMDFP builds on a
number of incremental learning algorithms with concept-
drift adaptation (Section 2.4). It should accurately detect
and adapt to concept drift in training a prediction model
specifically for disk failure prediction.

• General prediction. STREAMDFP treats disk failure pre-
diction as both classification and regression problems. For
classification, STREAMDFP directly answers if an unknown
disk will remain healthy or will be failed in near future. For
regression, STREAMDFP should determine the likelihood
that an unknown disk will fail.

4.1 Architectural Overview
Figure 3 shows the architecture of STREAMDFP. STREAMDFP
takes a stream of samples on each day as input. It extracts
SMART attributes as learning features (Section 4.2). It sets
a sliding window to buffer recent samples and disk failure
status, and labels the disks on the fly (Section 4.3). It down-
samples the negative samples and feeds the labeled samples
into the prediction model for training. With change detection
enabled, STREAMDFP detects concept drift explicitly during
training and adapts the prediction model to concept drift.
(Section 4.4). In the prediction phase, it uses the prediction
model to output the prediction results (for both classification
and regression) for an unknown disk (Section 4.5).

4.2 Feature Extraction
Given an input stream of samples, STREAMDFP extracts the
SMART attributes of each sample as the learning features
for prediction model training. Here, we use all collected
SMART attributes in Table 3 (including raw and normalized
values) as learning features, instead of choosing a subset
of SMART attributes based on historical disk logs like [37].
In practice, we may have no or only few historical disk
logs for feature selection. Even though historical disk logs
are available for us to identify the representative SMART
attributes for failure characterization, the selected attributes
may vary over time due to the changing distributions of the
SMART attributes (Section 3.2). Thus, for simplicity, we take
all collected SMART attributes as learning features.

4.3 Buffering and Online Labeling
STREAMDFP needs to label the samples on the fly before
feeding them into training. A straightforward approach is to

Algorithm 1 Online Labeling

1: procedure MAIN(t,W , DL)
2: for each failed disk i on day t do
3: Find yi = time-series failure status of disk i inW
4: if classification then
5: Set yit′ = 1 for all t′ ∈ [t−DL, t]
6: else if regression then
7: for each day t′ = t−DL to t do
8: Set yit′ = 1− t−t′

DL+1

9: end for
10: end if
11: end for
12: end procedure

label a disk sample as positive once the corresponding disk
is diagnosed as failed, or as negative otherwise. However,
a disk often does not fail immediately; instead, a soon-
to-fail disk has actually shown failure symptoms (e.g., a
sharp increase in the reallocated sector count [26]). Thus,
STREAMDFP also labels the samples of soon-to-fail disks
as positive (in addition to the disk samples of actual failed
disks), so as to better reflect the disk failure characteristics.
A side benefit is that the proportion of positive samples also
increases, which mitigates the well-known data imbalance
issue in disk failure prediction [5], [27] as failed disks
often account for a very small fraction over the entire disk
population. A key challenge is how to label the samples of
soon-to-fail disks on the fly.

STREAMDFP buffers the recently received samples for
online labeling. Specifically, it configures a sliding time
window, denoted byW , to buffer the samples of a sufficiently
long recent period (30 days in our case), as well as the
number of extra labeled days before the disk failure occurs,
denoted by DL. If a failed disk is found, STREAMDFP labels
the samples within DL before the failure as positive (by
default, all samples before failures are negative). Note that
the number of samples withinDL may be less than the length
of DL when W is not full or limited samples are collected
before a disk failure. By default, we set DL = 20 days.
Algorithm details. Algorithm 1 shows the pseudo-code on
online labeling (while buffering is done before the algorithm).
It takes the inputs of the current day t,W , and DL.

We update the labels of the samples of all failed disks
within DL. We label the samples of soon-to-fail disks for
classification and regression separately (Lines 2-11). For
classification, we set the target variable yit′ = 1 for all
t′ ∈ [t − DL, t] (Lines 4-5). For regression, we update the
labels with the failure probabilities. Specifically, for each day
t′ ∈ [t −DL, t], we define the failure probability yit′ as the
probability that disk i fails at any day from day t−DL up to
day t′. Assuming that disk i fails at each day from day t−DL

to day t with an equal probability 1
DL+1 , the failure proba-

bility yit′ is given by yit′ =
t′−(t−DL)+1

DL+1 = 1− t−t′
DL+1 (Line 8).

