
1

Boosting Degraded Reads in Heterogeneous
Erasure-Coded Storage Systems

Yunfeng Zhu, Jian Lin, Patrick P. C. Lee, and Yinlong Xu

Abstract—Distributed storage systems provide large-scale data storage services, yet they are confronted with frequent node failures.

To ensure data availability, a storage system often introduces data redundancy via replication or erasure coding. As erasure coding

incurs significantly less redundancy overhead than replication under the same fault tolerance, it has been increasingly adopted in large-

scale storage systems. In erasure-coded storage systems, degraded reads to temporarily unavailable data are very common, and hence

boosting the performance of degraded reads becomes important. One challenge is that storage nodes tend to be heterogeneous with

different storage capacities and I/O bandwidths. To this end, we propose FastDR, a system that addresses node heterogeneity and

exploits I/O parallelism, so as to boost the performance of degraded reads to temporarily unavailable data. FastDR incorporates a

greedy algorithm that seeks to reduce the data transfer cost of reading surviving data for degraded reads, while allowing the search

of the efficient degraded read solution to be completed in a timely manner. We implement a FastDR prototype, and conduct extensive

evaluation through simulation studies as well as testbed experiments on a Hadoop cluster with 10 storage nodes. We demonstrate that

our FastDR achieves efficient degraded reads compared to existing approaches.

Keywords—Erasure-coded storage system, degraded reads, node heterogeneity, I/O parallelism

✦

1 INTRODUCTION

Distributed storage systems, such as GFS [11] and Azure
[5], have been widely adopted in enterprises to pro-
vide large-scale storage services. However, component
failures are frequent and diverse in large-scale storage
systems [10], [11], [17], [29]. To ensure data availability,
storage systems usually stripe data redundancy across
multiple storage nodes (or servers). Replication is tra-
ditionally used to provide data redundancy [5], [11],
yet it introduces high storage overhead and becomes a
scalability bottleneck. On the other hand, erasure coding
provides space-optimal data redundancy while achiev-
ing the same fault tolerance as replication [35]. It oper-
ates by encoding data into multiple fragments, such that
any subset of fragments can sufficiently reconstruct the
original data. Erasure coding has been widely deployed
and evaluated in large-scale storage systems by both
commercial and academic communities (e.g., [1], [3],
[17], [19], [20], [24], [28], [29]).

Practical storage systems may experience two types
of node failures: permanent and temporary. A node is
permanently failed if it loses all its stored data. To pre-
serve the required redundancy level and maintain data
availability, a storage system performs failure recovery,
which reconstructs all the lost data in another new node.
Permanent failure recovery has always been important
as shown in previous studies [16], [19], [33], [37], [41],

• Y. Zhu and Y. Xu are with AnHui Province Key Laboratory of High Per-
formance Computing, School of Computer Science and Technology, Uni-
versity of Science & Technology of China (emails: zyfl@mail.ustc.edu.cn,
ylxu@ustc.edu.cn)

• J. Lin and P. P. C. Lee are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong (emails: linjiansuper@gmail.com, pclee@cse.cuhk.edu.hk)

[42]. On the other hand, a node is temporarily failed
if its stored data is not lost but is only temporarily
unavailable for direct accesses. To access the unavailable
data, a storage system performs a degraded read, which
retrieves data from surviving nodes and reconstructs the
unavailable data. It is expected that degraded reads are
slower than normal reads. Field measurements show
that temporary failures contribute to the majority of
component failures in large-scale storage systems [10].
Thus, degraded reads are more frequently performed
than failure recovery operations, and their performance
optimizations are critical.

One challenge of optimizing degraded reads, as op-
posed to failure recovery, is that a read request often
works under a more stringent latency constraint than
a recovery operation. Furthermore, degraded read opti-
mizations must take into account the underlying config-
uration of the storage system. Due to system upgrades
and scaling, distributed storage systems are typically
composed of nodes with heterogeneous storage capaci-
ties and I/O speeds [21]–[23], [40]. Also, files are usually
distributed over multiple storage nodes and accessed
in parallel. Thus, the degraded read performance is in-
evitably bottlenecked by the poorly performed surviving
nodes. On condition that data blocks in the degraded
read requests are correctly reconstructed, it is necessary
for degraded reads to account for both node hetero-
geneity and I/O parallelism, so that the performance of
degraded reads is boosted.

This paper studies how to boost degraded reads
in large-scale heterogeneous erasure-coded storage sys-
tems. We first formulate an optimization problem of
boosting degraded reads, in which we associate each
storage node with a cost of reading per unit of data and

2

propose a model that minimizes the parallel degraded
read time. We then propose an enumerated greedy (EG)
algorithm to quickly search for an efficient solution for
degraded reads. We emphasize that the EG algorithm
addresses both node heterogeneity and I/O parallelism.
Our simulations show that the EG algorithm signifi-
cantly reduces the degraded read time compared to the
baseline approach, while only introducing small compu-
tational overhead.

To validate the feasibility of deploying the EG algo-
rithm in practical storage systems, we built a prototype
system called FastDR on HDFS-RAID [14], an erasure
coding extension to the Hadoop Distributed File Sys-
tem (HDFS) [30]. FastDR enhances the performance for
degraded reads in heterogeneous erasure-coded storage
systems through two major components: (1) using disk-
oriented reconstruction (DOR) [15] to optimize the de-
graded read work flow and parallelize the read op-
eration, and (2) using the EG algorithm to determine
which blocks to be downloaded from surviving nodes,
so as to efficiently fulfill degraded read requests in
heterogeneous erasure-coded storage systems. We de-
ploy FastDR in a HDFS cluster testbed composed of 10
heterogeneous storage nodes. Through extensive testbed
experiments, we validate the improvement of FastDR
over the baseline approach. We also show that our
FastDR improves the performance of MapReduce [7] in
HDFS in the presence of failures.

The remainder of the paper proceeds as follows.
Section 2 elaborates the requirements to be considered
for boosting degraded reads. Section 3 formulates the
problem of degraded reads and proposes an enumerated
greedy algorithm for degraded reads. Section 4 presents
the design details of FastDR. Section 5 presents results of
simulations and testbed experiments of FastDR. Section 6
reviews the related work, and finally, Section 7 concludes
the paper.

2 DESIGN REQUIREMENTS

Reads on transient failed nodes are degraded, as the un-
available data needs to be reconstructed from other sur-
viving nodes. Our goal is to enable low-latency degraded
reads in practical erasure-coded storage systems in the
presence of transient node failures, which are commonly
found in real-life storage systems [10]. Specifically, we
seek to address the following requirements when we
design efficient degraded read solutions.

Range accesses: The key objective for permanent fail-
ure recovery is to read data from surviving nodes to
reconstruct the lost data on a new replacement node.
However, degraded reads are different in that a de-
graded read request typically accesses a range of data
units that span not only the unavailable data units on
the temporarily failed nodes, but also the available data
units on the surviving nodes. To realize a degraded read,
it is necessary to read the available data units and extra
data units to reconstruct the unavailable data units from
the surviving nodes.

Node heterogeneity: Storage systems are often up-
graded over time, and thus storage nodes may be com-
posed of heterogeneous hardware resources, such as
disks and network interfaces with different bandwidths
[40]. On the other hand, the available resources of each
storage node may vary from time to time due to dy-
namic load conditions. Since degraded reads usually
use the available data from multiple surviving nodes to
reconstruct the unavailable data, the resulting degraded
read performance may be bottlenecked by the poorly
performed surviving nodes.

Parallel accesses: To further boost the degraded read
performance, the degraded read solution should lever-
age I/O parallelism, which has become an essential
property of modern storage systems. Contiguous blocks
are striped across different nodes so that a sequential
read request can be parallelized. Previous studies (e.g.,
[16], [33]) also exploit parallel I/Os in failure recovery. A
challenge is to extend the parallelism in degraded reads
subject to range accesses and node heterogeneity.

Online decision: The degraded read performance is
determined by the read size and node resources, both
of which are variable factors depending on the current
load conditions. Thus, the degraded read solution must
be determined online for each read request based on its
read size and the available node resources. In particular,
it is infeasible to enumerate on-the-fly the degraded read
solutions for all possible failures as in [19], but instead
we need to find an efficient degraded read solution in a
timely manner.

