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1 PROOF OF THEOREM 1 IN §3.1 OF THE

MAIN PAPER

Based on the definition of error ǫl, we have

ǫl = ||π̂((l + 1)sT )− π̃((l + 1)sT )||1. (1)

Note that π̃((l + 1)sT ) and π̂((l + 1)sT ) are computed
by Equation (11) and Equation (12) in §3.1 of the main
paper, respectively. So we can rewrite error ǫl as follows.
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n

l − π̃(lsT )e−Λ̃lsT eΛ̃lsT P̃
n

l

−π̂(lsT )
∑∞

n=Ul+1
e−Λ̃lsT

(Λ̃lsT )
n

n!
P̃

n

l ||1

Now, we can bound the error ǫl as follows.

ǫl ≤ ||π̂(lsT )− π̃(lsT )||1e
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The last equation comes from the fact that ||P̃ l||∞ = 1 as

P̃ l = I + Q̃
l

Λ̃l

, and ǫl−1 = ||π̂(lsT )− π̃(lsT )||1. Therefore,

we have the results stated in Theorem 1.

2 PROOF OF THEOREM 2 IN §3.2 OF THE

MAIN PAPER

Note that the error rate of one stripe is a monotonically
increasing function of system age k in each interval as we
stated in §3.2 of the main paper. Therefore, considering
the s time periods in each interval, error rate in the first
period must be the smallest, and that in the last time
period is the largest.

Note that as shown in Figure 1, if error rate increases,
then the rate of the transition from a state with small
state number to a state with big state number increases,
i.e., qi,i+1(k) increases, while the rate of opposite tran-
sitions, i.e., qi,i−1(k), keeps unchanged. Moreover, when
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Fig. 1: State transition of the non-homogeneous CTMC.

state number i increases, the transition rate to state S+1,
i.e., qi,s+1(k), also increases. Therefore, if error rate gets
increased, then the system will transit to the state of data
loss with higher chance.

Therefore, if the error rate in each of the s time periods
in each interval is set as the one in the first time period,
i.e., let Q̃l = Qls, then the RAID reliability must be
overestimated. Correspondingly, if we let Q̃l = Qls+s−1,
then the RAID reliability must be underestimated. Math-
ematically, if we denote R(t) as the accurate solution,
and denote R1(t) and R2(t) as the solutions in the cases
where Q̃l = Qls+s−1 and Q̃l = Qls respectively, then we
have R1(t) ≤ R(t) ≤ R2(t) as shown in the theorem.

3 PROOF OF COROLLARY 1 IN §3.2 OF THE

MAIN PAPER

As stated before, for each interval (lsT, (l + 1)sT ), error
rate in the s consecutive time periods is monotone
increasing. Therefore, for any generator matrix Q̃l which
is a linear combination of Qk (ls≤k≤ ls+s−1), we have

qi,i+1(ls) ≤ q̃i,i+1 ≤ qi,i+1(ls+ s− 1), i = 0, 1 · · ·S − 1,

qi,S+1(ls) ≤ q̃i,S+1 ≤ qi,S+1(ls+ s− 1), i = 1, 2 · · ·S.

Again, based on the arguments stated before, the relia-
bility in the case of using generator matrix Q̃l must be
smaller than that in the case of Qls, while higher than
that in the case of Qls+s−1. Therefore, the approximation

error of reliability by using Q̃l =
∑ls+s−1

k=ls ckQk must be
smaller than or equal to R2(t)−R1(t).
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(a) 3+1 RAID
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(b) 5+1 RAID
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(c) 7+1 RAID

Fig. 2: Model validation with respect to different values of N (c = 0.2× 10−6 and α = 2).
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(a) Linear error rate (α = 2)

0 0.8 1.6 2.4 3.2
0

0.2

0.4

0.6

0.8

1

System Age (in 10
4
)

R
e
li
a
b

il
it

y

 

 

DiskSim

Upper Bound

Lower Bound

Diff−RAID

RAID−5

(b) Convex error rate (α = 3)
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(c) Concave error rate (α = 1.5)

Fig. 3: Model validation with respect to different values of α (N = 3).
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(a) M = 100, c = 0.5× 10
−6
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(b) M = 200, c = 0.25× 10
−6
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(c) M = 300, c = 0.1667× 10
−6

Fig. 4: Model validation with respect to different values of M (N = 3, α = 2, and cαMα−1 is fixed).

