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Abstract—Deduplication has been widely used to improve storage efficiency in modern primary and secondary storage systems, yet
how deduplication fundamentally affects storage system reliability remains debatable. This paper aims to analyze and compare storage
system reliability with and without deduplication in primary workloads using public file system snapshots from two research groups. We
first study the redundancy characteristics of the file system snapshots. We then propose a trace-driven, deduplication-aware simulation
framework to analyze data loss in both chunk and file levels due to sector errors and whole-disk failures. Compared to without
deduplication, our analysis shows that deduplication consistently reduces the damage of sector errors due to intra-file redundancy
elimination, but potentially increases the damages of whole-disk failures if the highly referenced chunks are not carefully placed on
disk. To improve reliability, we examine a deliberate copy technique that stores and repairs first the most referenced chunks in a small
dedicated physical area (e.g., 1% of the physical capacity), and demonstrate its effectiveness through our simulation framework.

Index Terms—deduplication, reliability, primary storage systems, experiments and implementation

F

1 INTRODUCTION

Modern storage systems adopt deduplication to achieve stor-
age savings, by referencing data copies with identical con-
tent to the same physical copy in order to eliminate storage
redundancy. Deduplication has been widely adopted in
secondary storage (e.g., backup and archival) [10], [23], [44];
recently, it has also been studied and deployed in primary
storage (e.g., file systems) [9], [11], [31], [40], [43]. Despite the
wide adoption, how deduplication affects storage system
reliability remains debatable when compared to without
deduplication. On one hand, deduplication mitigates the
possibility of data loss by reducing storage footprints (as-
suming that data loss events equally occur across the entire
disk space); on the other hand, it amplifies the severity of
each data loss event, which may corrupt multiple chunks or
files that share the same lost data.

A number of studies in the literature have addressed
deduplication storage reliability in different ways. For ex-
ample, some studies (e.g., [6], [10], [25]) add redundancy via
replication or erasure coding to post-deduplication data for
fault tolerance. Other studies (e.g., [20], [35], [36]) propose
quantitative methods to evaluate deduplication storage re-
liability. However, there remain two key open reliability
issues, which are further complicated by the data sharing
nature of deduplication.
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• Loss variations: Storage systems are susceptible to both
device failures and latent sector errors, yet they incur dif-
ferent amounts of data loss. Also, the impact of data loss
depends on how we define the granularities of storage
(e.g., a chunk or a file with multiple chunks). Thus, the
actual impact of data loss can vary substantially.

• Repair strategies: The importance of data in deduplica-
tion varies, as each data copy may be shared by a different
number of other copies. When a storage system expe-
riences failures, its repair strategies determine whether
important data copies are repaired first, and hence affect
reliability in different ways.

Our work is motivated by the importance of analyzing
and comparing storage system reliability with and without
deduplication. Traditional reliability analysis often uses the
Mean Time to Data Loss (MTTDL) metric to characterize
storage system reliability. MTTDL assumes independent
exponential distributions of failure and repair events, and
its closed-form solution can be obtained from Markov mod-
eling. Its popularity is mainly attributed to its simplicity of
modeling the reliability of a wide variety of system configu-
rations. On the other hand, some studies [12], [13], [17] have
shown that MTTDL is inaccurate for reliability analysis, due
to its over-simplistic assumptions in modeling the actual
failure nature of real-world storage systems. In deduplica-
tion storage, we conjecture that MTTDL is inappropriate for
its reliability analysis, due to the varying severity of data
loss. Thus, we advocate simulation for accurate reliability
analysis, at the expense of intensive computations [12].

In this paper, we conduct redundancy and reliability
analysis on primary storage deduplication, which is less
explored than secondary storage deduplication but has re-
ceived increasing attention. Specifically, we examine public
datasets of real-life file system snapshots collected by two
different research groups, including nine Mac OS or Linux
file system snapshots from the File system and Storage
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Lab (FSL) at Stony Brook University [2] and 903 Windows
file system snapshots from Microsoft [30]. We make the
following contributions.

First, we study the redundancy characteristics of the file
system snapshots from two aspects: the reference counts of
chunks and the redundancy sources of duplicate chunks.
We observe that most chunks are referenced only once or
twice, but there exist a few extremely popular chunks. Also,
intra-file redundancy, duplicate files, and similar files are the
major sources of duplicate chunks. Our redundancy study
provides insights into our following reliability analysis.

Second, we propose a trace-driven, deduplication-aware
simulation framework to analyze and compare storage sys-
tem reliability with and without deduplication. Specifically,
we start with a RAID disk array setting, and extend the
notion of NOrmalized Magnitude of Data Loss (NOMDL)
[17] to define new reliability metrics for deduplication stor-
age. Our simulation framework takes file system snapshots
as inputs, and performs Monte Carlo simulation to analyze
the loss impact in both chunk and file levels due to uncor-
rectable sector errors and unrecoverable disk failures. Our
reliability study enables us to identify any possible solution
to improve storage system reliability should deduplication
be deployed.

Third, we apply our simulation framework and show the
following key findings of our reliability analysis:
• Compared to without deduplication, deduplication does

not change the expected amounts of corrupted chunks
caused by uncorrectable sector errors, and it consistently
reduces the expected amounts of corrupted files due to
intra-file redundancy elimination. Thus, individual chunk
corruptions caused by uncorrectable sector errors do not
pose extra vulnerability concerns under deduplication.

• On the other hand, the impact of unrecoverable disk
failures is highly related to chunk fragmentation caused
by deduplication [22] and disk repair operations. If the
highly referenced chunks are neither carefully placed nor
preferentially repaired, the amounts of corrupted chunks
and files can significantly increase under deduplication.

• We observe that highly referenced chunks occupy a large
fraction of logical capacity, but only a small fraction
of physical capacity after deduplication. To reduce the
significance of unrecoverable disk failures, we explore a
deliberate copy technique that allocates a small dedicated
physical area (with only 1% of physical capacity) for the
most referenced chunks and first repairs the physical area
during RAID reconstruction. Our simulation results show
that the technique can significantly reduce the expected
amounts of corrupted chunks and files, while incurring
only limited storage overhead.

The source code of our simulation framework is avail-
able at http://adslab.cse.cuhk.edu.hk/software/simdedup.
The datasets that we use are publicly available and can be
verified with our simulation framework.

The rest of the paper proceeds as follows. Section 2
presents the background and related work. Section 3 de-
scribes the datasets for our simulation study. Section 4
analyzes the redundancy characteristics of the datasets.
Section 5 presents the design of our simulation framework.
Section 6 presents our simulation results of our reliability
analysis. Finally, Section 7 concludes the paper.

Logical view

Physical view
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Fig. 1. Logical and physical views of a deduplication system.