Applicability to general erasure codes: Authors of
[17], [19] propose new erasure codes which achieve
efficient degraded read performance. However, a storage
system has typically deployed a specific erasure code
for its stored data, and re-encoding a huge amount
of stored data with a new code will introduce signifi-
cant overheads. Also, different types of data are to be
differently encoded based on the fault tolerance and
access requirements [1]. Thus, instead of constructing
new codes, we aim to develop efficient degraded read
strategies that are applicable to a general class of existing
erasure codes.

3 ENUMERATED GREEDY ALGORITHM

In this section, we propose the enumerated greedy (EG)
algorithm for degraded reads in erasure-coded storage
systems, so as to efficiently reconstruct lost data in
heterogeneous settings. We focus on a special family of
erasure codes called XOR-based erasure codes, in which
both encoding and decoding involve XOR operations
only. We first formulate the problem of degraded reads
for XOR-based erasure codes, and then propose an
optimization model for degraded reads that accounts
for node heterogeneity and I/O parallelism. We further
present our EG algorithm that can return an efficient
degraded read solution within a reasonable search time.
Table 1 summarizes the major notation used throughout
this paper.

3

TABLE 1

Major notation used throughout this paper.

Symbol Description

n number of storage nodes
k number of data nodes
m number of parity nodes
w number of blocks per strip
l number of blocks in a degraded request
f number of the failed data nodes
d number of surviving nodes connected for realiz-

ing degraded read requests (k ≤ d ≤ n− f)
ci time cost for reading one block from Node i (0 ≤

i ≤ n− 1)
xu,v indicator variable of reading the v-th block in a

stripe to reconstruct the u-th block in the read
request (0 ≤ u ≤ l, 0 ≤ v ≤ nw − 1)

D0

D1

D2

D3

C0

C1

C2

C3

D0

D1

D2

D3

0

Encoding Matrix NodesData Stripe

Data

Parity

1

2

3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 1

Fig. 1. Example of how a stripe is encoded for (k,m,w) =
(2, 2, 2).

3.1 Problem Formulation

We consider an erasure-coded storage system is com-
posed of n storage nodes with k data nodes and m
parity nodes (i.e., n = k + m). We assume that the
system can tolerate any m out of n node failures while
maintaining storage optimality, and we call this property
the Maximum Distance Separable (MDS) property. We focus
on the systematic erasure codes, such that the data nodes
contain the original data. The storage system is parti-
tioned into stripes. Each stripe contains nw blocks, where
w data (parity) blocks are stored in each data (parity)
node. Suppose that the j-th block in Node i within a
stripe is labeled as the v-th block in the stripe, where
v = w × i + j, 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ w − 1.
In other words, we have 0 ≤ v ≤ nw − 1. Each parity
block is encoded from the data blocks of the same
stripe, by multiplying a wn × wk encoding matrix with
a column vector of wk data blocks. We denote the above
mentioned erasure code as (k, m, w). Figure 1 shows an
example of a (2,2,2) erasure code based on Cauchy Reed-
Solomon (CRS) codes [4]. Each stripe is independently
encoded, so our analysis focuses on a single stripe [27],
[32]. Note that the identities of data and parity nodes
are usually rotated across stripes in the implementation
of storage systems for load balancing.

Since each read request is issued to data nodes, we
assume that failures appear in some of the k data nodes.
Without loss of generality, let nodes 0, 1, · · · , k−1 be data
nodes, and nodes k, k + 1, · · · , n − 1 be parity nodes.

D0

D1

D2

D3

D2

D3

C0

C1

Encoding Sub-Matrix Data Data/Parity

0 10 0

0 0

1

0

0

0 1

0

101

1

(a) Extract the encoding sub-matrix for Node 1 and Node 2
from the encoding matrix

D0

D1

D2

D3

Data Decoding Sub-Matrix

D2

D3

C0

C1

Data/Parity

1 0 0

1

0

0010

00

0

1

01

1

(b) Compute the corresponding decoding sub-matrix for
Node 1 and Node 2

Fig. 2. An example of encoding sub-matrix and decoding

sub-matrix.

Suppose now that a read request accesses a collection
of data blocks on some data nodes, some of which are
failed. Let f be the number of failed nodes. We require
that f ≤ m, so that the failures are tolerable. Then the
read request becomes degraded, as it needs to read the
data blocks and parity blocks from other surviving nodes
in order to reconstruct the lost data blocks.

Any erasure code can be defined by an encoding
matrix [27], [32], from which we give the following
definitions.

Definition 1: An encoding sub-matrix is a square ma-
trix extracted from the encoding matrix, and indicates
exactly how data/parity blocks from the selected k out
of n nodes are encoded from the original kw data blocks.
�

In fact, any k out of n storage nodes correspond to
exactly one encoding sub-matrix. Take CRS codes in
Figure 1 as an example. Figure 2(a) shows the encoding
sub-matrix extracted for Node 1 and Node 2, and indicates
how data/parity blocks D2, D3, C0, and C1 are encoded
from blocks D0, D1, D2, and D3.

Definition 2: A decoding sub-matrix is the inverse ma-
trix computed from an encoding sub-matrix, and indi-
cates how data blocks can be decoded by data/parity
blocks from the selected k storage nodes. �

Due to the MDS property, each encoding sub-matrix is
invertible. Through computing its inverse matrix, we can
get the corresponding decoding sub-matrix. Figure 2(b)
shows the decoding sub-matrix of the encoding sub-
matrix in Figure 2(a), and indicates how data blocks D0,
D1, D2, and D3 can be decoded from data/parity blocks
D2, D3, C0, and C1.

Definition 3: Given a decoding sub-matrix, each data
block can be represented by the XOR-sum of a set of data
and parity blocks, which is called a combined degraded read
equation (CDRE). �

In fact, each row in a decoding sub-matrix corresponds

4

to a CDRE. For example, from the decoding sub-matrix
shown in Figure 2(b), we get four CDREs:

D0 = D2 ⊕ C0,

D1 = D3 ⊕ C1,

D2 = D2,

D3 = D3.

(1)

When some nodes fail, the decoding sub-matrices
should be generated from surviving storage nodes. For
example, when Node 0 fails in Figure 1, Node 1 and
Node 2 can be used to generate a decoding sub-matrix.
The above four CDREs are hence adopted for realizing
a degraded read request. Suppose that we read data
blocks D0 (a lost block) and D2 (a normal block). The
degraded read request can be fulfilled with the following
two CDREs:

D0 = D2 ⊕ C0,

D2 = D2.
(2)

It will read two blocks {D2, C0}. In later discussion,
we show how we use CDREs to search for an efficient
degraded read solution.

3.2 Optimization Model

We now formalize the optimization problem for solving
for a degraded read request in a heterogeneous environ-
ment. Let xu,v (where 0 ≤ u ≤ l − 1, 0 ≤ v ≤ nw − 1)
be the indicator variable such that xu,v = 1 if the v-th
block in the stripe is read to reconstruct the u-th block in
the request, and xu,v = 0 otherwise. We also introduce a
download distribution yi to denote the number of blocks
being read from Node i so as to realize a degraded read
request, where 0 ≤ i ≤ n− 1. It can be computed as:

yi =
∑w−1

j=0

∨l−1

u=0
xu,w×i+j . (3)

where
∨

denotes the OR operator, and
∨l−1

u=0
xu,w×i+j =

1 if xu,w×i+j = 1 for some u. The term
∨l−1

u=0
xu,w×i+j

determines whether the j-th block from Node i should
be read for realizing a degraded read request.

We require that all xu,v’s be chosen such that all data
blocks in the degraded read request can be correctly
reconstructed. In addition, we associate Node i (0 ≤
i ≤ n − 1) with a time cost ci of reading a block from
Node i. Based on cost ci (0 ≤ i ≤ n − 1), we select a
set D of d (k ≤ d ≤ n − f) surviving nodes to realize
a degraded read request. That is, if the degraded read
request reads data from the surviving node Node i, then
we say i ∈ D. Furthermore, we take into account I/O
parallelism, and issue degraded reads to the surviving
nodes in parallel. Let T be the time needed to download
the necessary blocks from the slowest storage node to
respond to the read request. With I/O parallelism, the
value of T determines the degraded read performance.
Our goal is to minimize T by carefully choosing xu,v’s.