Thus, yit′ can be viewed as a linear function that increases
with t′, starting from yit′ =

1
DL+1 at t′ = t−DL to yit′ = 1 at

t′ = t (i.e., when the failure occurs) (Lines 6-10). Note that
the failure probability defined here only approximates the
likelihood that a soon-to-fail disk will actually fail over time,
and we pose the analysis of the true failure probability of a
disk as future work.
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Algorithm 2 Downsampling and Training

1: procedure MAIN(t,W ,M)
2: Select all positive samples and the negative samples in

the recent seven days fromW intoW ′
3: for each (xit, y

i
t) ∈ W ′ do

4: for each base learner T ∈M do
5: if yit == 0 then . negative samples
6: Set k = Poisson(λn)
7: else . positive samples
8: Set k = Poisson(λp)
9: end if

10: if k > 0 then
11: TRAIN(T , xit, yit, k)
12: Set ŷit = PREDICT(xit)
13: Update T with DETECTCHANGE(T , ŷit, yit)
14: end if
15: end for
16: end for
17: end procedure

4.4 Downsampling and Training

STREAMDFP trains a prediction model based on the labeled
samples. Before training, it is critical to mitigate the data
imbalance issue [5], [27] for accurate prediction. In addition
to labeling more samples as positive for soon-to-fail disks
(Section 4.3), STREAMDFP downsamples the negative sam-
ples to increase the proportion of positive samples. After
downsampling, STREAMDFP attaches a change detector to
the prediction model to adapt to concept drift.
Algorithm details. Algorithm 2 shows the pseudo-code on
downsampling and training. It takes the inputs of the current
day t,W , andM.

STREAMDFP downsamples the negative samples in a
two-phase process. It first selects a subset of samples inW ,
including all positive samples and the negative samples in
the recent days (currently set as seven days to preserve
sufficient negative samples), into W ′ (Line 2). It further
downsamples the negative samples via Poisson sampling,
which is commonly used in ensemble learning algorithms
[14], [31] and online disk failure prediction [37]. We borrow
the approach in [37] by customizing the hyper-parameters
of the Poisson distribution, denoted by λn and λp, for the
negative and positive samples, respectively. Specifically, we
refer to a decision tree (for decision-tree-based learning) or
a neuron (for neural network learning) as a base learner. For
each base learner T ∈M, we generate a weight k from the
respective Poisson distribution of either negative or positive
samples, where k specifies the frequency that the sample is
updated in the prediction model (Lines 5-9). Since a larger
hyper-parameter implies a larger weight, we ensure that
λp > λn to ensure that the positive samples weigh more in
the prediction model. More precisely, our evaluation varies
λp and λn based on the given false positive rate for each
incremental learning algorithm (Section 7). Note that we do
not claim the novelty of this approach.

For each incremental learning algorithm, STREAMDFP
extends the corresponding prediction model M with a
change detector (e.g., ADWIN [2], PH test [29], DDM
[11], and backpropagation [17]) (Section 2.3). STREAMDFP
associates the change detector with each base learner T ∈M
(recall that M is composed of either decision trees or

Algorithm 3 STREAMDFP

1: InitializeW = empty sliding time window
2: InitializeM = prediction model
3: for each day t do
4: ifW is full then
5: Slide one day forW
6: end if
7: Extract learning features to xt from all disks
8: Buffer (xt, yt) intoW
9: Call Algorithm 1 (online labeling) to label samples inW

10: Call Algorithm 2 (downsampling and training) to train
M usingW

11: ifW is full then
12: Set ŷt =M(xt)
13: end if
14: end for

neurons (Section 2.4)). Specifically, if k > 0, STREAMDFP
first trains T with a labeled sample (xi

t, y
i
t) and weight k

(Line 11) and then performs the prediction to obtain ŷit
(Line 12). It then updates T with the detected changes
between the predicted output ŷit and the labeled target
variable yit (Line 13). Specifically, for decision-tree-based
algorithms, STREAMDFP compares ŷit and yit to detect if
concept drift exists; if so, T is updated accordingly based
on the incremental learning algorithm. For example, ARF
[14] detects concept drift with ADWIN in each tree, which
keeps the recent absolute errors between ŷit and yit in the
detection window and monitors the change of average values
of two sub-windows (Section 2.3). If ADWIN detects concept
drift, ARF replaces T with a new decision tree trained by
recent samples. For MLP, STREAMDFP updates T with the
propagated error between ŷit and yit backward from the
output layer to the hidden layers.

4.5 Prediction

STREAMDFP supports both classification and regression
in prediction. For classification, it predicts whether a disk
failure will occur, while for regression, it returns the failure
probability of a disk within the near future. In particular,
for regression, based on how we label a sample as positive
(Section 4.3), the product (1− ŷit)(DL + 1) can be viewed as
the predicted residual lifetime of the disk.

Note that during training (Section 4.4), we call prediction
once to detect concept drift (see Line 12 of Algorithm 2).
However, we still need to call the prediction again after
training, so that the prediction output is based on the
updated prediction model due to concept drift.