2 BACKGROUND AND RELATED WORK

2.1 Deduplication Basics
Deduplication is a technique that reduces storage space
by eliminating content redundancy. Practical deduplication
often operates at the granularity of non-overlapping data
units called chunks, each of which is identified by a finger-
print formed by the cryptographic hash (e.g., SHA-1) of the
chunk content. Deduplication treats two chunks with the
same (resp. different) fingerprint as duplicate (resp. unique)
chunks, and the probability of having two unique chunks
with the same fingerprint is practically negligible [33]. It
keeps only one copy of the chunk in storage, and refers
other duplicate chunks to the copy via small-size references.

Deduplication performs chunking to divide data into
fixed-size chunks or variable-size content-defined chunks.
Fixed-size chunking is mostly used for high computational
performance. On the other hand, variable-size chunking de-
fines chunk boundaries by content so as to be robust against
content shifts, and generally achieves higher deduplication
efficiency than fixed-size chunking. Variable-size chunking
can be implemented by Rabin Fingerprinting [34], which
computes a rolling hash over a sliding window of file data
and identifies boundaries whose rolling hashes match some
target pattern. To effectively remove duplicate chunks, the
average chunk size is typically on the order of kilobytes
(e.g., 8KB [44]).

A deduplication system keeps fingerprints of all stored
chunks in a key-value store called the fingerprint index. For
each input chunk, the system checks by fingerprint if a
duplicate chunk has been stored, and stores only unique
chunks. For each file, the system also stores a file recipe,
which lists the references to all chunks of the file for file
reconstruction.

In deduplication storage, we need to differentiate the
logical and physical views, which describe the storage orga-
nizations before and after deduplication, respectively. For
example, referring to Figure 1, the logical view shows three
files with a total of 12 chunks, while the physical view
shows only nine chunks that are actually stored. From a
reliability perspective, the logical and physical views of a
deduplication system have different implications of data
loss, which we aim to analyze in this work.

2.2 Related Work
Many measurement studies focus on characterizing the
storage efficiency of deduplication for both primary and
secondary storage environments. For example, Jin et al. [19]
and Jayaram et al. [18] show that deduplication effectively
reduces the storage of virtual machine disk images, even
with fixed-size chunking. Meyer et al. [30] analyze hundreds
of Windows file system snapshots at Microsoft, and show
that file-level deduplication can eliminate content redun-
dancy as effectively as chunk-level deduplication. Lu et al.
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TABLE 1
Statistics of file system snapshots in the FSL dataset.

Snapshot OS Date Raw Size (GB) # Files # Chunks Size Reduction (%)
Mac OS X 01/01/2013 224.55 1,486,819 28,162,208 33.8%
U11 Linux 01/12/2011 289.86 2,457,630 33,726,865 36.0%
U12 Linux 21/05/2013 251.01 44,129 26,407,044 64.6%
U14 Linux 19/04/2012 161.19 1,339,088 16,707,076 61.1%
U15 Linux 17/04/2013 202.10 310,282 23,280,718 49.6%
U20 Linux 15/12/2011 592.73 836,974 47,884,281 79.8%
U21 Linux 29/03/2012 140.50 63,451 14,291,544 56.7%
U24 Linux 20/12/2011 168.70 212,939 20,657,959 24.4%
U26 Linux 31/03/2014 154.24 88,050 16,435,825 33.3%

[26] propose different techniques on improving dedupli-
cation effectiveness in primary storage. Wallace et al. [42]
analyze over 10,000 EMC Data Domain backup systems,
and observe that deduplication is essential for achieving
high write throughput and scalability. Meister et al. [29]
analyze four HPC centers and observe that deduplication
can achieve 20-30% of storage savings. Sun et al. [41] focus
on individual user data over 2.5 years and analyze their
deduplication patterns.

In terms of storage system reliability, some measurement
studies investigate the failure patterns of disk-based storage
systems in production environments, such as whole-disk
failures [32], [38] and latent sector errors [4], [37]. On the
other hand, there are only limited studies on analyzing the
reliability of deduplication systems. Most studies propose
to improve reliability of deduplication systems through
controlled redundancy, either by replication [6] or erasure
coding [10], [20], [25], but they do not analyze the re-
liability affected by deduplication. Li et al. [20] propose
combinatorial analysis to evaluate the probability of data
loss of deduplication systems. Rozier et al. [35], [36] propose
automata-based frameworks to quantitatively evaluate the
reliability of deduplication systems under disk failures and
sector errors. Our work complements the above studies by:
(i) adopting more robust reliability metrics, (ii) focusing on
primary storage workloads, and (iii) comparing the impact
of loss variations and repair strategies on storage system
reliability with and without deduplication.

3 DATASETS

Our analysis focuses on primary storage deduplication, in
which we consider public real-world file system snapshots
collected by two different research groups. Both datasets
also correspond to different types of operating systems.
Due to privacy concerns, both datasets only contain chunk
fingerprints but not the chunk contents.

The first dataset, which we refer to as FSL, consists
of nine file system snapshots collected by the File system
and Storage Lab (FSL) at Stony Brook University [2]. The
original repository has hundreds of file system snapshots
that span three years, but our analysis focuses on the ones
whose sizes are sufficiently large for generating meaningful
statistical distributions. Specifically, we pick nine random
snapshots with raw size at least 100GB each. One of the
snapshots, denoted by Mac, is taken from a Mac OS X
server that hosts server applications (e.g., SMTP, Mailman,
HTTP, MySQL, etc.); the other eight snapshots, denoted by

U11–U26, are taken from different users’ home directories
with various types of files (e.g., documents, source code,
binaries, virtual disk images, etc.). Here, U11 refers to a
snapshot of user 011 in the FSL repository, and the same
meanings hold for other users’ snapshots. Each selected
snapshot lists the 48-bit truncated MD5 fingerprints and
the chunk sizes of all chunks, obtained from Rabin finger-
printing with the average, minimum, and maximum chunk
sizes configured as 8KB, 2KB, and 16KB, respectively. While
the short fingerprint length implies a high collision rate
that is inadequate for real deployment, the collision rate
remains small and suffices for analysis, as pointed out by the
dataset owners [41]. Table 1 summarizes the statistics of each
snapshot, including the snapshot name, OS, collection date,
raw data size before deduplication, number of files, number
of chunks, and percentage of reduction of storage size after
deduplication (a larger percentage implies deduplication is
more effective in terms of storage saving).

The second dataset, which we refer to as MS, is col-
lected at Microsoft [30] and publicized on SNIA [1]. The
original repository contains Windows file system snapshots
that span 8 weeks from September 5 to October 31, 2009.
Each file system snapshot includes system settings (e.g.,
hardware and software configurations), file metadata (e.g.,
timestamps, path, file name, file name extension, and at-
tribute flags), and the fingerprints of all chunks of different
chunk sizes obtained from Rabin fingerprinting. In our MS
dataset, we focus on a total of 903 file system snapshots that
are collected in a single week (the week of September 18,
2009) and configured with the average chunk size of 8KB.