We formulate the optimization problem with respect to
xu,v’s as follows:

Minimize T = max
i∈D

{ciyi}

= max
i∈D

{

ci
∑w−1

j=0

∨l−1

u=0
xu,w×i+j

}

.
(4)

Our optimization model assumes that the read time of
each node is proportional to the number of blocks being
read, and that the I/O seek time is ignored. Thus, we
treat the sequential reads and random reads to the same
number of blocks as having the same read time. We
argue that if the block size is sufficiently large, the I/O
seek overhead can be mitigated.

3.3 Solving the Model

To solve the heterogeneous model for degraded reads,
we can adopt the basic approach, which builds on the
MDS property. Its idea is to download the data and
parity blocks from exactly k nodes, such that the down-
loaded blocks can be used to reconstruct the lost blocks
correctly. In the case of single failure recovery, we as-
sume that the basic approach reads the blocks from other
k − 1 surviving data nodes and the first parity node.

Recent studies [19], [37], [41] on failure recovery
mainly aim to find the decoding equations that have
maximum possible overlapping of blocks with each
other. In other words, these approaches can be applied to
degraded reads so as to minimize the number of blocks
downloaded to fulfill the degraded requests. In fact,
Khan et al. [19] show that the degraded read solution
with the minimized download blocks performs roughly
the same to the basic approach. Therefore, we only
consider the basic approach in this paper as the baseline.

We illustrate via an example the basic approach. Con-
sider the storage system in Figure 1. Let α (in units of
Mb) be the size of one block. Figure 3 shows a hetero-
geneous environment for the storage system. Suppose
that we make a read request to blocks D0 and D2 in
the storage system. Then the basic approach finds its de-
graded read solution composed of two CDREs, as shown
in Equation (2). It will read two blocks {D2, C0}, and
hence has a degraded read time of max{α/38, α/113} =
0.0263α (in sec).

To find an optimal degraded read solution to Equa-
tion (4), one can use the enumeration approach [19], which
selects an optimal collection of l decoding equations, each
of which corresponds to a subset of blocks in the stripe
such that a lost block can be recovered from the re-
maining blocks in the same subset. There are a total
of 2nw − 1 decoding equations, and the enumeration
approach needs to check

(

2
nw

−1

l

)

combinations of l de-
coding equations. Traversing the entire search space is
computationally expensive. Even for the simple example
in the above paragraph, the search space is of size up
to 32,385. Although search space can be pruned [19],
the search time remains huge and violates our online
decision requirement.

5

Node 0

110Mbps 113Mbps38Mbps 109Mbps

Node 1 Node 2 Node 3

Fig. 3. Example of a single-node failure in heterogeneous

storage environments.

D0

D1

D2

D3

C0

C1

C2

C3

Encoding Sub-Matrix Data Data/Parity

1 10 0

0 0

0

0

0

1 1

1

111

1

(a) Extract the encoding sub-matrix for Node 2 and Node 3
from the encoding matrix

D0

D1

D2

D3

Data Decoding Sub-Matrix

C0

C1

C2

C3

Data/Parity

1 1 1

1

1

1111

11

1

0

00

0

(b) Compute the corresponding decoding sub-matrix for
Node 2 and Node 3

Fig. 4. An example of how to fulfill the degraded read

request, bypassing surviving nodes with lower bandwidth.

We now consider an alternative approach that pro-
vides an efficient degraded read solution based on the
CDREs. Our motivation is that in a heterogeneous stor-
age environment, it is more preferred for a degraded
read request to read blocks from surviving nodes with
higher bandwidth. Suppose that a degraded read request
reads blocks from the top d (k ≤ d ≤ n − f) surviving
nodes with the highest bandwidth, where d is a config-
urable parameter. Our goal is to read the set of blocks
from the d surviving nodes such that the degraded read
time T is minimized.

We illustrate the idea via an example. We still consider
the erasure code in Figure 1, and suppose that we read
blocks D0 and D2. Obviously, Node 1 is a bottlenecked
node that should be bypassed. Thus, we can set d = 2,
and choose blocks from Node 2 and Node 3 to fulfill the
degraded read request. Figure 4(a) shows the encoding
sub-matrix, which indicates how blocks in Node 2 and
Node 3 are encoded from data blocks according to the
encoding matrix in Figure 1. Through computing its
inverse matrix, we show in Figure 4(b) how data blocks
D0 and D2 can be decoded from blocks in Node 2 and
Node 3. Thus, the degraded read request can be fulfilled

with a group of two CDREs as follows:

D0 = C0 ⊕ C1 ⊕ C3,

D2 = C1 ⊕ C3.
(5)

It will read three blocks {C0, C1, C3}. The degraded read
time is max{2α/113, α/109} = 0.0177α (in sec), which
reduces the degraded read time of the basic approach
by 32.70%.

Given a (k, m, w) erasure code (where n = k + m),
suppose that storage system has f failed nodes, and we
set d ≤ n − f . From any k out of d surviving nodes,
we can obtain a decoding sub-matrix due to the MDS
property. Thus, there exist a total of

(

d

k

)

CDREs for each
data block in a stripe. To realize a degraded read request
with l (where 0 ≤ l ≤ kw−1) data blocks, it is necessary
to reconstruct l blocks with a group of l CDREs. The

size of the solution space is
(

d

k

)l
. Our goal is to find a

degraded read solution that minimizes the total time of
reading blocks from surviving nodes in a heterogeneous
environment as described in Equation (4).

3.4 Enumerated Greedy (EG) Algorithm

As there are up to
(

d

k

)l
possible solutions to realize the

degraded read request, it would be time-consuming to
check all solutions to find the optimal solution. In this
subsection, we propose an enumerated greedy (EG) algo-
rithm, whose goal is to find an efficient degraded read
solution (denoted by R) that has near-optimal parallel
degraded read time T , while being able to return the
solution in a timely manner.

We define the notation for our EC algorithm. Consider
a storage system that deploys an erasure code (k, m,
w). Let F be the set of all failed nodes, and C be the
vector that denotes the costs of all nodes and can be
dynamically obtained based on the current system loads.
Let L be the set of l data blocks to be read. Let D be the
set of d surviving nodes from which we read the data
and parity blocks to realize the degraded read request.

Functions: Our EG algorithm is built on six functions.

• BOTTLENECKNODES(C, F , d): Given a cost vector C
and a collection F of the failed nodes, the function
returns a set D of d surviving nodes with the lowest
costs.

• INVERSEMATRIX(E, I, D): Given an encoding matrix
E, a bitmap I which identifies the selected k out of
d surviving nodes in D, the function extracts the
encoding sub-matrix for the k surviving nodes and
returns the corresponding decoding sub-matrix.

• EXTRACTDRS(D, L): Given a decoding sub-matrix
D and a set L of data blocks in a degraded read
request, the function returns a set of l CDREs for
the data blocks in L.

• NEXTBITMAP(d, I): The function generates all op-
tions of bitmaps in lexicographic order, each con-
taining k 1-bits and d − k 0-bits to identify k out
of d surviving nodes. It returns the next bitmap in
order, or NULL if all bitmaps are enumerated.

6

• DEGRADEDREADTIME(X , C): The function computes
the degraded read time for the CDRE X using
Equation (4).

• REDUCEREADTIME(R, i, C, X): The function sub-
stitutes the i-th CDRE in R with the CDRE X ,
and then gets a new degraded read solution R′.
Based on Equation (4), it then computes the parallel
degraded read times of R and R′. Finally, it returns
the reduction of degraded read time of R′ over R
(a negative value means R has a smaller value of
degraded read time).

Algorithm details: Figure 5 shows the EG algorithm. We
first initialize the set D of d nodes with the lowest costs
using the function BOTTLENECKNODES (Step 1). We also
initialize the bitmap I with k 1-bits followed by d − k
0-bits (Step 3).

Given k surviving nodes, in Steps 5-15, we calculate
the minimal degraded read time for each block (recorded
in an array E) in the degraded read request L. We traverse
all possible choices of k surviving nodes, each of which
will return a set of l CDREs for L using functions
INVERSEMATRIX and EXTRACTDRS (Steps 6-7). We then
compute the degraded read time for each CDRE using
function DEGRADEDREADTIME (Step 9) and update the
degraded read time if it is smaller than the current
degraded read time (Steps 10-12). We repeat the above
steps with other k surviving nodes via selecting the next
bitmap I using the function NEXTBITMAP (Step 14).

