Enabling Secure and Space-Efficient Metadata
Management in Encrypted Deduplication
(Supplementary File)

Jingwei Li, Suyu Huang, Yanjing Ren, Zuoru Yang, Patrick P. C. Lee, Xiaosong Zhang, and Yao Hao

1 SECURITY ANALYSIS OF METADATA CHUNKS

In Metadedup, each data chunk remains protected by histori-
cal MLE, so the confidentiality guarantees for unpredictable
data chunks are retained in the context of encrypted dedu-
plication. However, in the security level under historical
MLE, an adversary can derive metadata (e.g., keys) from
data chunks and arbitrarily construct metadata chunks. Since
Metadedup also protects metadata chunks using historical
MLE, the adversary can launch the offline brute-force attack
(see Section 2.1 of the main file) to infer the original contents
in target metadata chunks.

We argue that the offline brute-force attack against
encrypted metadata chunks is much more computationally
expensive than against encrypted data chunks. Recall that
each metadata chunk consists of the metadata of multiple
encrypted data chunks. Thus, an adversary needs to include
different combinations of encrypted data chunks to construct
a potential encrypted metadata chunk for the offline brute-
force attack, yet the number of combinations is exhaustively
high. In contrast, to launch the offline brute-force attack
against encrypted data chunks, the adversary only needs to
sample each possible data chunk to test (see Section 2.1 of
the main file).

We conduct a simple analysis to justify that the offline
brute-force attack against a metadata chunk incurs a huge
time cost and hence is computationally infeasible in practice.
Suppose that each data chunk is known to be drawn from a
finite set that includes a total of n distinct data chunks. Let ¢
be the average number of data chunks in a segment.

To compute the metadata of an encrypted data chunk, the
adversary applies a hash function once to derive the MLE
key, encrypts the data chunk, and applies the hash function
again to derive the fingerprint. We estimate the running time
of computing the metadata of each data chunk as:

Tmeta =2X Thash + Tenc»

where Th,sn and Tyne denote the running times of the hash
and encryption functions, respectively.

To construct a metadata chunk, the adversary assembles
the metadata of ¢ encrypted data chunks in order. In fact,
each data chunk in the finite set may contribute metadata,
and we assume that the metadata contribution of a data
chunk does not affect that of any other data chunk (i.e., the

events are mutually independent). Here, we consider the
total number of combinations of ¢ distinct encrypted data
chunks as:

c—1

Nassemble = H(n - Z) =

=0

n!
(n—c)’

where n! and (n — ¢)! are the factorials of n» and n — ¢,
respectively. Each combination corresponds to a metadata
chunk, and thus the adversary needs to test N,ssemble possible
metadata chunks to see if any of them is encrypted to
the target encrypted metadata chunk based on historical
MLE. Note that the adversary may test more metadata
chunks than Njsemble in practice, in order to address the
case that metadata chunks include the metadata of duplicate
encrypted data chunks. Thus, Njssemble can be viewed as
the lower bound of the number of metadata chunks that the
adversary needs to construct, and the total construction time
is:

Tconstruct = Nassemble X Tmeta-

For each constructed metadata chunk, the adversary
checks whether it is the original input of the target encrypted
metadata chunk, and each check requires one hash (to derive
the MLE key) and one encryption. This implies that the
running time of the equality check for all metadata chunks:

Tcheck = Nassemble X (Thash + Tenc)-

We can now estimate the average running time of the
offline brute-force attack against metadata chunks as:

Tattack = Tconstruct + Tcheck-

We consider an example to understand how large Thttack
is. Suppose that the average segment size is 1 MB, and the
average chunk size is 8 KB. Then, ¢ = % = 128. According
to [1], we assume that it takes Tonc = 48us and Thash = 37us
to perform the encryption and hash operations on a chunk of
8 KB, respectively (the equivalent encryption and hash speeds
are 163 MB/s and 212 MB/s, respectively). We estimate Tjttack
as follows.

n!

(n—¢)!
(3 X Thash + 2 X Tenc) X !

7.94 x 102,

Tattack - (3 X Thash +2x Tenc) X

Qv

TABLE 1: Overall storage efficiency of MD under different
average segment sizes. Raw denotes the original metadata size
without MD.