Figure 2 shows the statistics of the file system snapshots
in the MS dataset, where the x-axis refers to each file system
snapshot sorted by the y-axis value in ascending order.
To summarize, the raw sizes of the snapshots range from
20.0KB to 689.7GB, among which 17.2% of them are of more
than 100GB (Figure 2(a)). The reductions of storage size after
deduplication have an average of 38.2% and range from
0% to 84.5%, among which 74.9% of them have 30-70%
of storage savings (Figure 2(b)). Also, 95% of file system
snapshots have fewer than 1.5 million files (Figure 2(c)) and
fewer than 30 million chunks (Figure 2(d)). The statistics are
fairly consistent with those of the FSL dataset.

In addition to studying individual file system snapshots,
we also consider the aggregates of multiple file system snap-
shots in the MS dataset. Motivated by [30], we introduce the
notion of a deduplication domain, which represents a set of
file system snapshots over which we perform deduplication,
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Fig. 2. Statistics of individual file system snapshots in the MS dataset (the x-axis is sorted by the y-axis values in ascending order).
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Fig. 3. Boxplots of different deduplication domain sizes in the MS dataset.

while the duplicate chunks across different deduplication
domains are considered to be unique. The deduplication
domain size specifies the number of file system snapshots
included in a deduplication domain. We mainly focus on
the deduplication domain sizes equal to one, two, four,
and eight; note that when the size is one, it is equivalent
to considering individual file system snapshots. When the
deduplication domain size is greater than one, instead of
enumerating all possible sets of file system snapshots, we
follow the approach in [30], in which we generate 10 random
deduplication domains for each deduplication domain size,
such that each deduplication domain includes a number
(given by the deduplication domain size) of file system
snapshots that are randomly selected from the dataset. Note
that the file system snapshots selected in each deduplication
domain may belong to the same or different users. As
reported in [30], the standard deviations for the measure-
ment results when using 10 random deduplication domains
are very small, so we do not consider more deduplication
domains in our following analysis. Figure 3 shows the box-
plots1 of our generated deduplication domains for different
domain sizes larger than one. In particular, the storage size
reduction after deduplication increases with the domain size
(see Figure 3(b)), for example, from 45.7% to 60.3% on aver-
age when the deduplication domain size increases from two
to eight. The reason is that more duplicate chunks are found
and deduplicated across multiple file system snapshots.

4 REDUNDANCY ANALYSIS

We analyze the redundancy characteristics of our datasets
under deduplication. Our goal is to provide insights into
our subsequent reliability analysis.

1. A boxplot shows the minimum, lower quartile, median, upper
quartile, maximum, as well as outliers, of collected samples. In our case,
when the deduplication domain size is one, the collected samples refer
to the 903 file system snapshots; when the deduplication domain size is
greater than one, the collected samples are the 10 randomly generated
deduplication domains.

4.1 Reference Counts

We first analyze the distributions of chunk reference counts,
based on our intuition that the importance of a chunk is
proportional to its reference count [35]. Figure 4 shows the
distributions of chunk reference counts in both FSL and MS
datasets; for the MS dataset, we only plot the results of 10 file
system snapshots with median raw sizes, ranging 44.69GB
to 45.81GB (see Figure 2(a)). We observe that both datasets
have similar distributions of chunk reference counts. First,
the majority of chunks have small reference counts. For
example, 56.5–86.9% and 30.6–82.1% of the chunks are refer-
enced by exactly once, while 79.7–96.7% and 61.8–95.3% of
the chunks are referenced by at most twice, in the FSL and
MS datasets, respectively. However, there exist a few highly
referenced chunks in both datasets. For example, in the FSL
dataset, the Mac snapshot has the maximum reference count
equal to 26,395, and U20 even has the maximum reference
count equal to 28,402,757. In the MS dataset, if we examine
all its 903 file system snapshots, we find that 79.6% of
them have the maximum reference count at least 3 million,
while one of them has the maximum reference count even
equal to 28,403,618. The implication is that losing the highly
referenced chunks may lead to severe loss of information as
well as high deviations in the reliability simulations.

4.2 Redundancy Sources

We now study the redundancy sources of duplicate chunks.
Specifically, for each input chunk, the deduplication process
checks if there exists a duplicate chunk that has already
been stored (called the source chunk). Here, we consider the
following six distinct types of source chunks:
• Intra-file redundancy (Intra): It means that both the input

chunk and the source chunk belong to the same file.
• Duplicate files (DupFile): It means that the input chunk

and the source chunk belong to different copies of files
with the same content.

• Min: It means that the input chunk and the source chunk
are stored in different files that share the same minimum
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Fig. 4. Distributions of chunk reference counts in both FSL and MS datasets.
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Fig. 5. Fractions of source chunks in both FSL and MS datasets.

chunk fingerprint. This implies that the two files are
similar and likely to share a large proportion of duplicate
chunks due to Broder’s theorem [5], [8].

• Max: It means that the input chunk and the source chunk
are stored in different files that do not belong to Min
but share the maximum chunk fingerprint. It provides an
additional indicator if the two files are similar.

• Suffix: It means that the input chunk and the source chunk
are stored in different files that do not belong to Min nor
Max but have the same extension. Again, it provides an
additional indicator if the two files are similar.

• Missed: It means that the input chunk and the source
chunk are stored in different files that do not belong to
any of the above types.

Figure 5 shows the fractions of source chunks over all
file system snapshots in both FSL and MS datasets. We make
the following observations for different types of redundancy
sources.

First, there are significant fractions of intra-file redun-
dancy, especially in the FSL dataset. All file system snap-
shots, except Mac, have at least 30% of source chunks from
intra-file redundancy; in particular, U20 has 88.6% of such
references. Thus, if we directly use the reference count to
quantify the reliability importance of a chunk, it may be
inaccurate as losing a highly referenced chunk does not nec-
essarily imply significant file corruptions. We also examine
the file types and find that virtual disk images and package
files are the major contributors to intra-file redundancy in
the FSL dataset. In the MS dataset, the median fractions
of references from intra-file redundancy are 11.9–17.9% for
different deduplication domain sizes, while the fraction can

go to almost 100% in some outlier file system snapshots.
Duplicate files are the most common redundancy source

in the MS dataset, and the results are consistent for different
deduplication domain sizes. This implies that whole-file
deduplication is effective, as also confirmed by Meyer et
al. [30]. According to [30], the most popular file extensions
of duplicate files are .dll, .lib, .pdb, empty suffix, .exe, etc.
Duplicate files are also common in the FSL dataset. For
example, Mac has 30% of references from duplicate files,
while U12 has even 49.8% of such references.

The fraction of source chunks of type Min is also high
in both FSL and MS datasets, implying that the minimum
fingerprints of files can be effectively used as the indicators
to find duplicate chunks across similar files [5], [8]. In the
FSL dataset, all file system snapshots, except U12 and U20,
have 5.7–61.0% of source chunks belonging to the Min type.
In the MS dataset, a median of 12.5% of source chunks
belong to the Min type when the deduplication domain size
is one, while the fractions are 3.1–38.0%, 2.2–27.6%, and 8.9–
15.7% when the deduplication domain sizes are two, four,
and eight, respectively.