4 MODEL VALIDATION WITH RESPECT TO PA-
RAMETERS N , α AND M

In §4.1 of the main paper, we validate our model under
different error rates by varying the parameter c. To
complement our work, we also validate our model by
varying the parameters N , α and M . The corresponding
parameters are set as follows.

• We validate our model for different system sizes by
varying N . We fix c = 0.2 × 10−6 and α = 2. We
consider three cases where N = 3, 5, and 7.

• We validate our model for different error rate func-
tions by varying α, which determines the change
of error rates with respect to the system age. In
particular, we consider three cases where α = 2, 3,

and 1.5, which correspond to the linear error rate,
convex error rate, and concave error rate, respectively.
We fix the system size by setting N = 3. To set
the parameter c, note that the maximum error rate
in a RAID system may reach (N + 1)ScαMα−1.
To compare the reliability dynamics under different
types of error rates, we fix the maximum error rate
instead of the parameter c. In particular, we set
c = 0.5 × 10−6 when α = 2, so the maximum
error rate is (N + 1)ScαMα−1 = 2.048. By fixing
the maximum error rate, the corresponding values
of c when α = 3 and α = 1.5 can be easily derived,
which are 3.333×10−9 and 6.667×10−6, respectively.

• We further validate our model for different values of
M . We fix N = 3, α = 2, and vary M from 100, 200
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(a) Error dominant case (c = 0.73× 10
−17)
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(b) Comparable case (c = 0.267× 10
−17)
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(c) Recovery dominant case (c=0.667×10−18)

Fig. 5: Reliability dynamics of SSD arrays (Convex error rate with α = 3).
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(a) Error dominant case (c = 0.147× 10
−10)
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(b) Comparable case (c = 0.533× 10
−11)
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(c) Recovery dominant case (c=0.133×10−11)

Fig. 6: Reliability dynamics of SSD arrays (Concave error rate with α = 1.5).

to 300. To compare the reliability dynamics under
different values of M , we fix the maximum error
rate cαMα−1. We set c = 0.5× 10−6 when M = 100,
so the maximum error rate is cαMα−1 = 10−4. By
fixing the maximum error rate, the corresponding
values of c when M = 200 and M = 300 can be
easily derived, which are 0.25 × 10−6 and 0.1667 ×
10−6, respectively.

Figures 2, 3 and Figures 4 show the reliability results
obtained from the model and simulation for different
values of N , α, and M , respectively. The horizontal axis
represents the array age, which denotes the number of
erasures performed on the array, and the vertical axis
shows the reliability, which denotes the probability of
no data loss until the array age reaches at the point
indicated by the x-axis. Note that we show the reliability
dynamics of a RAID array until all drives wear out
once, (i.e., until (N + 1)BM erasures are performed on
the array), so the range of x-axis depends on the array
size N . In particular, Each figure corresponds to one
parameter setting, and we show the reliability of both
RAID-5 and Diff-RAID. We plot the upper bound and the
lower bound obtained from our model, as well as the re-
sults with the reliability obtained from the simulator. We
observe that the model and simulation results are very
close in all cases with different parameters. Thus, our
model accurately characterizes the reliability dynamics

of SSD RAID arrays.

5 NUMERICAL ANALYSIS ON RELIABILITY DY-
NAMICS WITH NON-LINEAR ERROR RATE

In §5.2 of the main paper, we study the reliability dynam-
ics of SSD RAID under linear error rate. Here, we show
the reliability dynamics in the case of non-linear error
rates. We set α = 3 and α = 1.5, which correspond to
the convex and concave error rates, respectively. Other
parameters are set according to the description in §5.1
of the main paper. Figures 5 and 6 show the results.
We observe similar reliability dynamics as in the case of
the linear error rate (see §5.2 of the main paper). More-
over, even for the same maximum error rate, reliability
dynamics of SSD RAID system vary a lot for different
types of error rates (e.g., linear, convex, and concave).
This further shows the importance of capturing the time-
varying feature of error rate in SSDs.