[Components/Metrics [Raw [512KB| 1IMB | 2MB | 4MB |
File recipes (GB) 178.191| 1.932 | 0.965 | 0.481 | 0.240
Key recipes (GB) 190.070| 2.061 | 1.030 | 0.513 | 0.256
FSL Fingerprint index (GB) 1.385 | 1.412 | 1.400 | 1.393 | 1.390
Metadata chunks (GB) - 6.806 | 7.372 | 8.041 | 8.818
Total metadata size (GB)|369.646| 12.211 | 10.767 | 10.428 | 10.704
Metadata storage saving - 197.07%|97.46% |97.55%|97.47 %
Index overhead - 1.94% | 1.07% | 0.60% | 0.33%
File recipes (GB) 297.070] 1.192 | 0.596 | 0.299 | 0.147
Key recipes (GB) 316.875| 1.271 | 0.636 | 0.319 | 0.157
VM Fingerprint index (GB) 1.230 | 1.269 | 1.259 | 1.254 | 1.251
Metadata chunks (GB) - 8.106 | 9.793 | 12.276 | 16.824
Total metadata size (GB)|615.175| 11.838 | 12.284 | 14.148 | 18.379
Metadata storage saving - 198.28%98.20%|97.90%|97.21%
Index overhead - 1.91% | 1.12% | 0.69% | 0.44%
File recipes (GB) 59.344 | 0.595 | 0.300 | 0.152 | 0.077
Key recipes (GB) 63.300 | 0.634 | 0.320 | 0.162 | 0.083
MS Fingerprint index (GB) 9.696 | 9.849 | 9.780 | 9.741 | 9.721
Metadata chunks (GB) - 32.376 | 34.933 | 37.462 | 39.934
Total metadata size (GB)|132.339| 43.454 | 45.332 | 47.518 | 49.814
Metadata storage saving - 172.60%|71.01% |69.20%|67.31%
Index overhead - 1.58% | 0.87% | 0.47% | 0.26%

If the attack is implemented serially, the total running
time is at least 7.94 x 102!Ls, which is more than 102°* years.
Even the attack can be implemented in parallel, it is compu-
tationally infeasible to work in reasonable time.

2 STORAGE EFFICIENCY OF METADATA DEDUPLI-
CATION

We study the metadata deduplication (MD) approach (see
Section 4.2 of the main file). Our goal is to show that MD
significantly suppresses the storage space of metadata, while
incurring limited indexing penalties. Note that MD does not
change the underlying data deduplication mechanism, and
we do not consider data storage saving here.

Experiment C.1 (Overall storage efficiency). We now eval-
uate the overall storage efficiency of MD. In addition to
FSL and VM, we include the MS dataset for cross-dataset
validation. Specifically, MS is collected by Microsoft [8], and
contains 857 Windows file system snapshots. We focus on
an average chunk size of 8 KB, and choose 143 snapshots,
whose sizes are between 100 GB and 110 GB. This dataset
takes 14.73 TB of data before deduplication.

Table 1 presents the simulation results of metadata
storage saving and index overhead after storing all back-
ups/snapshots, where raw denotes the original metadata size
without deduplication or compression.

For the FSL dataset, the metadata storage saving first
increases with the average segment size, because a larger
segment size (and hence larger metadata chunks) reduces the
metadata of metadata chunks. When the average segment
size is 2 MB, the FSL dataset achieves the highest metadata
storage saving of 97.55%. Then, the metadata storage saving
decreases (e.g., in the VM dataset) due to a small dedupli-
cation factor for large metadata chunks. Nevertheless, the
storage savings under all average segment sizes are higher
than 97%. In addition, the index overheads decrease with the
average segment size and are lower than 2%.

MD === ZC === PC SD == SP
o 100 o 100
S s 757
& R & 5 [aeosenveeennasnsea,
© © »
5 j g 2T
8 8 0F]]]]]
Q [
= 0 20 40 60 80 100 = 0 5 10 15 20 25
_ FSL Backups _ VM Backups
S 100 S 125
el e
§ 75f 8 1(7)2 "
g 50 I~ g 50 L
x B x 25
% 0 s g Y I . % 0 e L i I L
= 0 20 40 60 80 100 £ 0 5 10 15 20 25

FSL Backups VM Backups

Fig. 1: Comparison of MD with compression approaches on
metadata storage saving and index overhead.