We also check the fractions of source chunks that belong
to types Max or Suffix, both of which can provide additional
indicators whether duplicate chunks belong to similar files.
We observe that the effects are marginal. In the FSL dataset,
11.3–22.7% of source chunks belong to types Max or Suffix,
while in the MS datasets, the fraction of such source chunks
is less than 10% except for some outlier cases. In general, the
fraction of type Missed is less than 10% in both FSL and MS
datasets.

We further study the sizes of the files to which the source
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Fig. 6. Cumulative file size distributions of source chunks in both FSL and MS datasets (for the MS dataset, the deduplication domain size is one).

chunks belong. The file size distribution provides insights
into how many bytes of a file are affected in the loss of a
duplicate chunk. Figure 6 shows the cumulative file size
distributions of different types of source chunks in both
FSL and MS datasets (for the MS dataset, we only plot
the results for the deduplication domain size equal to one,
while the results are similar for the deduplication domain
size greater than one). First, intra-file redundancy generally
comes from large files, whose median file sizes are 757.8KB
and 1.1MB in the FSL and MS datasets, respectively. On
the other hand, duplicate files generally have small sizes,
whose median file sizes are 2.2KB and 4.5KB in the FSL
and MS datasets, respectively. Furthermore, the file sizes
for type Min and the remaining types Max, Suffix, and
Missed are similar, in which the median file sizes are 25.8KB
(27.6KB for the remaining types) and 84.6KB (89.0KB for the
remaining types) in the FSL and MS datasets, respectively.
They may belong to the same kind of files, but just fail in
the comparisons of minimum chunk fingerprints.

4.3 Summary
We summarize the key findings in our redundancy analysis:
• The majority of chunks in both FSL and MS datasets have

small reference counts, while a few of them have ex-
tremely large numbers of reference counts. Losing highly
reference chunks can imply the significant degradation of
chunk-level reliability.

• Intra-file redundancy, duplicate files, and similar files
sharing the same minimum chunk fingerprint are the
major sources of duplicate chunks. For file system snap-
shots in which intra-file redundancy is dominant, losing a
chunk may not necessarily imply the corruptions of many
files.

• In general, files with intra-file redundancy are of large
size, while duplicate files are of small size. The loss of a
duplicate chunk may imply different amounts of bytes of
a file being affected.

5 SIMULATION FRAMEWORK

In this section, we design a simulation framework which
analyzes and compares storage system reliability with and
without deduplication. Our simulation framework builds
on the High-Fidelity Reliability Simulator (HFRS) [16] and
specifically addresses deduplication.

Disk Model
Deduplication 

Model

RAID

…
Event Queue

Failure Repair

Event 
Injection

Data Loss 
Events

Fig. 7. Architecture of our simulation framework.

5.1 Architectural Overview

Figure 7 shows the architecture of our simulation frame-
work. The framework targets primary storage deduplication
for file system snapshots under a disk-based RAID setting.
Specifically, it takes a file system snapshot or an aggregate of
multiple file system snapshots (depending on the dedupli-
cation domain size), failure and repair distributions, and a
system mission time (e.g., 10 years) as inputs. The disk model
injects both failure events (including whole-disk failures and
latent sector errors) and repair events to the simulated RAID
array. Then the event queue sorts the failure and repair events
in chronological order, and keeps only the events that stay
within the system mission time. If a failure event incurs any
data loss, it will trigger a data loss event to the deduplication
model, which performs Monte Carlo simulation as in HFRS
to calculate and output a set of reliability metrics based on
the chunk-level and file-level data layouts of the input.

5.2 Design Assumptions

We make the following design assumptions in our simula-
tion framework.

Failure patterns: Due to lack of field data, we make two
assumptions in the failure patterns. First, we simulate only
independent failures, although recent work also reveals that
disk failures in the same RAID group are actually correlated
[27]. Also, we assume constant failure rates, although failure
rates actually change over age [12], [32], [38]. Nevertheless,
we focus on relative analysis that compares reliability with
and without deduplication, instead of quantifying absolute
reliability values. We expect that our assumptions suffice for
our purpose.

Metadata: Our analysis focuses on file data only, but ex-
cludes metadata, including file metadata (e.g., superblock,
inodes, namespace, etc.) and deduplication metadata (e.g.,
file recipes, fingerprint index, etc.). File metadata changes
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frequently and is unlikely to be deduplicated [24], so we
expect that the same amount of file metadata is stored after
deduplication. Thus, it makes no impact on our reliability
comparisons with and without deduplication.

On the other hand, deduplication metadata is critical
for the reliability of the whole system (e.g., the loss of
file recipes can compromise file reconstruction). Given the
critical nature, we assume that we apply extra protection for
deduplication metadata, such as increasing its redundancy
protection via replication or erasure coding, and exclude its
impact from our analysis. Nevertheless, we argue that dedu-
plication metadata incurs limited storage overhead based
on the analysis in [42], especially for primary storage dedu-
plication. Let f be the metadata size divided by average
chunk size, and D be the raw deduplication ratio of logical
to physical size (excluding metadata). Then the storage
overhead of deduplication metadata after deduplication is
f(1 + D). Suppose that f = 0.4% [42] and D ≤ 2 [40]
(the latter is derived in primary workloads). The storage
overhead is no more than 1.2%, which remains small and
has limited impact on our reliability comparisons.

Data layout: The data layout determines the loss and repair
patterns in our simulation. In this paper, we assume a log-
structured data layout, in which unique chunks after dedu-
plication are sequentially appended to the end of the last
write position. Note that log-structured data layout is also
used in deduplication for primary (e.g., [40]) and secondary
(e.g., [33]) storage. For the case without deduplication, the
log-structured data layout implies that all chunks (either
unique or duplicate) are sequentially stored, and hence both
logical and physical views are identical. Also, we do not
consider file-level fragmentation, which is not common [30].

5.3 Reliability Metrics

Given the limitations of traditional MTTDL (see Section 1),
we consider new reliability metrics for accurate characteri-
zation. We start with the reliability metric called NOrmal-
ized Magnitude of Data Loss (NOMDL) [17], which denotes
the expected amount of data loss in bytes normalized to the
storage capacity within the system mission time. NOMDL
is shown to be comparable [17], allowing us to compare
reliability with and without deduplication. In this work, we
extend NOMDL for deduplication.

Note that the different logical and physical views in
deduplication (see Section 2.1) imply different magnitudes
of data loss and hence reliability interpretations. For exam-
ple, losing an 8KB chunk that is referenced 10 times implies
80KB loss in the logical view as opposed to 8KB in the
physical view. In this work, our reliability analysis focuses
on the logical view, in which we measure the magnitude
of data loss in the logical view normalized to the logical
storage capacity. We believe that this reflects a more accu-
rate reliability characterization to user applications, which
perceive the logical view rather than the physical view.