4.6 Putting It All Together

Algorithm 3 shows the entire workflow of STREAMDFP. We
first initialize W and M (Lines 1-2). For each day t, if W
is full, we slide W by one day (Lines 4-6). We then buffer
the samples for online labeling as follows. We extract the
learning features to xt from all disks and buffer (xt, yt) into
W (Lines 7-8). We call Algorithm 1 to label samples in W
and Algorithm 2 to trainM usingW (Lines 9-10). Finally, if
W is full, it implies that we have buffered enough labeled
samples for training andM is warmed up, and hence we use
M with xt to output the prediction results ŷt (Lines 11-13).
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5 ONLINE TRANSFER LEARNING

In this section, we extend STREAMDFP to support online
transfer learning with concept-drift adaptation.
Background. In real-world disk deployment, some disk
models, referred to as minority disk models, may have an
insufficient number of samples for training the prediction
model, which leads to poor prediction accuracy due to over-
fitting [36]. Thus, we apply transfer learning for disk failure
prediction, whose idea is to leverage the prediction model
trained on a disk model with a large number of disks (called
the source disk model) to construct the prediction model for a
minority disk model (called the target disk model). Specifically,
we first train a prediction model (denoted by MS ) on the
samples from the source disk model. When the samples
from the target disk model arrive, we start to train another
prediction model (denoted by MT ) and also update MS
with these samples. In the prediction phase, we combine
the prediction results of bothMS andMT . To maintain the
effectiveness of transfer learning, we assume that both source
and target disk models are from the same manufacturer, so
that both disk models are likely to share the similar SMART
reporting approach.

Transfer learning has also been adopted by previous work
[5], [42] for disk failure prediction. The main novelty here is
to apply transfer learning into STREAMDFP in the context of
stream mining with concept-drift adaptation, meaning that
we can only buffer a small number of samples for incremental
learning as concept drift may exist in both source and target
disk models.
Integration of online transfer learning into STREAMDFP.
To predict disk failures for minority disk models under
stream mining, we extend STREAMDFP with online transfer
learning [43], a general online transfer learning approach
that supports various classification algorithms. In particular,
we adopt the mistake-driven homogeneous online transfer
learning approach, called HomOTL-II, in [43], and make two
modifications in our integration. First, after we train MS
with the samples from the source disk model, instead of
fixingMS as in [43], we still updateMS with the samples
from the target disk model. This allows MS to adapt to
the existence of concept drift. Second, when combining the
prediction results of MS and MT , instead of discounting
the weights of bothMS andMT for an incorrectly classified
sample as in [43], we only check ifMS incorrectly classifies
the samples from the target disk model, and if so, we discount
the weight ofMS (denoted by θ) by a discounting weight
parameter β (where β ∈ (0, 1)) (i.e., without discounting
the weight ofMT even ifMT classifies the samples from
the target disk model incorrectly). The reason is that we
now treatMT as the dominant prediction model. If we also
discount the weight ofMT , the combined prediction results
of MS and MT may become highly ineffective with the
insufficient positive samples due to the data imbalance issue
(Section 4.3). On the other hand, we still discount the weight
ofMS as it may incorrectly capture the failure patterns due
to the differences of failure characteristics between source
and target disk models.
Algorithm details. Algorithm 4 shows the pseudo-code on
downsampling and training under modified online transfer
learning, by extending the original downsampling and

Algorithm 4 Downsampling and Training under Modified
Online Transfer Learning

1: procedure MAIN(t, θ,WT ,MS ,MT )
2: Select all positive and the negative samples of target disk

model in the recent seven days fromWT intoWT ′
3: for each (xit, y

i
t) ∈ WT ′ do

4: Train each decision tree T ∈MS with downsampling
and concept-drift adaption . our 1st modification

5: Train each decision tree T ∈MT with downsampling
and concept-drift adaption

6: Set ŷit =MS(xt) . our 2nd modification
7: if ŷit 6= yit then . incorrect classification
8: Set θ = θ × β
9: end if

10: end for
11: return θ
12: end procedure

Algorithm 5 STREAMDFP with Online Transfer Learning

1: InitializeWS = empty sliding time window
2: InitializeWT = empty sliding time window
3: InitializeMS = prediction model of source disk model
4: InitializeMT = prediction model of target disk model
5: Initialize θ = 1
6: Call Lines 3-14 of Algorithm 3 (STREAMDFP) to trainMS

with the samples of source disk model inWS
7: for each day t do . samples of target disk model arrive
8: ifWT is full then
9: Slide one day forWT

10: end if
11: Extract learning features to xt from all disks
12: Buffer (xt, yt) intoWT
13: Call Algorithm 1 (online labeling) to label samples in