We further re-traverse all possible choices of k sur-
viving nodes, so as to find the efficient degraded read
solution R for L (Steps 19-37). For each choice of k nodes,
we extract l CDREs (Steps 20-21). We only consider the
CDRE with the minimal degraded read time (Steps 25-
33). For the first CDRE we consider, we use it to ini-
tialize the degraded read solution R (Steps 25-27). After
that, we identify whether the CDRE with the minimal
degraded read time can reduce the whole degraded read
time of R using the function REDUCEREADTIME, and
then update the degraded read solution R if it can do
so (Steps 29-32). We repeat the process until all possible
choices of k surviving nodes are traversed.

Algorithm complexity: The while-loop of Steps 5-15
takes O(

(

d

k

)

) time, and Steps 8-13 repeats the for-loop for

l times. Also, the while-loop of Steps 19-37 takes O(
(

d

k

)

)
time, and Steps 22-35 repeat the for-loop for l times.
Therefore, the total time complexity of the EG algorithm
is O(

(

d

k

)

l) = O(
(

d

d−k

)

l), where d − k is smaller than
m (the number of tolerable failures). Through adjusting
the parameter d, we can limit the search complexity of
our EG algorithm. Our experimental results show that
the EG algorithm can significantly improve degraded
read performance within a reasonable time delay (see
Section 5.1).

4 FASTDR DESIGN

We evaluate the EG algorithm in a real network setting.
We design and implement FastDR, a system that realizes

Algorithm: EG(l, d, C, F , L)

Input:
l: size of a degraded request
d: configured number of surviving nodes
C: set of costs of storage nodes
F : set of failed nodes
L: set of blocks in a degraded read request

Output:
R: efficient solution for the degraded read request

1: Initialize D = BOTTLENECKNODES(C, F , d)
2: Initialize E with l MAX VALUE
3: Initialize I with k 1-bits followed by (d−k) 0-bits
4: /* Traverse all collections of k surviving nodes */
5: while I 6= NULL do
6: D = INVERSEMATRIX(E, I, D)
7: X = EXTRACTDRS(D, L)
8: for 0 ≤ i < l do
9: T = DEGRADEDREADTIME(X [i], C)

10: if T < E [i] then
11: E [i] = T
12: end if
13: end for
14: I = NEXTBITMAP(d, I)
15: end while
16: f = true
17: Initialize I with k 1-bits followed by (d−k) 0-bits
18: /* Re-traverse all collections of k surviving nodes */
19: while I 6= NULL do
20: D = INVERSEMATRIX(E, I, D)
21: X = EXTRACTDRS(D, L)
22: for 0 ≤ i < l do
23: T = DEGRADEDREADTIME(X [i], C)
24: if T == E [i] then
25: if f == true then
26: R[i] = X [i]
27: f = false
28: else
29: T ′ = REUDCEREADTIME(R, i, C, X [i])
30: if T ′ > 0 then
31: R[i] = X [i]
32: end if
33: end if
34: end if
35: end for
36: I = NEXTBITMAP(d, I)
37: end while
38: Return R

Fig. 5. The enumerated greedy (EG) algorithm.

the EG algorithm and is deployable on HDFS-RAID [14],
an erasure-coded extension of Hadoop Distributed File
System (HDFS) [30]. We first give an overview of HDFS-
RAID. We then present how we design FastDR and
integrate it into HDFS-RAID. Finally, we describe the
implementation details of FastDR.

4.1 Overview of HDFS-RAID

HDFS-RAID [14] extends HDFS [30] with the feature
of storing data using erasure coding, so as to reduce
the storage overhead while preserving data availability.
HDFS is a distributed file system designed for han-
dling large-scale datasets with commodity hardware. It
is composed of a single NameNode for metadata manage-

7

ment and multiple DataNodes for data storage. DataN-
odes periodically report their status to the NameNode
through heartbeat messages. An HDFS client interacts
with NameNode and DataNodes to complete read/write
operations. Specifically, for a read request, the client first
obtains the locations of target data from the NameNode,
and then downloads the data from the corresponding
DataNodes. For a write request, the client first asks the
NameNode for the DataNode where the data will be
stored, and then directly sends the data to the target
DataNode.

HDFS stores data in units of blocks. By default, HDFS
achieves fault tolerance via replication, and stores three
copies for each block. HDFS-RAID augments HDFS by
grouping blocks into stripes and converting redundant
replicas into erasure-coded blocks. HDFS-RAID runs on
HDFS, and leverages HDFS for the read/write opera-
tions. In addition, it adds a RaidNode to support the
conversion of replicas to erasure-coded data. HDFS-
RAID also supports degraded reads, i.e., when a client
wants to read an unavailable block, it downloads the
necessary data and parity blocks from other surviving
nodes and reconstructs the unavailable data blocks.

4.2 Design Components

Figure 6 shows the architecture of FastDR. FastDR relies
on HDFS to handle write requests and HDFS-RAID to
handle striping and recovery. During degraded reads,
FastDR parses the current conditions of DataNodes and
then determines the blocks to be downloaded from the
surviving DataNodes. FastDR has three components: (i)
Cost Measurement Module, which generates a cost vector
between the client and DataNodes for degraded reads,
(ii) Failure Detector, which determines whether the client
needs to perform degraded reads, and (iii) Degraded Read
Handler, which decides the blocks to read to fulfill the
degraded read request.

The FastDR client handles read requests and can work
in two different modes depending on the system status.
For a read request, the FastDR client first passes it to
the Failure Detector, which monitors the existence of
any failed DataNode. If there is no failure detected,
the FastDR client works in normal mode. The requested
data is then directly read from corresponding DataNodes
and passed to the client. If there is any related failure
detected, the FastDR client will enter degraded read mode.
The Degraded Read Component will handle this request
and do any necessary reconstruction based on the cost
vector generated by the Cost Measurement Module. In
both normal and degraded read modes, the FastDR client
downloads data from DataNodes with node oriented par-
allelism, whose idea is similar to disk-oriented recon-
struction in RAID [16]. Specifically, it creates multiple
threads that run in parallel. Each thread is associated
with a DataNode, and downloads and decodes data from
the associated DataNode.

In the following, we provide design and implementa-
tion details for the three main components of FastDR.

Request Failure
Detector

Read
Threads

 Failure
Detected

No Failure

NameNode NameNode

DataNodes

RaidNode

DataNode

NameNode

DataNode DataNode DataNode

metadata data

FastDR
Client

HDFS-RAID

Cost
Measurement

Module

Degraded
Read

Handler

Fig. 6. The architecture of FastDR.

4.2.1 Cost Measurement

The Cost Measurement Module of FastDR aims to gener-
ate a cost vector between the FastDR client and DataN-
odes. It indicates the related cost for downloading data
from DataNodes to client accurately.

The cost can be computed as the sum of two parts. The
first part is the static cost, which is measured based on
the static components such as hardware configurations.
We assume that the static cost does not change from
time to time. Thus, we measure this part before the
system starts and hardcode the results as configuration
parameters for bootstrapping the system. In our current
implementation, we measure the static cost as the sum
of the inverse of the speed of the network interface card
and the inverse of the speed of raw disk read.

The second part is the dynamic cost, which is measured
based on the current system workload and working
mode. In our current implementation, we do not include
the dynamic cost. We discuss two possible approaches
to measure the dynamic cost. In the first approach,
the NameNode periodically measures (e.g., via probing)
the response time to each DataNode, and updates the
dynamic cost via weighted average [6]. Another ap-
proach is to measure the cost based on popularity [2],
in which the NameNode measures the access rate of
each DataNode and associates a higher cost with the
DataNode with a higher access rate. The rationale is
that popular DataNodes form hotspots and have less
effective bandwidth for data transfer. How to effectively
measure the dynamic cost is posed as future work.