Based on NOMDL, we define four normalized reliability
metrics: (1) expected number of corrupted chunks per TB,
(2) expected number of corrupted files per TB, (3) expected
size (in bytes) of corrupted chunks per TB, and (4) expected
size (in bytes) of corrupted files per TB. We say that a
chunk or file is corrupted if any of its byte is corrupted. The

TABLE 2
Parameters of our disk model.

η (in hours) β
Time-to-Failure 302,016 1.13
Time-to-Repair 22.7 1.65
Time-to-Scrub 186 1
Time-to-LSE 12,325 1

first two metrics are called non-weighted metrics, while the
other two are called weighted metrics to indicate the varying
impact of a lost chunk or file, depending on its size.

5.4 Disk Model
The disk model generates the failure and repair events
according to some specified distributions. We consider two
types of failures: whole-disk failures [32], [38] and latent sector
errors (LSE) [4], [37]. A whole-disk failure triggers a repair
operation, which uses the remaining operational disks to
reconstruct the data of the failed disk into a new disk. On the
other hand, an LSE indicates a corrupted sector that cannot
be recovered by the internal error correction codes (ECC).
It will not be detected until the affected sector is accessed.
Since modern disks employ periodic scrubbing operations
to proactively detect and correct LSEs [37], the disk model
is designed to generate scrubbing events as well.

In this paper, we choose the parameters based on the
near-line 1TB SATA Disk A model in [13], while the param-
eters of other disk models in [13] are also applicable and
only change the absolute output numbers. Table 2 shows
the parameters, all of which follow a Weibull distribution,
where η denotes the characteristic life and β denotes the
shape parameter (if β = 1, the distribution is exponential).

Our disk model generates two types of data loss events
due to failures: unrecoverable disk failures (UDFs) and uncor-
rectable sector errors (USEs). A UDF occurs when the number
of failed disks exceeds the repair capability (e.g., a double-
disk failure in RAID-5). Since multiple disks unlikely fail
at the same time, the amount of lost data depends on how
much data has been repaired in any earlier failed disk. For
example, in RAID-5, if another whole-disk failure occurs
while only 40% of the earlier failed disk has been repaired,
then 60% of its sectors are lost. In this case, we assume that
all the stripes (i.e., 60% of data in the disk array) associated
with the lost sectors are corrupted. On the other hand, a
USE occurs when the disk array is no longer fault-tolerant
(e.g., a single-disk failure in RAID-5) and an LSE appears
in a stripe (in any remaining operational disk) that has not
been repaired. For example, in RAID-5, if only 40% of the
earlier failed disk has been repaired, then an LSE becomes
a USE with a 60% probability. Here, we ignore the data loss
due to multiple simultaneous LSEs in the same stripe, since
the probability of its occurrence is very small [16].

We use RAID-6 (with double-disk fault tolerance) as an
example to explain the workflow of the disk model. Initially,
the disk model calculates the lifespan of each disk in RAID,
and pushes a whole-disk failure event of each disk to the
event queue (based on the Time-to-Failure distribution).
When the event queue pops a whole-disk failure event, the
disk model calculates the repair time needed to reconstruct
the failed disk (based on the Time-to-Repair distribution)
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and pushes a repair event at the end of the repair time to
the event queue. Once the event queue pops a repair event,
the disk model calculates the lifespan of the new disk and
pushes a new whole-disk failure event to the event queue.
If a popped event exceeds the system mission time, the
simulation stops.

When a whole-disk failure event is popped up, the
RAID-6 disk array is in one of the three cases: (1) all other
disks are operational, (2) there is an earlier failed disk under
repair, and (3) there are two earlier failed disks under repair.
For the first case, the disk array remains operational, and
no data is lost. For the second case, the disk array is no
longer fault tolerant, and any LSE would lead to data loss.
To derive the LSE rate, we first compute the duration of
the current scrubbing period (based on the Time-to-Scrub
distribution), and then calculate the number of LSEs within
this period (based on the Time-to-LSE distribution). If we
quantify the repair progress of the earlier failed disk Pr as
(tc − ts)/(te − ts), where tc is the current time, ts is the
start time of the repair operation (i.e., the time when the
whole-disk failure of the earlier failed disk occurs), and te
is the expected end time of the repair operation, then an
LSE becomes uncorrectable (i.e., a USE is triggered) with
probability 1 − Pr . Finally, for the third case, we trigger a
UDF, and a fraction of 1 − Pr stripes are lost (where Pr

is calculated as above). Due to the severity of a UDF, we
ignore the already observed USEs in the current iteration,
and proceed to the next iteration immediately.

5.5 Deduplication Model
The deduplication model computes the reliability metrics in
the logical view based on the failure and repair patterns in
the disk model that are actually defined in the physical view.
We consider two levels of reliability metrics: chunk level and
file level.

For a UDF, the magnitude of data loss depends on the
logical repair progress, which we quantify as the fraction of
repaired chunks or files in the logical view:

RL =
∑
i

|ci| × ri
CL

, (1)

where |ci| is the number (resp. size) of the i-th repaired
physical chunk or file, ri is the reference count for chunk
ci, and CL is the total number (resp. size) of chunks (or
files) in storage for the non-weighted (resp. weighted) case.
Since the RAID layer is generally unaware of deduplication
and cannot determine how data is shared and which chunks
(or files) should be repaired first to minimize the impact of
data loss. Thus, we consider two baseline repair strategies:
forward and backward, in which the RAID layer repairs a
failed disk from the beginning to the end of the log and from
the end to the beginning of the log, respectively. Since the
highly referenced chunks are more likely to appear near the
beginning of the log, we expect that forward repair restores
logical chunks at a faster rate than backward repair, and
hence return better reliability metrics in both chunk and
file levels. The two strategies hence serve as a better case
and a worse case, respectively. Note that when there is no
deduplication, both forward and backward repairs always
restore logical data at the same rate.

For a USE, we assume that it corrupts a single physical
sector that is uniformly selected from the entire disk space,
and hence the associated physical chunk (or file). The num-
ber of corrupted logical chunks (or files) is the correspond-
ing reference count. We expect that a larger chunk (or file) is
more likely to be corrupted as it occupies more sectors.

6 RESULTS

We now conduct reliability analysis via our simulation
framework to the datasets. We evaluate the impact on stor-
age reliability when deduplication is applied to individual
file system snapshots (in both FSL and MS datasets) and
deduplication domains with multiple file system snapshots
(in the MS dataset), compared to without deduplication.
Our analysis focuses on the most prevalent RAID-6 config-
uration, with 16 1TB disks and a 10-year system mission
time [13]. We run 1.025 trillion simulation iterations to
obtain enough loss events. Each iteration returns either the
magnitudes of data loss should UDFs or USEs happen,
or zero otherwise. We plot the average results over all
iterations and the relative errors with 95% confidence (some
results may have very small confidence intervals that are
invisible in the plots). In all iterations, we observe a total
of 1,389,250 UDFs and 332,993,652 USEs, or equivalently,
the probabilities that a system suffers from a UDF or a
USE are 1.36 × 10−6 and 3.25 × 10−4, respectively. Then
we compute the corresponding reliability metrics. To this
end, we make key observations from our analysis. We also
consider a deduplication strategy that improves reliability
at the expense of (slight) storage overhead.