WT
14: Call Algorithm 4 (downsampling and training under

modified online transfer learning) to trainMS andMT
usingWT and update θ

15: ifWT is full then . our 2nd modification
16: Set ŷt = θ

1+θ
MS(xt) + 1

1+θ
MT (xt)

17: end if
18: end for

training procedures in Algorithm 2. Specifically, it takes the
inputs of the current day t, the weight ofMS (θ), the sliding
time window for the target disk model (WT ),MS , andMT .
It selects a subset of samples from the target disk model
WT into WT ′ (Line 2), similar to Line 2 of Algorithm 2.
For each sample of the target disk model in WT ′, it trains
each tree in bothMS (i.e., our first modification) andMT
with downsampling and concept-drift adaptation using a
given incremental learning algorithm (Lines 3-5), similar
to Lines 4-17 of Algorithm 2. It next checks whether MS
correctly predicts the sample (Line 6) and discounts θ by
β if the prediction is incorrect (Lines 7-9) (i.e., our second
modification). Finally, it returns θ (Line 11).

Algorithm 5 shows the entire workflow of STREAMDFP
with online transfer learning. We first initialize the empty
sliding time windows (i.e.,WS for the source disk model and
WT for the target disk model),MS ,MT , and θ (Lines 1-5).
We next call Lines 3-14 of Algorithm 3 to trainMS with the
source disk model inWS (Line 6). For each day t when the
samples of the target disk model arrive, ifWT is full, we slide
WT by one day (Lines 7-10). We extract learning features to
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xt from all disks and buffer (xt, yt) into WT (Lines 11-12).
We then call Algorithm 1 to label samples inWT (Line 13).
We call Algorithm 4 to train MS and MT using WT and
update θ (Line 14). Finally, if WT is full, we compute the
weighted average of the prediction results ofMS andMT
with xt to output the prediction results ŷt (Lines 15-17); note
that if θ has been discounted due to the incorrect classification
ofMS , then the effect ofMS on the prediction results will
decrease (i.e., our second modification).

6 IMPLEMENTATION DETAILS

We implement a STREAMDFP prototype in two parts. The
first part is implemented in Python (with around 830
LoC), in which STREAMDFP performs feature extraction,
buffering, online labeling, the first phase of downsampling
(i.e., selecting a subset of samples from W), and finally
writes the processed data into a local file system. The second
part is written in Java (with around 1,530 LoC), in which
STREAMDFP reads the processed data from the local file
system and feeds each sample into the second phase of
downsampling (i.e., Poisson sampling) and training. We
realize all decision-tree-based algorithms and their change
detectors in Table 1 using Massive Online Analysis (MOA)
[4]. We realize MLP [19] with backpropagation [17] via
stochastic gradient descent [34]. We realize online transfer
learning based on the mistake-driven homogeneous online
transfer learning algorithm (HomOTL-II) [43]. The complete
STREAMDFP prototype forms a stream processing pipeline.

7 EVALUATION

We present trace-driven evaluation results on the prediction
accuracy and stream processing performance of STREAMDFP
on 15 datasets in total. We summarize our findings as follows.
• Enabling concept-drift adaptation in STREAMDFP in-

creases the classification accuracy for different incremental
learning algorithms, although the highest accuracy among
the algorithms varies across datasets. STREAMDFP also
makes earlier prediction of disk failures. (Exp#1)

• STREAMDFP can accurately predict the likelihood of disk
failures under regression. (Exp#2)

• Enabling concept-drift adaptation under online transfer
learning in STREAMDFP increases the classification accu-
racy for different ensemble learning algorithms. (Exp#3)

• Enabling online transfer learning in STREAMDFP increases
the classification accuracy of ensemble learning algorithms
for various minority disk models. (Exp#4)

• STREAMDFP takes within 13.5 seconds per day for process-
ing 37 K disks in D2, making it viable for practical stream
processing usage. (Exp#5)

• STREAMDFP can effectively predict SSD failures with
concept-drift adaptation. (Exp#6)

In the digital supplementary file, we report additional
findings, including: (i) online labeling with extra labeled
days improves the overall prediction accuracy in most cases,
while the number of extra labeled days can be flexibly
tuned via STREAMDFP (Exp#S1); (ii) STREAMDFP maintains
the accuracy gains through concept-drift adaptation for
various thresholds of false positive rates (Exp#S2); and (iii)
STREAMDFP supports RNN, which has similar prediction
accuracy to MLP (Exp#S3).