4.2.2 Failure Detection

In our current implementation and experiments, we sim-
ply hardcode the failure status in the Failure Detector,
which directly triggers the degraded read mode. In prac-
tice, the Failure Detector is activated at the beginning

8

of a read request. Recall that the NameNode receives
periodic status reports from DataNodes (see Section 4.1).
Thus, the Failure Detector can query the NameNode for
an updated status report on those related blocks for a
given read request. If there is any block failure detected
from the report, FastDR will enter the degraded read
mode. If the reading process breaks in the middle, the
Failure Detector will do necessary rollback and trigger
the degraded read mode.

4.2.3 Degraded Read

The Degraded Read Handler takes charge of all de-
graded read requests. It queries the Cost Measurement
Module for the cost vector of the involved DataNodes,
executes the degraded read algorithm based on the
cost vector to determine the data and parity blocks
that need to be downloaded, and instructs the read
threads to download the data and parity nodes from the
DataNodes in parallel. After receiving all data and parity
blocks, it calculates the decoding matrix and reconstructs
the lost data.

4.3 More Implementation Details

Our implementation of FastDR is based on HDFS release
0.22.0 and its HDFS-RAID extension [14]. We implement
Cauchy Reed Solomon (CRS) codes [4] as a representa-
tive of XOR-based erasure codes, by modifying HDFS-
RAID’s erasure coding layer. We further extend the
FSDataInputStream class to support the parallel read
operation.

5 EXPERIMENTS

We first use simulations to extensively evaluate the
efficiency of our EG algorithm. To further validate its
practicality, we evaluate our FastDR prototype in a
practical HDFS cluster testbed. By capturing the actual
read/write performance using real storage devices, we
aim to show the actual improvement of FastDR over the
basic degraded read approach as described in Section 3.3.

Since single-node failures account for the majority of
failure patterns in distributed storage systems [17], [19],
we assume only a single node failure in our evaluations.
Also, we set the parameter d = n − 1, meaning that
all surviving storage nodes are considered for fulfilling
degraded reads. An important future work is to evaluate
the impact of the parameter d on the performance of
degraded reads.

5.1 Simulations

We now evaluate the efficiency of our EG algorithm. We
evaluate the computational overhead and the degraded
read performance of three approaches described in Sec-
tions 3.3 and 3.4: the basic approach, the enumeration
approach, and our EG algorithm. Our goal is to show
that our EG algorithm can return near-optimal degraded
read solutions in a timely manner.

The degraded read operation performs two steps: (i)
reading data blocks and parity blocks from the surviving
storage nodes, and (ii) reconstructing the normal blocks
and the lost blocks. In our simulation studies, only the
running time of the block read part is evaluated. Our
justification is that in a distributed environment, the
performance bottleneck is due to network transmission
instead of computations. Also, previous studies [19],
[41] validate that the block read part contributes to the
majority of the overall degraded read time.

Our simulations are all conducted under commodity
hardware configurations: a Linux-based desktop com-
puter with Intel(R) i3 @3.2GHz CPU and 2GB RAM.
The operating system is Ubuntu 12.04. We implement
the three degraded read approaches in C.

TABLE 2

Search times of the degraded read solutions for CRS

with different configurations of (k, m, w).

(k,m,w) Read size Enumeration’s EG’s
traverse time (s) traverse time (s)

(12,4,5) 1 1.38 0.096
(12,4,6) 1 37.63 0.151
(12,4,7) 1 754.76 0.217
(10,6,4) 1 19.51 0.298
(10,6,4) 11 19.94 0.412
(10,6,4) 21 22.97 0.671
(10,6,4) 31 23.36 0.907

5.1.1 Search Performance

We first compare the enumeration approach and EG on
the search times of the degraded read solutions, so as to
justify that our EG algorithm can determine its degraded
read solution in a very short time, while the enumeration
approach is infeasible in practice due to its significantly
high computational time. Here, we consider CRS codes
[4] and two combinations of (k, m): (10, 6) and (12, 4),
both of which are seen in actual deployment [27], [28].

Table 2 shows the search times for CRS codes with
different values of w. We observe that the computational
time of our EG algorithm is negligible. For all the CRS
variants, our EG algorithm can be completed in 1s. On
the other hand, the computational time of the enumera-
tion approach increases with nw and also the read size.
Also, we find that the computational overhead of the
enumeration approach is too expensive. For example,
the traverse time is 754s for CRS(12,4,7). Recall that the
task of finding the optimal degraded read solution is an
on-demand decision. Thus, the enumeration approach is
infeasible to fulfill the online decision requirement.

We further evaluate whether EG significantly reduces
the degraded read time of the basic approach, and also
achieves closely the optimal degraded read time of the
enumeration approach. To quantitatively evaluate the
degraded read performance for the basic approach and
EG, we consider various XOR-based erasure codes that
can tolerate different numbers of failures. We consider

9

 0

 10

 20

 30

 40

 50

(6,2,4) (6,2,5) (6,2,6)

%
 R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e

19.15 17.98 17.75

 0

 10

 20

 30

 40

 50

k=6 k=7 k=8

%
 R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e

18.73
15.70 14.10

(a) CRS(m = 2) (b) Liber8tion

Fig. 7. Percentage reduction of degraded read time of EG

over the basic approach in double-fault tolerant codes.

 0

 10

 20

 30

 40

 50

(6,3,4) (6,3,5) (6,3,6)

%
 R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e

29.57
25.73

23.11

 0

 10

 20

 30

 40

 50

p=5 p=7 p=11

%
 R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e

33.37

27.70
23.75

(a) CRS(m = 3) (b) STAR

Fig. 8. Percentage reduction of degraded read time of EG

over the basic approach in triple-fault tolerant codes.

CRS codes with different settings: k = 6 and m = 2, 3, 4;
k = 10 and m = 6; and k = 12 and m = 4. We also
consider Liber8tion [25], which belongs to a class of min-
imum density RAID-6 codes [26] and provides optimal
encoding performance. Furthermore, we consider STAR
codes [18], which are triple-fault-tolerant.

5.1.2 Degraded Read Performance in Heterogeneous

Environments

We generate 100 different heterogeneous storage envi-
ronments for each read size, in which the link trans-
mission bandwidth of each storage node satisfies a
uniform distribution U(0.3Mbps, 120Mbps), which has
also been used in recent studies to mimic heterogeneous
environments for distributed storage [21], [23], [42]. We
disable one of the data nodes to represent a single node
failure. We then perform the degraded read operation
for all possible starting offsets of degraded reads. We
only consider the degraded read requests that cover at
least one lost block of the failed node, and ignore the
read requests that cover only normal blocks. We repeat
the evaluations by disabling every data node, and obtain
the overall average.

Figures 7, 8, and 9 show the results for different
erasure codes. We observe that EG reduces the degraded
read time significantly. For example, the percentage re-
duction of parallel degraded read time is 19.15%, 29.57%,
and 34.13% for CRS(6,2,4), CRS(6,3,4), and CRS(6,4,4),
respectively. In addition, the improvement of EG over
the basic degraded approach becomes more significant
when the fault tolerance increases (i.e., m increases). The
reason is that XOR-based erasure codes with higher fault
tolerance provide more possibilities for searching for
an efficient degraded solution. Furthermore, we observe

 0

 10

 20

 30

 40

 50

(6,4,4) (6,4,5) (6,4,6)

%
 R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e

34.13
30.97

26.05

 0

 10

 20

 30

 40

 50

(10,6,4) (12,4,4) (12,4,5)

%
 R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e

41.26

32.81
29.73

(a) CRS(m = 4) (b) CRS(m > 4)

Fig. 9. Percentage reduction of degraded read time of

EG over the basic approach in XOR-based erasure codes

that can tolerate four or more failures.

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11 13 15 17 19 21 23
R

e
d
u
c
ti
o
n
 o

f
d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e
 (

%
)

Read size

CRS(6,2,4) CRS(6,3,4) CRS(6,4,4)

Fig. 10. Percentage reduction of degraded read time of

EG over the basic approach in CRS with m = 2, 3 and 4.

that the gains of EG over the basic approach decrease
as w increases. The basic approach downloads the data
and parity blocks from k nodes (i.e., k−1 surviving data
nodes and the first parity node for the case of single
failure recovery as assumed in Section 3.3). Therefore,
different values of w actually perform the same as the
basic approach. However, as w increases, the number of
blocks involved in the CDREs of EG increases, and hence
the gains of EG decrease.