6.1 Uncorrectable Sector Errors

As expected, USEs occur more frequently than UDFs. We
study the reliability due to USEs with deduplication (de-
noted by Dedup) and without deduplication (denoted by
NoDedup). Figures 8 and 9 show the results of different
reliability metrics in the FSL and MS datasets, respectively.

We first study the reliability in the FSL dataset (see Fig-
ure 8). Figure 8(a) shows the non-weighted chunk-level reli-
ability in the FSL dataset. We observe no notable difference
between Dedup and NoDedup, conforming to the conjecture
in [20]. An intuitive explanation is that while deduplication
reduces the probability of losing a physical chunk by some
factor due to space reduction, it also increases the number
of lost logical chunks by the same factor should a physical
chunk be lost. Most cases have small relative errors, except
U20. Our investigation is that a chunk in U20 is referenced
by over 28 million times (see Section 4.1), so each loss of the
chunk implies a high magnitude of loss and leads to a high
deviation.

Figure 8(b) shows the weighted chunk-level reliability
for the FSL dataset. We again observe that the reliability
results are similar in both Dedup and NoDedup.

Observation (1) – Deduplication will not significantly alter
the expected amounts of corrupted chunks by USEs when com-
pared to without deduplication.

Figure 8(c) shows the non-weighted file-level reliability
in the FSL dataset. We observe that Dedup reduces the
expected number of corrupted files per TB by up to 74.4%
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Fig. 8. Reliability due to uncorrectable sector errors in the FSL dataset.
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Fig. 9. Reliability due to uncorrectable sector errors in the MS dataset.

when compared to NoDedup. Our investigation is that intra-
file redundancy is prevalent in most snapshots, such that
the references of a shared chunk mostly come from a single
file. In particular, the virtual disk images and package files
are major contributors to intra-file redundancy. Thus, if a
highly referenced chunk is corrupted, it may only corrupt
a single file rather than multiple files. We also observe that
few snapshots have similar numbers of corrupted files in
both Dedup and NoDedup, mainly due to very limited intra-
file redundancy (e.g., Mac, as shown in Figure 5(a)).

Figure 8(d) shows the weighted file-level reliability in the
FSL dataset. Dedup again reduces the expected size of cor-
rupted files per TB by up to 99.7% when compared to NoD-
edup. Compared to non-weighted metrics, Dedup is more
effective in mitigating data loss in weighted metrics, mainly
because intra-file redundancy mostly comes from large files
(see Figure 6). To understand the intuition behind, we con-
sider a toy example. Suppose that we have two files, one
with 10 chunks and another with 90 chunks in the logical
views, and there are five duplicate chunks within one of the
files. Now we encounter a USE. If the five duplicate chunks
appear within the small file, the expected size of corrupted
files is 5/95 × 10 + 90/95 × 90 = 85.79 chunks; if the five
duplicate chunks appear within the large file, the expected
size of corrupted files is only 10/95×10+85/95×90 = 81.58
chunks. Thus, if intra-file redundancy is more likely to
occur in large files, the expected size of corrupted files also
decreases.

Observation (2) – In the presence of individual chunk
corruptions caused by USEs, deduplication decreases the expected
amounts of corrupted files, mainly because of the intra-file redun-
dancy found in individual snapshots.

Note that some existing work (e.g., [25]) applies addi-
tional replicas or more reliable erasure codes to highly ref-
erenced chunks to protect against individual chunk corrup-
tions. Our findings suggest that this kind of failures is not a
major threat to reliability in primary storage deduplication.

We now study the reliability in the MS dataset (see
Figure 9). We find that the results are mostly consistent with

those in the FSL dataset. Figures 9(a) and 9(b) show both
non-weighted and weighted chunk-level reliability results
in the MS dataset, respectively. We find that the reliability
results are similar in both Dedup and NoDedup, regardless of
the deduplication domain size.

Figure 9(c) shows the non-weighted file-level reliability
in the MS dataset. In most cases, Dedup reduces the expected
number of corrupted files per TB by up to 55.9% when
compared to NoDedup. However, there exist some cases
in which Dedup has more expected number of corrupted
files than NoDedup. In those cases, the fraction of DupFile
accounts for more than 80%. Thus, losing a chunk may
lead to many files being corrupted when deduplication is
applied, while in NoDedup, only one file is corrupted.

Figure 9(d) shows the weighted file-level reliability in
the MS dataset. Similar to the FSL dataset, deduplication
can reduce more expected bytes of corrupted files in the MS
dataset, since the likelihood of losing a chunk is lowered by
space savings.

Observation (3) – Both FSL and MS datasets show con-
sistent reliability results due to USEs. The reliability results are
also similar across different deduplication domain sizes in the MS
datasets.

6.2 Unrecoverable Disk Failures
We now study the impact of UDFs. We first show how
the logical repair progress is related to the physical repair
progress, and identify potential problems. We further com-
pare storage system reliability with and without deduplica-
tion under UDFs (i.e., Dedup and NoDedup, respectively).

6.2.1 Logical Repair Progress
Figure 10 shows the forward and backward repair strategies
(see Section 5.5). Here, we only focus on the analysis in the
FSL dataset in the interest of space. The X-axis represents
the physical repair progress in 1% granularity, while the Y-
axis represents the relative logical repair progress. Given a
physical repair progress, we apply Equation (1) to calculate
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Fig. 10. The relative logical repair progress versus the physical repair progress under deduplication in the FSL dataset. We consider two repair
strategies: forward repair (figures (a)-(c)) and backward repair (figures (d)-(f)).

the logical repair progress for both NoDedup and Dedup,
denoted by Ln and Ld, respectively. We then calculate the
relative logical repair progress defined as Ld − Ln, which
specifies the amounts of logical chunks or files that have
been repaired under Dedup relative to those under NoD-
edup. If it is positive (resp. negative), it means that Dedup
improves (resp. degrades) the repair speed when compared
to NoDedup. Note that if we have repaired 0% or 100% of
physical chunks, the relative logical repair progress is zero.

Figures 10(a) and 10(d) show the weighted chunk-level
reliability for the forward and backward repair strategies,
respectively; the non-weighted results are similar and hence
omitted. In forward repair, we observe positive results in
most snapshots except U15, which shows slightly negative
results. On the other hand, backward repair is exactly op-
posite, in which deduplication degrades the logical repair
progress in most snapshots. The results are expected, since
the highly referenced chunks are mainly appear at the log
beginning, and repairing them first in forward repair can
help the logical repair progress. We expect that deduplica-
tion can exacerbate UDFs in the chunk level if the highly ref-
erenced chunks are not carefully placed and preferentially
repaired.