7.1 Methodology

We use a total of 15 datasets to validate our evaluation. In
addition to the five datasets shown in Table 2, we further
select seven datasets in Backblaze and three public SSD
datasets from Alibaba [39] (see Table 6). Specifically, the
datasets D6, D7, and D8 cover three more recent disk models
that are increasingly deployed from year 2019. Also, we use
the disk models in D9, D10, D11, and D12 as the target
disk models in online transfer learning, and they are also
evaluated by prior studies [5], [42]. In particular, we use D2
as the source disk model for D9 and D10, and use D4 as
the source disk model for D11 and D12, since D2 and D4
have large populations among the disk models within the
same manufacturer. Also, the datasets D13, D14, and D15
cover the SMART datasets from three SSD models (from
different manufacturers) with large numbers of failures over
a two-year span.

We use all the available SMART attributes (e.g., see
Table 3 for D1 to D5) as learning features for each dataset
(Section 4.2). For online transfer learning, since D9 does
not include the SMART attributes S191, S192, and S193, we
remove these SMART attributes as learning features when
trainingMS with D2 for D9. On the other hand, the other
target disk models (D10 to D12) have the identical SMART
attributes as the source disk models (i.e., D2 and D4).

We configure the durations for evaluation across datasets
as follows. For the Backblaze datasets (i.e., D1 to D4 and
D6 to D12) and the SSD datasets (i.e., D13 to D15), we find
that the SMART attributes are not all available on the first
day of the collection period, and the datasets have very
different collection durations, ranging from 21 to 81 months.
For consistent comparisons, we select the same 460 days of
samples from each Backblaze and SSD dataset for evaluation.
To ensure that all SMART attributes are available, we set the
start date of each dataset as 2014-02-15 for D1, 2015-01-01 for
D2, 2018-02-01 for D3, 2014-09-01 for D4, 2019-01-01 for D6
to D8, and 2018-01-03 for D13 to D15. For the Alibaba HDD
dataset (i.e., D5), we select all 150 days of samples.

For the evaluation of online transfer learning, we set the
start date of the target disk models as 2015-01-01 for D9, 2016-
04-15 for D10, and 2015-12-15 for both D11 and D12 to ensure
that sufficient samples are collected. Also, we need to set
the start dates of the source disk models to be close to those
of the target disk models due to concept drift (Section 3).
Thus, we set the start date of D2 as 2014-07-01 for D9 and
2015-11-01 for D10, and the start date of D4 as 2014-09-01 for
both D11 and D12.

For each dataset, we first warm-up the prediction model
from scratch using the first 30 days of samples, same as the
length of W (Section 4.3). We then predict disk failures in
the next 30 days on a daily basis, and evaluate the accuracy
for each day of prediction. Thus, the total durations of our
evaluation last for 400 days for D1 to D4, D6 to D12, and
D13 to D15, as well as 90 days for D5. For online transfer
learning, we set the total durations for trainingMS for D2
as 100 days and for D4 as 400 days, since the disk count of
D2 is nearly 8 × as many as that of D4 (Table 2).
Metrics. Our evaluation addresses both classification and
regression. For classification, we use the following metrics:
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Dataset ID Disk model Capacity Disk count # failures Period Duration (months)
D6 Seagate ST8000DM002 8 TB 10,187 383 2016-05-11 to 2020-06-30 50
D7 Seagate ST8000NM0055 8 TB 14,991 514 2016-12-06 to 2020-06-30 43
D8 HGST HMS5C4040BLE640 4 TB 16,346 253 2014-03-27 to 2020-06-30 81
D9 Seagate ST31500541AS 1.5 TB 2,188 384 2013-04-10 to 2018-03-29 60
D10 Seagate ST4000DX000 4 TB 222 79 2013-04-10 to 2017-12-14 57
D11 Hitachi HDS5C3030ALA630 3 TB 4,664 144 2013-04-10 to 2017-09-07 53
D12 Hitachi HDS723030ALA640 3 TB 1,048 72 2013-04-10 to 2017-06-13 51
D13 SSD MA1 480 GB 43,759 1,371 2018-01-01 to 2019-12-31 24
D14 SSD MB1 1920 GB 44,405 1,832 2018-01-01 to 2019-12-31 24
D15 SSD MC1 1920 GB 200,032 10,545 2018-01-01 to 2019-12-31 24

TABLE 6: Overview of ten additional datasets for evaluation (in addition to the five datasets shown in Table 2).

• Precision: The fraction of actual failed disks being predicted
over all (correctly or falsely) predicted failed disks.

• Recall: The fraction of actual failed disks being predicted
over all actual failed disks.

• F1-score: 2×precision×recall
precision+recall .