Due to the very expensive computational overhead, it
is infeasible to include the optimal degraded read time
of the enumeration approach in Figure 7. Nevertheless,
we can still evaluate the degraded read performance for
some small sizes of the degraded read request using the
enumeration approach and EG. Here we take CRS(6,2,3)
as an example. EG reduces the parallel degraded read
time by 21.89% (l = 1), 23.16% (l = 2), 19.69% (l = 3),
while the reduction of the enumeration approach is
24.05% (l = 1), 25.38% (l = 2), 23.60% (l = 3). There-
fore, we believe that EG is robust in returning a near-
optimal solution for the degraded read request, while
significantly reducing the traverse time.

5.1.3 Degraded Read Performance in the HDFS Envi-

ronment

We now compare the degraded read performance be-
tween the basic approach and EG using the configura-
tion of our HDFS testbed. Our simulation results here

10

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
EG

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
EG

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
FastDR

(a) CRS(6,2,4) (b) CRS(6,3,4) (c) CRS(6,4,4)

Fig. 11. Degraded read throughput of the basic approach and EG in CRS with m = 2, 3 and 4 (obtained from

simulations).

show the maximum possible gains of EG over the basic
approach (see Section 5.2). We consider a HDFS cluster
with 10 storage nodes (i.e., DataNodes), where the data
transmission capability varies from 10MB/s to 80MB/s.
We set the block size α = 1MB. We have deployed CRS
codes with k = 6 and w = 4 in the cluster. Due to
the fact that the number of data blocks in a stripe is
24, our evaluations consider all degraded read requests,
with the read size varying from 1 to 24 blocks. Note the
fault tolerance m in the system can be configured from
2 to 4. We consider the failure of each node and perform
degraded reads for all possible starting offsets. We obtain
the average degraded read time for each read size.

Figure 10 plots the degraded read improvement of EG,
computed in terms of the average percentage reduction
of the degraded read time over the basic approach. For
each configuration of CRS codes, Figure 11 also plots
the degraded read throughput of the basic approach
and EG, defined as the ratio of the read size to the
degraded read time. We observe that the gain of EG over
the basic approach is significant for each read size. The
reason is that EG avoids downloading blocks from the
bottlenecked nodes when performing degraded reads in
a heterogeneous environment. As the read size increases,
the improvement becomes more significant (e.g., by up
to 80% when the read size is 20 in CRS(6,4,4) from
Figure 10). The reason is that the basic approach needs
to read more blocks from the bottlenecked nodes for a
larger read size. Furthermore, we see that EG performs
better for CRS codes with a higher fault tolerance m.

We see from Figure 10 that when the read size is
small (e.g., from 1 to 4), the percentage reduction of
EG drops. Recall that the basic approach downloads the
data and parity blocks from k − 1 surviving data nodes
and the first parity node for single failure recovery (see
Section 3.3). Thus, it reads the k − 1 contiguous data
blocks from k − 1 surviving data nodes so as to realize
degraded reads, which exploits data locality in read
requests. This implies that normal blocks in the degraded
read request are likely to appear in the collection of
contiguous blocks downloaded to reconstruct the lost
blocks. When the read size is small, the basic approach
does not read additional data blocks, implying that it has
roughly the same read performance. On the other hand,

FastDR aims to find the set of CDREs that bypass the
storage nodes with lower bandwidth. Recall that each
read block is associated with a CDRE. When the read
size increases at the beginning, the number of CDREs
returned also increases, and hence more blocks are to
be read and the degraded read time increases. As a
result, the percentage reduction of EG over the basic
approach drops when the read size is small in Figure 10.
Nevertheless, we emphasize that EG still reduces the
degraded read time of the basic approach.

5.1.4 Discussion

In this paper, we focus on the degraded reads that
request a collection of sequential data blocks. However,
in practice, there may be many random access patterns
in real storage systems. Therefore, a storage system
may respond to a degraded read request that spans
different blocks scattered across a stripe. This drop of
data locality aggravates the degraded read performance
of the basic approach since it reads additional data
blocks to reconstruct the lost blocks. Read prefetching
can improve the degraded read performance, but its
effectiveness depends on the read access patterns. On
the other hand, the design of EG is independent of the
read access patterns.

5.2 Testbed Evaluations

5.2.1 Methodology

We now conduct testbed experiments on FastDR, which
implements the EG algorithm. We also implement the
basic approach for our comparison.

Our storage system consists of a cluster of 10 DataN-
odes, one NameNode, and one FastDR client. All nodes
are Linux-based machines with Intel Quad-Core 3.2GHz
CPU and 2GB RAM. To mimic node heterogeneity in
a practical storage system, each DataNode is equipped
with an Ethernet interface card of a network speed that is
either 100Mbps or 1Gbps, and a harddisk with different
raw read speeds. We interconnect all physical entities
over a Gigabit Ethernet switch.

Our experiments mainly evaluate the data throughput
of degraded reads. We obtain the average data through-
put as follows. Before running the experiments, we
obtain the related cost vector from the testbed for (see

11

 0

 20

 40

 60

 80

 100

 120

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
FastDR

Fig. 12. Experiment 1: Degraded read throughput com-

parison between the basic approach and FastDR for

different read sizes.

Section 4.2.1) and include the results as configuration
parameters to FastDR. We generate a stripe of data based
on the specific coding scheme. We then stripe the data
across a collection of DataNodes via HDFS-RAID. We
disable one of the DataNodes in the storage system,
and then perform degraded read requests to evaluate
the performance of degraded reads. Each degraded read
operation is evaluated three times. For a specific read
size, we repeat this for all possible starting offsets as in
previous simulations. We further consider all possible
failed nodes, and obtain the overall average. We em-
phasize that we only focus on degraded requests in our
evaluations, and ignore the read requests that cover only
normal blocks. For instance, referring to the erasure code
(2, 2, 2) in Figure 1, there are two data nodes, and the
strip size is two. Thus, we run a total of 2×2×3 degraded
read operations for the degraded read request of size 1,
and average the data throughput over the 12 runs.

5.2.2 Results

Experiment 1 (Impact of read size on degraded read
performance). We first evaluate the impact of read
size on the degraded read performance. We consider
CRS(k = 6, m = 3, w = 4), and vary the degraded read
size from 1 to 24. Here, we set the block size to be 32MB.

Figure 12 shows the data throughput of degraded
reads versus the read size for the basic approach and
FastDR. The data throughput of both approaches in-
creases as the read size increases. The reason is that a
degraded read request with a larger read size involves
more normal blocks, which are likely to be used di-
rectly for reconstructing the lost blocks. Therefore, the
data throughput increases as the read size increases, for
both the basic approach and FastDR. For example, for
the basic approach, the data throughput is 9.67MB/s,
49.92MB/s, 67.27MB/s when the read size is 1, 12,
and 24, respectively. Similar results can be observed for
FastDR.

We see that the degraded read performance improve-
ment of FastDR over the basic approach becomes more

 0

 20

 40

 60

 80

 100

 120

1 3 5 7 9 11 13 15 17 19 21 23

D
a
ta

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Read size (blocks)

8M Basic
16M Basic
32M Basic
8M FastDR
16M FastDR
32M FastDR

Fig. 13. Experiment 2: Degraded read throughput com-

parison between the basic approach and FastDR for

different block sizes (from 8MB to 32MB).

significant as the read size increases. For example, the
improvement of FastDR over the basic approach is
6.41%, 15.74% and 56.81% when the read size is 1, 12
and 24, respectively.

Our simulations show that FastDR remarkably im-
proves the time to download the necessary blocks of
the basic approach, while our experiments show that
FastDR has a smaller performance gain. Recall that the
degraded read operation is composed of both read and
decoding parts. In order to bypass the bottlenecked
nodes in the storage system, FastDR incurs more com-
putational overheads than the basic approach, especially
when the degraded read size is small. Thus, FastDR
shows a smaller gain. Nevertheless, our experimental
results roughly conform to the simulation results shown
in Figures 10 and 11.

Experiment 2 (Impact of block size on degraded read
performance). We now evaluate the impact of block
size on the degraded read performance. Here, we still
consider CRS(k = 6, m = 3, w = 4), and vary the block
size from 8MB to 32MB.