Figures 10(b) and 10(e) show the non-weighted file-level
reliability for the forward and backward repair strategies,
respectively. The results are similar to the chunk-level ones,
such that forward repair shows positive results in most
snapshots while backward repair shows the opposite. Since
the non-weighted metric is only related to the number of
repaired files rather than the file size and the majority of
files have small sizes in each snapshot (as confirmed by
[41]), the non-weighted metric actually reflects the repair
progress of small files. We observe that small files tend
to be completely deduplicated with other files rather than
partially deduplicated. Hence, the results are related to the

locations of duplicate small files. For example, forward
repair makes positive logical repair progress in U11 and
U14, mainly because a small file is copied by 561 times in
U11 and a number of small files are copied by 8 times in U14,
both of which happen near the log beginning. On the other
hand, forward repair makes negative logical repair progress
in U15 and U21 (around the middle of the physical repair
progress), mainly because there are a number of duplicate
small files that appear closer to the log end than the log
beginning.

Figures 10(c) and 10(f) show the weighted file-level re-
liability for the forward and repair strategies, respectively.
We see that in backward repair, all snapshots show signif-
icantly negative results. The reason is that large files are
dominant in the weighted metric, and large files tend to
be partially deduplicated with other files rather than com-
pletely duplicated. Sharing chunks among large files lead to
significant chunk fragmentation [22], meaning that the chunks
of individual files are scattered across storage rather than
sequentially stored. Thus, restoring more chunks does not
necessarily imply that the large files are completely restored
(i.e., a large size of data is still considered to be corrupted),
since some chunks may be deduplicated with the chunks of
other files that are not yet restored. We expect that chunk
fragmentation caused by deduplication can significantly
exacerbate UDFs in weighted file-level metric.

Observation (4) – The logical repair progress is affected by
the placement of highly referenced chunks and the severity of
chunk fragmentation.

6.2.2 Chunk-Level and File-Level Reliability
We now compare the impact of UDFs with and with-
out deduplication. Figures 11 and 12 show the results of
different reliability metrics in the FSL and MS datasets,
respectively. Since the non-weighted and weighted chunk-
level results are very similar, we only show the weighted
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Fig. 11. Reliability due to unrecoverable disk failures in the FSL dataset.

chunk-level reliability (see Figures 11(a) and 12(a)). In the
FSL dataset, we consider both forward and backward repair
strategies, while in the MS dataset, we assume that only for-
ward repair is used. Note that DCTDedup shows the results
of the deliberate copy technique, which will be discussed in
Section 6.2.3).

Figure 11(a) shows the weighted chunk-level reliabil-
ity in the FSL dataset. In NoDedup, we see no difference
between the forward and backward repair strategies, and
UDFs will corrupt 495,880 bytes of chunks in the 10-year
mission time. In forward repair, Dedup reduces the expected
amounts of corrupted chunks caused by UDFs in most snap-
shots. The exception is U15, in which Dedup increases the ex-
pected bytes of corrupted chunks by 22.3%. Figure 10(a) ex-
plains the reasons. For example, in U15, Dedup degrades the
logical repair progresses as some highly referenced chunks
unfortunately appear closer to the log end (as confirmed by
Figures 10(b) and 10(e)). In backward repair, deduplication
degrades reliability in most snapshots, as highly referenced
chunks likely appear in the log beginning.

Figure 12(a) shows the weighted chunk-level reliability
in the MS dataset. In general, Dedup reduces the expected
amount of corrupted chunks in most snapshots, and has
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Fig. 12. Reliability due to unrecoverable disk failures in the MS dataset.

higher reliability than NoDedup when the deduplication do-
main size is greater than one. However, there remain some
exceptional individual file system snapshots (where the
deduplication domain size is one) in which Dedup has lower
reliability than NoDedup, since highly referenced chunks are
stored closer to the log end.

Thus, while the log-structured layout is an ideal assump-
tion, the highly referenced chunks can actually appear in
any physical location in practice, especially when involving
chunk migration in garbage collection [7]. Since RAID is
unaware of deduplication semantic, there is no guarantee
that the highly referenced chunks would be repaired by
forward repair preferentially in the presence of a UDF. As a
consequence, deduplication potentially exacerbates UDFs.

Observation (5) – If we do not carefully place highly ref-
erenced chunks and repair them preferentially, deduplication can
lead to more corrupted chunks in the presence of UDFs.

We now study the impact of UDFs in the file level.
Figure 11(b) shows the non-weighted file-level reliability
in the FSL dataset. In NoDedup, the expected number of
corrupted files caused by UDFs varies in different snap-
shots, due to the varying distributions of the numbers of
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files and their sizes. On average, UDFs corrupt 1.6 files
in forward repair and 1.9 in backward repair. Similar to
chunk-level results, Dedup on average reduces the expected
number of corrupted files by 14.6% in forward repair, but
increases the number by 18.3% in backward repair. This
is related to the locations of popular duplicate small files,
which more possibly appear at the beginning of the log.
For example, some popular duplicate small files appear at
the beginning of the logs of U11 and U14, and hence we
observe significantly positive results in the forward case but
negative results in the backward case. Figure 12(b) shows
the non-weighted file-level reliability in the MS dataset. We
see that Dedup generally reduces the expected number of
corrupted files regardless of the deduplication domain size,
when compared to NoDedup.

Figure 11(c) shows the weighted file-level reliability in
the FSL dataset. Dedup generally achieves reliability com-
parable to NoDedup in forward repair, but significantly
degrades reliability in backward repair (124.6% more bytes
in corrupted files). Figure 10(e) explains the reason. Due
to deduplication, the log end generally has a higher de-
gree of chunk fragmentation than the log beginning. The
repaired fragmented chunks cannot help completely restore
large files, making the logical repair progress slow based
on the weighted metric. Figure 12(c) shows the weighted
file-level reliability in the MS dataset. The median amount
of expected bytes of corrupted files in Dedup is generally
lower than that in NoDedup when forward repair is used
for different deduplication domain sizes. However, for some
cases when the deduplication domain size is one, Dedup has
a larger amount of expected bytes of corrupted files than
NoDedup. The reason is that duplicate files are the dominant
in MS (see Section 4.2), that only one chunk in duplicate files
is not repaired timely leads to the duplicate files corrupted.

Deduplication systems are naturally more fragmented
than non-deduplication systems. How to reduce the chunk
fragmentation to improve read performance has been a
hot topic [14], [21], [22]. Our observation shows that the
chunk fragmentation also potentially exacerbates UDFs in
terms of the file-level weighted metric. To improve reliabil-
ity, a defragmentation algorithm to aggregate similar files
(the files sharing many chunks) into continuous physical
addresses is required, such as the inline defragmentation
algorithms proposed by previous work [14], [22] and offline
defragmentation tools (e.g., e4defrag in ext4 file system
[28]). We plan to consider these issues as our future work.