For regression, we convert the disk failure likelihood
reported by STREAMDFP into the number of days of residual
lifetime for more intuitive evaluation. We report the average
relative errors of the residual lifetime (ARE), defined as the
average relative errors of the predicted residual lifetime
with respect to the actual residual lifetime over all actual
failed disks (we exclude the falsely predicted failed disks for
this metric). If the ARE is positive, then it implies that the
predicted likelihood of disk failures is larger than the actual
likelihood and the residual lifetime is shorter than the actual
one, and vice versa.
Default setup. We set the default extra labeled days DL

as 20 days, while we evaluate the impact of DL in Exp#S1.
For fair comparisons, when we evaluate the classification
accuracy metrics, we fix the threshold of the average false
positive rate (FPR) over the evaluation period for each
algorithm; on each day, we compute the FPR as the fraction
of falsely predicted failed disks over the total number of
healthy disks in the next 30 days. For D1 to D4, D6 to D12,
and D13 to D15, we set the default FPR threshold as 1% as in
[37], while for D5, we set the default FPR threshold as 0.3%;
we evaluate the impact on the accuracy for different FPR
thresholds in Exp#S2. For ensemble learning (Section 2.4), we
fix 30 decision trees, although including more decision trees
(e.g., 100 trees) does not make significant improvements. For
other parameters, we choose the default values as in MOA
[4] (Section 6). For MLP, we fix one hidden layer with three
neurons and set the learning rate as 0.5, although adding
more hidden layers (e.g., five hidden layers) does not make
significant improvements. In Exp#3 and Exp#4, we set the
discounting weight parameter of online transfer learning
β =

√
#samples√

#samples+
√
ln2

[43], where the number of samples is
estimated by the disk count multiplied by the total duration
(i.e., 400 days) for a target disk model.

In our experiments, we plot the averaged results over
five runs, including the error bars with the minimum and
maximum results across all five runs.

7.2 Results

Exp#1 (Effectiveness of concept-drift adaptation). We first
consider the classification algorithms in Table 1 (except the
regression algorithm FIMT-DD, which is evaluated in Exp#2).
We divide the decision-tree-based algorithms into four pairs
corresponding to before and after enabling concept-drift

adaptation (i.e., HT vs. HAT, Bag vs. BA, Boost vs. BOLE,
and RF vs. ARF). For D5, we focus on two pairs of ensemble
learning algorithms, i.e., Bag vs. BA and RF vs. ARF, since
they can parallelize the training of decision trees for fast
execution. We also compare the effectiveness of decision-tree-
based algorithms and neural network learning (i.e., MLP).

Figure 4 shows the results of the precision, recall, and
F1-score for different datasets. Concept-drift adaptation
improves the overall F1-score for each pair of decision-tree-
based algorithms in all datasets, by up to 26.8%, 53.2%, 48.8%,
35.5%, 49.9%, 38.4%, 38.5%, and 40.3% for D1, D2, D3, D4,
D5, D6, D7, and D8 respectively, while the improvements
of precision and recall are up to 27.5-71.8% and 15.7-60.5%
across the datasets, respectively. We see that concept-drift
adaptation mainly improves the precision, while preserving
the recall, in most cases; the only exceptions are the decreas-
ing recall in BA (for D2 and D3) and ARF (for D2), as well
as the decreasing precision in BOLE for D3, HAT for D6,
and ARF for D8, mainly due to the trade-off between the
precision and recall. Also, MLP with backpropagation can
achieve the highest F1-scores on D4, D6, D7, and D8 (higher
than those of decision-tree-based algorithms by 25.4%, 32.6%,
18.0%, and 31.0%, respectively). We observe that these four
datasets have fewer disk failures than D1, D2, D3, and D5,
indicating that MLP with backpropagation is effective for
training with limited positive samples.

Overall, ARF achieves the highest F1-score for D1 and
BA achieves the highest F1-score for D2, D3 and D5, while
MLP with backpropagation achieves the highest F1-score
for D4, D6, D7, and D8. Thus, it is difficult to identify the
“best” algorithm for different datasets. This conforms to the
main design goal of STREAMDFP that it supports various
incremental learning algorithms as a general framework
rather than a specific algorithm.

Table 7 further evaluates the average number of days
ahead of a disk failure when the prediction is made (i.e., the
duration from the day when a disk is predicted as failed to
the day when the disk failure occurs). Here, we only consider
the failed disks that are correctly predicted. The decision-
tree-based algorithms with concept-drift adaptation can
predict disk failures earlier than those without concept-drift
adaptation, by up to 2.9, 2.0, 1.8, 1.2, 3.9, 2.8, 2.5, and 3.8 days
for D1, D2, D3, D4, D5, D6, D7, and D8 respectively. Also,
MLP with backpropagation can predict disk failures early,
which is overall close to the decision-tree-based algorithms
with concept-drift adaptation. The reason is that concept-
drift adaptation achieves better characterization of the failure
patterns, thereby making earlier prediction.
Exp#2 (Accuracy of regression). We evaluate the accuracy
of regression (in terms of ARE) with the regression tree
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Fig. 4: Exp#1 (Effectiveness of concept-drift adaptation).
Algorithm D1 D2 D3 D4 D5 D6 D7 D8