Figure 13 shows the data throughput versus the block
size, for the basic approach and FastDR. The data
throughput for both approaches increases with the block
size. The reason is that with a larger block size, the seek
overhead is less and hence both approaches can absorb
more of the client’s bandwidth. Thus, the degraded
read performance can be further improved, although the
improvement margin is not significant. Take the basic
approach with the read size 1 as an example. Its data
throughput with the block size 8MB is 6.76MB/s, while
the throughput values for the block size 16MB and 32MB
are 8.91MB/s, and 9.67MB/s, respectively. FastDR shows
higher data throughput than the basic approach. Note
that the improvement is consistent over all read sizes as
in the previous experiment.

Experiment 3 (Degraded read performance with dif-
ferent numbers of parity nodes). We now evaluate the
degraded read performance when the number of parity
nodes is different. We set the block size to be 32MB, and

12

consider CRS(6, 2, 4), CRS(6, 3, 4), and CRS(6, 4, 4).
Figure 14 shows the results. We observe that the

basic approach performs roughly the same for CRS with
different numbers of parity nodes. The results match
the mechanism of the basic approach, which always
read the parity block from the first parity node for
the degraded read request (see Section 3.3). We also
observe from Figure 14 that FastDR performs better for
CRS with a larger m. The results closely match those of
Figures 10 and 11. For a larger m, the blocks downloaded
for degraded reads are distributed over more surviving
storage nodes. Thus, the degraded read performance can
be improved even more.

Experiment 4 (Performance of degraded reads based
on MapReduce). We now evaluate the performance
of MapReduce jobs in HDFS-RAID deployed with the
basic approach and FastDR in the presence of failures.
Here, we select a dataset of size 768MB that contains
a collection of English novels on the Project Gutenberg
website (http://www.gutenberg.org/). We adopt CRS(6,
3, 4) as the erasure coding scheme, and store the selected
dataset in HDFS-RAID. We then run three MapReduce
applications: (i) WordCount, which computes the occur-
rence frequency of each word in the dataset; (ii) Dedup,
which removes duplicate lines in the dataset and outputs
all unique lines; and (iii) Grep, which extracts matching
strings from text files and counts their occurrences.

We emphasize here that a MapReduce job is composed
of four parts: Setup, Map, Reduce, and Cleanup, among
which only the task of Map involves degraded reads.
Therefore, FastDR mainly improves the Map tasks. It
also brings benefits for execution of Reduce tasks as the
Map tasks can return the intermediate results faster.

Figure 15(a) shows the execution time for WordCount.
The percentage reduction of execution time of FastDR
over the basic approach is 27.57%, 17.39%, 12.23% with
1, 2, 4 reducers, respectively. Compared to the basic ap-
proach, FastDR introduces more read blocks to respond
to a degraded read request, which results in more time-
consuming coordination between Map tasks and Reduce
tasks. Thus, while the addition of the number of reducers
improves the execution time of the basic approach, it
does not bring benefits for FastDR. Therefore, the im-
provement of FastDR over the basic approach decreases.

Furthermore, Figures 15(b) and 15(c) show the execu-
tion time for Dedup and Grep, respectively. We again
observe that FastDR always performs better than the
basic approach for different numbers of reducers. For
example, our FastDR reduces execution time of the basic
approach, by 17.323%, and 18.561% for Dedup and Grep
applications, respectively, when using only one reducer.

6 RELATED WORK

There have been extensive studies on improving the
recovery performance of erasure-coded storage systems.
Holland et al. [16] propose workflow parallelization to
speed up reconstruction. FARM [38] improves recovery

in large-scale storage systems using parity declustering.
Some studies [31], [33], [36] leverage workload charac-
teristics to improve the reconstruction performance.

Several studies minimize recovery I/Os (i.e., the
amount of data read from surviving disks) for specific
erasure codes. Optimal recovery schemes [34], [37], [39]
have been proposed for different RAID-6 codes, and
achieve around 25% of I/O savings compared to simply
reconstructing all original data. Greenan et al. [12] pro-
pose new non-MDS XOR-based codes to achieve efficient
recovery. Khan et al. [19] show that the problem of min-
imizing recovery I/Os for general erasure codes is NP-
hard. Zhu et al. [41] propose a greedy recovery heuristic
to minimize I/Os for any erasure code. Our approach
is built on the greedy heuristic in [41], and extends the
latter by taking into account node heterogeneity and I/O
parallelism in our optimization model.

Since nodes are heterogeneous in practice, Greenan
et al. [13] address data placement of XOR codes on
heterogeneous nodes to improve reliability. Zhu et al.
[42] propose a cost-based recovery heuristic for RAID-
6 codes. Our work addresses the heterogeneous systems
that employ arbitrary erasure codes.

Besides minimizing I/Os, Dimakis et al. [8] propose
regenerating codes that minimize the amount of data
transfer in distributed storage systems. Note that re-
generating codes introduce more I/Os as they read all
stored data and transfer the encoded data. Li et al.
[24] build a system on HDFS that augments existing
optimal regenerating codes to support a general number
of failures, and demonstrate the saving of data transfer
of regenerating codes over erasure codes in recovery.

As mentioned in Section 2, degraded reads have dif-
ferent characteristics from recovery of permanent node
failures. Existing studies (e.g., [34], [37], [39], [41], [42])
focus on the latter case, and do not account for the
read sequence. Khan et al. [19] propose the rotated
Reed-Solomon (RS) code that reduces I/Os in degraded
reads over traditional RS codes. The rotated RS code
is designed for sequential read and takes into account
the read size (see Section 2). However, it operates by
enumerating all decoding equations to find the optimal
degraded read solution with minimum I/Os (see Sec-
tion 3.3). This approach becomes infeasible when we
account for the cost of available resources of storage
nodes. Huang et al. [17] propose a new non-MDS local
reconstruction code that minimizes I/Os in degraded
reads by adding more parity blocks. Recently, other local
reconstruction codes are proposed for achieving efficient
recovery [9], [29]. These codes are also evaluated on
HDFS. Our work on degraded reads differs from the
previous studies in two aspects: (i) instead of proposing
a new code construction, we optimize degraded reads
for existing erasure codes, and (ii) we address heteroge-
neous storage systems and identify the effective solution
with minimal search time.

13

 0

 20

 40

 60

 80

 100

 120

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
FastDR

(a) CRS(k = 6, m = 2, w = 4)

 0

 20

 40

 60

 80

 100

 120

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
FastDR

(b) CRS(k = 6, m = 3, w = 4)

 0

 20

 40

 60

 80

 100

 120

1 3 5 7 9 11 13 15 17 19 21 23

D
a

ta
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read size (blocks)

Basic
FastDR

(c) CRS(k = 6, m = 4, w = 4)

Fig. 14. Experiment 3: Degraded read throughput comparison between the basic approach and FastDR for different

levels of fault tolerance (from m =2 to 4).

 0

 10

 20

 30

 40

 50

 60

1 2 4

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of Reduce tasks

Basic
FastDR

27.57 17.39 12.23

(a) WordCount

 0

 10

 20

 30

 40

 50

 60

1 2 4

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of Reduce tasks

Basic
FastDR

17.32
18.95 12.77

(b) Dedup

 0

 20

 40

 60

 80

 100

1 2 4

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of Reduce tasks

Basic
FastDR

18.56 12.70
10.52

(c) Grep

Fig. 15. Experiment 4: MapReduce execution times of the basic approach and FastDR for different types of jobs,

including WordCount, Dedup and Grep.

7 CONCLUSIONS

Degraded reads have become performance critical op-
erations, due to the fact that temporary errors account
for the majority of failures in modern storage systems.
To boost the performance of degraded reads in prac-
tical erasure-coded storage systems, it is necessary to
take into account parallel I/Os and node heterogeneity
when performing degraded reads. In addition, as the
parameters of degraded reads vary, it is also crucial that
the degraded read solution should be found in a timely
manner. In this paper, we propose FastDR, a system for
boosting degraded reads in XOR-based erasure coded
storage systems with heterogeneous storage nodes. We
formulate an optimization model, and further propose
an enumerated greedy (EG) algorithm to quickly find
an efficient degraded read solution in heterogeneous
erasure-coded storage systems. Through extensive simu-
lations and testbed experiments, we justify the effective-
ness of FastDR in achieving efficient degraded reads in
a heterogeneous storage environment. The source code
of our FastDR prototype on HDFS is available for down-
load at http://ansrlab.cse.cuhk.edu.hk/software/fastdr.