The metadata storage saving of the MS dataset is lower
than that of the FSL and VM datasets. The reason is that
the MS dataset is likely to be snapshotted from different
machines, and has a smaller deduplication factor than the
backup workloads (e.g., FSL and VM) that are periodically
snapshotted from the same source. On the other hand, MD
achieves a medium metadata storage saving (e.g., at least
67%) for the generic MS workloads, while keeping index
overhead small (e.g., below 1.6%).

Experiment C.2 (Comparison of metadata storage). We fix
the average segment size of MD at 1 MB, and compare its
metadata storage saving and index overhead with those of
file recipe compression approaches [7]. We do not consider
other approaches for comparison, as they either require the
deduplication information of chunks [2], [4], [6], [10] that
leads to side-channel leakage in encrypted deduplication or
add additional metadata [5] and data [9], [11] overheads (see
Section 3 of the main file). We elaborate how we configure
the baseline compression approaches [7], followed by the
evaluation results.

o Zero compression (ZC) replaces the metadata of zero-filled
chunks by one-byte special codes, so as to reduce the sizes
of file recipe and key recipe.

e Page-based compression (PC) assumes the availability of
fingerprint index, and replaces the deduplication metadata
of each chunk by a codeword derived from its index offset.
We configure the length of each codeword at 4 bytes [7].

o Statistical directory (SD) encodes the deduplication meta-
data of low-entropy chunks by fixed-size codewords. Like
the prior work [7], we derive the entropy information from
the first backup, and allocate each codeword with 3 bytes.

o Statistical prediction (SP) exploits the locality of neighboring
chunks under the logical order. For each chunk, it stores
u codewords that are mapped from the deduplication
metadata of the most likely neighbors of this chunk. For
compression, it replaces the deduplication metadata of
these neighbors by corresponding codewords. Like the
prior work [7], we derive the neighboring information
from the first backup, and set u to 2.

Figure 1 shows the cumulative metadata storage savings
and index overheads of all considered approaches for the
FSL and VM datasets. The metadata storage savings of MD
significantly outperform those of baseline approaches. For

example, they finally achieve 97.46% and 98.20% for the FSL
and VM datasets, respectively. In the baseline approaches,
the savings of ZC are almost unchanged, such as 7.58-8.29%
for the FSL dataset and 52.14-52.74% for the VM dataset.
The savings of PC gradually increase during backup periods,
since some metadata in later backups have already been
encoded, and they finally achieve 41.51% and 41.71% for
the FSL and VM datasets, respectively. SD and SP only
have savings after the initial backups, since they need
to first extract the entropy and neighboring information,
respectively [7]. One special note is that SD even incurs
additional overheads of 16.11% and 0.42% for the initial
FSL and VM backups, respectively. The reason is that it
maintains a codeword index to map assigned codewords
back to the corresponding deduplication metadata [7]. Such
overhead can be covered in following backups, and SD finally
achieves the savings of 27.99% and 40.79% for the FSL and
VM datasets, respectively. The corresponding final savings
of SP also reach 35.20% and 40.81%, respectively.

In addition, we observe that MD, PC, and ZC incur
low index overheads, such as less than 3.33% in both
datasets, during the whole backup time. SD and SP incur
relatively high index overheads in initial backups, since they
need to store some fingerprint-to-codeword mappings in
the fingerprint index. For example, SP stores u mappings
in each fingerprint index entry to map the fingerprints
of some chunks that are most likely to come after the
corresponding chunk to short codewords; this leads to the
index overheads of 97.34% and 110.76% for the FSL and
VM datasets, respectively. Such overhead can be amortized
in following backups. The index overheads of SP finally
decrease to 55.35% and 8.04% for the FSL and VM datasets,
respectively, while those of SD drop down to 3.38% and
0.73%.

Experiment C.3 (Combined with compressions). We now
examine the effectiveness of combining MD with the baseline
compression approaches [7] to reduce the size of recipes. We
focus on two combined approaches: (i) MD + ZC and (ii)
MD + PC, which apply MD first and then use ZC and PC
to suppress the metadata of metadata chunks, respectively.
We do not consider other combination options as they either
incur high index overhead (e.g., combined with SP) or lead
to small storage savings (e.g., combined with SD). We fix the
average segment size of MD as 1 MB.