HT 11.1 9.1 9.1 11.6 – 12.8 13.6 9.1
HAT 12.3 10.7 10.8 12.0 – 13.2 14.1 12.9
Bag 9.6 9.4 10.9 13.2 7.7 11.5 11.8 11.1
BA 12.2 11.3 11.2 13.9 11.6 14.3 14.4 14.5

Boost 10.5 9.1 9.4 12.3 – 11.3 11.7 12.3
BOLE 13.3 10.6 11.2 13.5 – 13.1 13.3 13.4

RF 11.0 9.7 9.2 12.5 8.0 11.5 11.7 11.1
ARF 13.9 11.3 9.7 12.6 11.5 11.7 13.9 12.0
MLP 12.9 10.2 9.3 13.9 12.0 14.0 14.4 14.6

TABLE 7: Days in advance when a failed disk is predicted for
different incremental learning algorithms in Exp#1.

FIMT-DD. Figure 5 shows the ARE results for D1 to D8.
Throughout the evaluation period, the means of ARE are
-0.0014, -0.27, 0.13, 0.29, 0.58, -0.0055, 0.0048, and -0.52 (in
days), while the standard deviations of ARE are 3.0, 2.4, 3.2,
5.6, 2.7, 4.6, 3.2, and 6.3 (in days), for D1, D2, D3, D4, D5,
D6, D7, and D8 respectively. The results indicate that the
predicted likelihood of disk failures is close to the actual
likelihood. Also, the maximum absolute values of ARE for
D1, D2, D3, D5, D6, D7, and D8 are smaller than 9, 6, 8, 6, 15,
7, and 15 days, respectively. On the other hand, the ARE for
D4 is up to +20 days. The reason is that failure symptoms
(e.g., sector errors) before failures for D4 last longer than
those for other disk models due to the older average age [1],
making the predicted residual lifetime for D4 much shorter
than the actual one (i.e., the ARE is a large positive value).
Exp#3 (Effectiveness of concept-drift adaptation under
online transfer learning). We consider three pairs of ensem-
ble learning algorithms corresponding to before and after
enabling concept-drift adaptation (i.e., Bag vs. BA, Boost vs.
BOLE, and RF vs. ARF) under online transfer learning on the

four pairs of source and target disk models (i.e., D2 and D9,
D2 and D10, D4 and D11, as well as D4 and D12).

Figure 6 shows the accuracy results for the four pairs
of disk models. Under online transfer learning, concept-
drift adaptation improves the overall F1-score by up to
14.2%, 18.8%, 51.8%, and 30.0% for D9, D10, D11, and D12,
respectively, while the improvements of precision and recall
are up to 17.1-65.8% and 9.0-36.0% across the four datasets,
respectively. We observe that concept-drift adaptation still
mainly improves the precision, while preserving the recall,
under online transfer learning in most cases. The only
exceptions are the decreasing recall in ARF (for D9 and
D10), BA (for D9), and BOLE (for D11), mainly due to the
trade-off between the precision and recall.
Exp#4 (Effectiveness of online transfer learning). We com-
pare the prediction accuracy with and without online transfer
learning for the four target disk models (D9 to D12). With
online transfer learning, the source disk models are still D2
for D9 and D10 as well as D4 for D11 and D12; without online
transfer learning, we apply STREAMDFP directly to the target
disk models. We consider the three ensemble algorithms with
concept-drift adaptation (i.e., BA, BOLE, and ARF).

Figure 7 shows the accuracy results. Online transfer
learning improves the overall F1-score by up to 7.9%, 3.1%,
6.7%, and 5.3% for D9, D10, D11, and D12, respectively, while
the improvements of precision and recall are up to 4.3-8.4%
and 1.0-9.8% across the datasets, respectively.
Exp#5 (Execution performance of STREAMDFP). We evalu-
ate the stream processing performance of STREAMDFP. We
focus on D2, which has the largest disk population (with
around 37 K disks) among all Backblaze datasets we consider.
Note that for D5, since it is executed on a production server
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Fig. 5: Exp#2 (Accuracy of regression). Note that the gaps in D4
and D8 mean that no failed disks are observed in those periods.

at Alibaba, we cannot reveal the hardware setting of the
server for our performance evaluation of STREAMDFP.