ACKNOWLEDGMENTS

The work was supported in part by grants: (i) National
Nature Science Foundation of China under Grant No.
61379038, (ii) AoE/E-02/08 and ECS CUHK419212 from
the University Grants Committee of Hong Kong, and (iii)
Group Research Scheme of CUHK (project no.: 3110110).

REFERENCES

[1] M. Abd-El-Malek, W. Courtright II, C. Cranor, G. Ganger, J. Hen-
dricks, A. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. Sam-
basivan, et al. Ursa Minor: Versatile Cluster-based Storage. In
Proc. of USENIX FAST, Dec 2005.

[2] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, and E. Harris. Scarlett: Coping with Skewed
Content Popularity in MapReduce Clusters. In Proceedings of ACM
EuroSys. ACM, 2011.

[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total
Recall: System Support for Automated Availability Management.
In Proc. of NSDI, 2004.

[4] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An XOR-Based Erasure-Resilient Coding Scheme,
1995.

[5] B. Calder et al. Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency. In Proc. of ACM
SOSP, 2011.

[6] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging Endpoint
Flexibility in Data-Intensive Clusters. In Proc. of ACM SIGCOMM,
2013.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[8] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE
Trans. on Information Theory, 56(9):4539–4551, 2010.

[9] K. S. Esmaili, L. Pamies-Juarez, and A. Datta. The CORE
Storage Primitive: Cross-Object Redundancy for Efficient Data
Repair & Access in Erasure Coded Storage. In arXiv preprint
arXiv:1302.5192, 2013.

[10] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed
Storage Systems. In Proc. of USENIX OSDI, 2010.

[11] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System.
In Proc. of ACM SOSP, 2003.

[12] K. Greenan, X. Li, and J. Wylie. Flat XOR-based Erasure Codes in
Storage Systems: Constructions, Efficient Recovery, and Tradeoffs.
In Proc. of IEEE MSST, 2010.

[13] K. Greenan, E. Miller, and J. Wylie. Reliability of Flat XOR-based
Erasure Codes on Heterogeneous Devices. In Proc. of IEEE DSN,
2008.

[14] HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID.

14

[15] M. Holland, G. Gibson, and D. Siewiorek. Fast, On-line Failure
Recovery in Redundant Disk Arrays. In Proc. of IEEE FTCS, 1993.

[16] M. Holland, G. Gibson, and D. Siewiorek. Architectures and
Algorithms for On-Line Failure Recovery in Redundant Disk
Arrays. Distributed and Parallel Databases, 2(3):295–335, 1994.

[17] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, 2012.

[18] C. Huang and L. Xu. STAR: An Efficient Coding Scheme for
Correcting Triple Storage Node Failures. IEEE Trans. on Computers,
57(7):889–901, 2008.

[19] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethink-
ing Erasure Codes for Cloud File Systems: Minimizing I/O for
Recovery and Degraded Reads. In Proc. of USENIX FAST, 2012.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, et al.
Oceanstore: An Architecture for Global-Scale Persistent Storage.
In Proc. of ACM ASPLOS, 2000.

[21] S. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Measuring
Bandwidth Between PlanetLab Nodes. In Proc. of PAM, 2005.

[22] J. Li, S. Yang, and X. Wang. Building Parallel Regeneration Trees
in Distributed Storage Systems with Asymmetric Links. In Proc.
of CollaborateCom, pages 1–10. IEEE, 2010.

[23] J. Li, S. Yang, X. Wang, and B. Li. Tree-Structured Data Regen-
eration in Distributed Storage Systems with Regenerating Codes.
In Proc. of IEEE INFOCOM, 2010.

[24] R. Li, J. Lin, and P. P. Lee. CORE: Augmenting Regenerating-
Coding-Based Recovery for Single and Concurrent Failures in
Distributed Storage Systems. In Proc. of IEEE MSST, 2013.

[25] J. Plank. A New Minimum Density RAID-6 Code with A Word
Size of Eight. In Network Computing and Applications, 2008. NCA’08.
Seventh IEEE International Symposium on, pages 85–92. IEEE, 2008.

[26] J. Plank, A. Buchsbaum, and B. Vander Zanden. Minimum
Density RAID-6 Codes. ACM Transactions on Storage (TOS),
6(4):16, 2011.

[27] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A
Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries for Storage. In Proc. of USENIX FAST, 2009.

[28] J. K. Resch and J. S. Plank. AONT-RS: Blending Security and
Performance in Dispersed Storage Systems. In Proc. of USENIX
FAST, 2011.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring Elephants: Novel
Erasure Codes for Big Data. In Proceedings of the VLDB Endowment,
2013.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, pages 1–10. IEEE,
2010.

[31] M. Sivathanu, V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. Improving Storage System Availability with D-GRAID.
ACM Transactions on Storage (TOS), 1(2):133–170, 2005.

[32] P. Sobe and K. Peter. Flexible Parameterization of XOR based
Codes for Distributed Storage. In Network Computing and Appli-
cations, 2008. NCA’08. Seventh IEEE International Symposium on,
pages 101–110. IEEE, 2008.

[33] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and
Z. Song. PRO: A Popularity-based Multi-threaded Reconstruction
Optimization for RAID-Structured Storage Systems. In Proc. of
USENIX FAST, 2007.

[34] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes
in Distributed Storage Systems. In IEEE GLOBECOM Workshops,
2010.

[35] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding Vs.
Replication: A Quantitative Comparison. In Proc. of IPTPS, Mar
2002.

[36] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao. WorkOut:
I/O Workload Outsourcing for Boosting RAID Reconstruction
Performance. In Proc. of USENIX FAST, 2009.

[37] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid Ap-
proach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

[38] Q. Xin, E. Miller, and S. Schwarz. Evaluation of Distributed
Recovery in Large-Scale Storage Systems. In Proc. of HPDC, 2004.

[39] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. Lui. Single
Disk Failure Recovery for X-code-based Parallel Storage Systems.
IEEE Trans. on Computers, 63(4):995–1007, 2014.

[40] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environ-
ments. In Proc. of USENIX OSDI, 2008.

[41] Y. Zhu, P. Lee, Y. Hu, L. Xiang, and Y. Xu. On the Speedup
of Single-Disk Failure Recovery in XOR-Coded Storage Systems:
Theory and Practice. In Proc. of IEEE MSST, 2012.

[42] Y. Zhu, P. Lee, L. Xiang, Y. Xu, and L. Gao. A Cost-based
Heterogeneous Recovery Scheme for Distributed Storage Systems
with RAID-6 Codes. In Proc. of IEEE DSN, 2012.

Yunfeng Zhu received his B.S. from the School
of Computer Science, University of Science and
Technology of China, Anhui, China, in 2008. He
is currently working toward the Ph.D. degree at
the School of Computer Science and Technol-
ogy, University of Science and Technology of
China, Hefei, China. His research interests in-
clude distributed storage system, cloud storage
and data deduplication.

Jian Lin received his B.Eng. in Mathematics and
Information engineering and M.Phil. in Computer
Science and Engineering from the Chinese Uni-
versity of Hong Kong in 2011 and 2013, respec-
tively. He is now a software developer at Epic.
His research interests are in storage systems
and distributed systems.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an assistant professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests are in cloud storage, dis-

tributed systems and networks, and security/resilience.

Yinlong Xu received his B.S. in Mathematics
from Peking University in 1983, and MS and
Ph.D in Computer Science from University of
Science and Technology of China(USTC) in
1989 and 2004 respectively. He is currently
a professor with the School of Computer Sci-
ence and Technology at USTC. Prior to that,
he served the Department of Computer Science
and Technology at USTC as an assistant pro-
fessor, a lecturer, and an associate professor.
Currently, he is leading a group of research

students in doing some networking and high performance computing re-
search. His research interests include network coding, wireless network,
combinatorial optimization, design and analysis of parallel algorithm,
parallel programming tools, etc. He received the Excellent Ph.D Advisor
Award of Chinese Academy of Sciences in 2006.