Table 2 presents the simulation results after storing all
backups, and we also include the results of MD only for
reference. By combining MD with ZC, we can further reduce
the sizes of both file recipe and key recipe, from 0.97 GB and
1.03GB to 0.92GB and 0.98 GB in the FSL dataset, as well as
from 0.60 GB and 0.64 GB to 0.29 GB and 0.31 GB in the VM
dataset, respectively. Such recipe reduction is more effective
(e.g., about 50%) for the VM dataset, as VM images include
large regions of zero chunks [3]. This only leads to negligible
storage savings of metadata, such as 0.02% and 0.11% for the
FSL and VM datasets, respectively. Similarly, the combination
of MD and PC brings few additional metadata storage
savings by about 0.22% for the FSL dataset and 0.09% for the
VM dataset.

Our results suggest that MD can only be marginally im-
proved by compression approaches, as compression cannot

3
TABLE 2: Combination of MD with compression approaches.

[Components/Metrics [FSL [VM |

File recipes (GB) 0.965 0.596
Key recipes (GB) 1.030 0.636
Fingerprint index (GB) 1.400 1.259

MD only | Metadata chunks (GB) 7.372 9.793
Total metadata size (GB) | 10.767 12.284
Storage saving 97.46% | 98.20%
Index overhead 1.07% 1.12%
File recipes (GB) 0.923 0.290
Key recipes (GB) 0.984 0.309
Fingerprint index (GB) 1.400 1.259

MD + ZC | e chumke (GB) 7372 | 9793
Total metadata size (GB) | 10.679 11.651
Metadata storage saving | 97.48% | 98.31%
Index overhead 1.07% 1.12%
File recipes (GB) 0.129 0.079
Key recipes (GB) 1.030 0.636
Fingerprint index (GB) 1.401 1.259

MD + PC | Metadata chunks (GB) 7.372 9.793
Decoding mapping (GB) 0.017 0.013
Total metadata size (GB) 9.949 11.780
Metadata storage saving | 97.68% | 98.29%
Index overhead 1.11% 2.17%

Note that PC needs to store page offsets in fingerprint index entries for
encoding, and maintain a reverse mapping for decoding [7].

apply to the physical metadata chunks that take more than
60% of overall metadata in MD (see Table 1). Thus, MD itself
sufficiently achieves high storage saving of metadata.

REFERENCES

[1] “Bearssl performance,” https:/ /bearssl.org/speed.html.

[2] D.R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving
duplicate elimination in storage systems,” ACM Transactions on
Storage, vol. 2, no. 4, pp. 424448, 2006.

[3] K. Jin and E. L. Miller, “The effectiveness of deduplication on
virtual machine disk images,” in Proc. of ACM SYSTOR, 2009.

[4] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams,” in Proc. of USENIX FAST,
2010.

[5] J.Li, X. Chen, M. Li, J. Li, P. P. C. Lee, and W. Lou, “Secure dedu-
plication with efficient and reliable convergent key management,”
IEEE Transactions on Parallel Distributed Systems, vol. 25, no. 6, pp.
1615-1625, 2014.

[6] G.Lu,Y.]Jin, and D. H. Du, “Frequency based chunking for data
de-duplication,” in Proc. of IEEE MASCOTS, 2010.

[7] D. Meister, A. Brinkmann, and T. Stifs, “File recipe compression in
data deduplication systems,” in Proc. of USENIX FAST, 2013.

[8] D.T. Meyer and W.]. Bolosky, “A study of practical deduplication,”
in Proc. of USENIX FAST, 2011.

[9] C.Qin,]. Li, and P. P. C. Lee, “The design and implementation of

a rekeying-aware encrypted deduplication storage system,” ACM

Transactions on Storage, vol. 13, no. 1, pp. 9:1-9:30, 2017.

B. Romanski, L. Heldt, W. Kilian, K. Lichota, and C. Dubnicki,

“Anchor-driven subchunk deduplication,” in Proc. of ACM SYSTOR,

2011.

[11] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and C. Lj,
“SecDep: A user-aware efficient fine-grained secure deduplication
scheme with multi-level key management,” in Proc. of IEEE MSST,
2015.

(10]