We measure the execution time of STREAMDFP on a
local server equipped with a quad-core 3.4 GHz Intel Core
i5-7500, 32 GiB RAM, and a Toshiba DT01ACA100 7200 RPM
1 TiB SATA hard disk. We run STREAMDFP to predict disk
failures in 400 days using the BA algorithm (which achieves
the highest F1-score), and report the average execution
time of one day. We use single-thread execution for feature
extraction, buffering, online labeling, and prediction for each
arriving sample; for training, we enable multi-threading
(with 4 threads) for BA in MOA [4] to parallelize training
across all tree learners.

Table 8 shows a breakdown of the per-day execution
time of STREAMDFP for D2, while the standard deviations
of all five runs are in brackets. The most time-consuming
step is training, while prediction is fast. This is expected, as
training has complicated computation in growing multiple
trees with the samples in recent days. Nevertheless, the
execution time for training remains acceptable in practice.
Overall, STREAMDFP performs training and prediction
within 13.5 seconds on the daily SMART data of 37 K disks.
We believe that STREAMDFP meets the performance need in
large-scale disk deployment.
Exp#6 (Effectiveness of STREAMDFP on SSD failure pre-
diction). We apply STREAMDFP to SSD failure prediction
and evaluate its generality. We consider three pairs of
ensemble learning algorithms corresponding to before and
after concept-drift adaptation (i.e., Bag vs. BA, Boost vs.
BOLE, RF vs. ARF) and MLP on D13, D14, and D15. Figure 8
shows that concept-drift adaptation of decision-tree-based
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Fig. 6: Exp#3 (Effectiveness of concept-drift adaptation under
online transfer learning).

algorithms improves the overall F1-score by up to 29.3%,
38.7%, and 51.1% for D13, D14, and D15, respectively, which
conforms to the conclusions in Exp#1. Also, BA achieves
the highest F1-score for D14 (65.7%) and D15 (68.3%), while
MLP achieves the highest F1-score for D13 (71.9%). Thus,
STREAMDFP remains effective in SSD failure prediction.

8 RELATED WORK

There have been extensive studies on disk failure prediction.
Traditional prediction approaches are based on statistical
techniques, such as Bayesian classifiers [15], hypothesis tests
[20], support vector machines [30], Markov models [44],
and rule-based methods [26]. Recent studies improve the
prediction accuracy via machine learning algorithms, such
as backpropagation neural networks [45], decision trees [23],
gradient boost regression trees [24], random forests [27], and
unsupervised learning (e.g., the nearest neighbor algorithm
[13]). Also, some studies explore deep neural networks to
predict disk failures, such as recurrent neural networks
[38], layerwise perturbation-based adversarial training [41],
and convolutional neural networks [25], [35]. SMARTer [25]
leverages workloads and locations of disks in addition to
SMART attributes to predict disk failures. Some studies show
how disk failure prediction facilitates disk replacements
[5] and scrubbing [27], as well as improves cloud service
availability [40]. All the above studies are based on offline
prediction and assume that all training data is available in
advance.

The closest related work to ours is [37], which applies
Online Random Forests (ORF) to disk failure classification
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Fig. 7: Exp#4 (Effectiveness of online transfer learning).

Step Feature Buffer- Online Down- Train- Predic-
extraction ing labeling sampling ing tion

Time 0.0055 s 0.093 s 0.42 s 0.52 s 10.6 s 1.9 s
(0.069 ms) (9.6 ms) (30.8 ms) (19.0 ms) (0.75 s) (0.14 s)

TABLE 8: Exp#5 (Execution performance of STREAMDFP). We
show the average per-day execution time of STREAMDFP for
D2; numbers in brackets are standard deviations of all five runs.

and automatically updates labels based on incoming SMART
attributes. However, STREAMDFP considers an inherently
different perspective from ORF-based classification [37]:
while ORF-based prediction focuses on online learning and
tackles the aging issue in the prediction model, STREAMDFP
focuses on stream mining and adapts the prediction model
to concept drift in data streams. STREAMDFP addresses
the following issues that are not considered in [37]: (i)
providing a general framework that supports various stream
mining algorithms (instead of ORF only) and customizes
them with concept-drift adaptation; (ii) considering both
classification and regression (instead of classification only);
and (iii) validating its correctness in both HDD and SSD
datasets at Alibaba.

9 CONCLUSION

We present STREAMDFP, a general stream mining framework
for disk failure prediction with concept-drift adaptation.
STREAMDFP is motivated by the existence of concept drift,
backed by our measurement study on the SMART datasets
from Backblaze and Alibaba. It also supports a variety of
incremental learning algorithms. Our evaluation on decision-
tree-based and neural network learning algorithms shows
that concept-drift adaptation improves the prediction accu-
racy significantly under various settings and online transfer
learning for minority disk models. STREAMDFP also achieves
high stream processing performance.
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Fig. 8: Exp#6 (Effectiveness of STREAMDFP on SSD failure
prediction).
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