Observation (6) – Deduplication is significantly more vul-
nerable to UDFs in terms of the file-level metrics if popular small
files and chunk fragmentation are not carefully handled.

6.2.3 Deliberate Copy Technique

In order to reduce the negative impacts of UDFs, we propose
the deliberate copy technique (DCT). Our observation is that
the highly referenced chunks only account for a small frac-
tion of physical capacity after deduplication, and the chunk
reference counts show a long-tailed distribution based on
our investigation. Hence, it is possible to allocate a small
dedicated physical area in RAID for storing extra copies of
highly referenced chunks, and always preferentially repair
the physical area during RAID reconstruction.
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Fig. 13. Ratio of the expected amounts of corrupted chunks/files of DCT
to that of Dedup for each reliability metric in the MS dataset when the
deduplication domain size is one. A ratio smaller than one means DCT
has better reliability than DCT, or vice versa.

We implement DCT in our simulation framework to
show its effectiveness. Specifically, we allocate the first 1%
of physical sectors for the highly referenced chunks (we
explain the impact of the dedicated area size later in the
discussion). In each snapshot, we sort the chunks by their
reference counts, and fill the dedicated sectors with the top-
1% most highly referenced chunks. While these chunks only
occupy 1% of physical capacity, they account for 6%–50%
of logical capacity and incur moderate storage overhead.
Since the deliberate copies can be made offline, no change is
required to the regular read/write path.

We revisit the reliability results in Figures 11 and 12.
In addition, Figure 13 compares the reliability of DCT and
Dedup in the MS dataset when the deduplication domain
size is one, by computing the ratio of the expected amounts
of corrupted chunks or files of DCT to that of Dedup in
each file system snapshot for each reliability metric; a ratio
smaller than one means DCT has better reliability than
Dedup, or vice versa. We make the following observations.

First, we consider the weighted chunk-level reliability in
both FSL and MS datasets as shown in Figures 11(a) and
12(a), respectively, where the reliability results of DCT is
denoted by DCTDedup). In the FSL dataset, DCT reduces
the expected bytes of corrupted chunks by 7.1% and 40.6%
on average compared to Dedup in forward and backward
repairs, respectively. In the MS dataset, DCT reduces the
expected bytes of corrupted chunks by 8.0%, 7.1%, 11.6%,
and 14.3% on average compared to Dedup for the dedu-
plication domain size equal to one, two, four, and eight,
respectively. Furthermore, compared to NoDedup, DCT is
less vulnerable in general. From Figure 13, we see that
DCT always outperforms Dedup in the weighted chunk-
level reliability (where the ratio is always less than one).

Observation (7) – By allocating a small dedicated physical
area for storing highly referenced chunks, we can reduce the
expected amounts of corrupted chunks by UDFs in both FSL and
MS datasets.

We study the effectiveness of DCT in file-level met-
rics. We revisit the non-weighted file-level reliability in
the FSL and MS datasets as shown in Figures 11(b) and
12(b), respectively. In the FSL dataset, DCT on average
reduces the expected number of corrupted files by 5.6%
and 21.1% in forward and backward repairs compared to
Dedup, respectively. As a result, DCT helps Dedup achieve
20.1% and 11.3% higher reliability than NoDedup in forward
and backward repairs, respectively. In the MS dataset, DCT
reduces the expected number of corrupted files on average
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8.2%, 7.6%, 8.4%, and 19.3% for deduplication domain sizes
equal to one, two, four, and eight, respectively.

We also revisit the weighted file-level reliability in the
FSL and MS datasets as shown in Figures 11(c) and 12(c),
respectively. In the FSL dataset, DCT on average incurs
1.5% less expected bytes in corrupted files than NoDedup
in forward repair. On the other hand, in backward repair,
DCT on average reduces 20.3% of bytes in corrupted files in
Dedup, but still on average achieves 79.9% worse reliability
than NoDedup because DCT cannot completely solve the
chunk fragmentation problem. On the other hand, in the MS
dataset, DCT on average has 2.0%, 15.3%, 1.6% and 19.7%
less expected bytes in corrupted files than NoDedup for the
deduplication domain size equal to one, two, four, and
eight, respectively. In particular, we do not see significant
improvement of DCT over NoDedup in the MS dataset when
the deduplication domain size is one (i.e., when individual
file system snapshots are considered).

Note that in the FSL dataset, DCT may have worse file-
level reliability than Dedup (e.g., Mac in Figure 11(c)). We
make similar observations for the MS dataset in Figure 13, in
which DCT generally has better reliability than Dedup in the
file-level metrics for the individual file system snapshots,
yet there are exceptional cases where DCT may have worse
reliability.

In general, increasing the dedicated area size allows
more highly referenced chunks to be repaired first and
hence improves reliability of Dedup (at the expense of larger
storage overhead). On the other hand, having a very large
dedicated area may eventually store some non-highly ref-
erenced chunks that are repaired first, in which case we
do not see improved reliability in DCT. Choosing the right
dedicated area size depends on the storage workload and is
an open issue.

Observation (8) – DCT in general reduces the expected
amounts of corrupted files remarkably in both FSL and MS
datasets, but it remains necessary to address chunk fragmentation
to further improve reliability in the weighted file-level metric.

7 CONCLUSIONS

This paper presents an in-depth study of the storage system
reliability in primary storage deduplication. Our study is
based on public real-world file system snapshots from two
different groups, i.e., FSL and Microsoft. First, we study
the redundancy characteristics of file system snapshots, re-
garding their reference count distributions and redundancy
sources. We observe that there exist a few highly referenced
chunks, and that intra-file redundancy, duplicate files, and
similar files are the major sources of duplicate chunks.
Then we propose a simulation framework and appropriate
reliability metrics to compare storage system reliability with
and without deduplication in the face of Uncorrectable Sec-
tor Errors (USEs) and Unrecoverable Disk Failures (UDFs).
Regarding to USEs that cause individual chunk corruptions,
we observe that deduplication does not alter the expected
amounts of corrupted chunks, and remarkably reduces the
expected amounts of corrupted files due to intra-file redun-
dancy elimination. Regarding to UDFs that corrupt large
areas of continuous physical chunks, deduplication leads
to more corrupted chunks and files due to the unguarded

chunk placement and chunk fragmentation. We propose
a deliberate copy technique to allocate a small dedicated
physical area in RAID for highly referenced chunks and
preferentially repair the area during RAID reconstruction.
We show that the deliberate copy technique significantly
reduces the expected amounts of corrupted chunks and files.

In future work, we plan to study the deduplication reli-
ability on (NAND-based) solid-state storage devices (SSDs).
SSDs have inherently different I/O characteristics from
harddisks, such as out-of-place updates and limited write
endurance [3], Also, the flash error rates of SSDs increase
with program/erase cycles [39]. How deduplication affects
storage reliability on SSDs needs further investigation.
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