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Single Disk Failure Recovery for X-code-based
Parallel Storage Systems
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Abstract—In modern parallel storage systems (e.g., cloud storage and data centers), it is important to provide data availability

guarantees against disk (or storage node) failures via redundancy coding schemes. One coding scheme is X-code, which is double-fault

tolerant while achieving the optimal update complexity. When a disk/node fails, recovery must be carried out to reduce the possibility

of data unavailability. We propose an X-code-based optimal recovery scheme called Minimum-Disk-Read-Recovery (MDRR), which

minimizes the number of disk reads for single-disk failure recovery. We make several contributions. First, we show that MDRR provides

optimal single-disk failure recovery and reduces about 25% of disk reads compared to the conventional recovery approach. Second,

we prove that any optimal recovery scheme for X-code cannot balance disk reads among different disks within a single stripe in

general cases. Third, we propose an efficient logical encoding scheme that issues balanced disk read in a group of stripes for any

recovery algorithm (including the MDRR scheme). Finally, we implement our proposed recovery schemes and conduct extensive

testbed experiments in a networked storage system prototype. Experiments indicate that MDRR reduces around 20% of recovery time

of the conventional approach, showing that our theoretical findings are applicable in practice.

Keywords—parallel storage systems, coding theory, data availability, recovery algorithm.
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1 INTRODUCTION

A fundamental requirement of building large-scale par-
allel storage systems is to make sure information is reli-
able and available for a long period of time. To achieve
high reliability and availability in the face of component
failures, redundancy techniques have been widely used
in modern parallel/distributed storage systems, such as
cloud storage, data centers, and peer-to-peer storage.
For example, GFS [1] and Dynamo [2] use replication,
while OceanStore [3], Total Recall [4], and Wuala [5] use
erasure codes (e.g., one form of Reed-Solomon code [6]).

Full replication is the simplest way to generate redun-
dant data. Exact copies of the original data are stored in
multiple disks (or storage nodes), each of which keeps
one copy. However, replication comes with a substan-
tially high storage cost. Another form of redundancy is
to use Maximum Distance Separable (MDS) codes, defined
by parameters n and k. An (n, k) MDS code (e.g., Reed-
Solomon code [6] and optimal erasure codes) is to divide
the original file of size M into k equal-size fragments of
size M/k each, and then encode the k data fragments
into n fragments, each of which also has the same size
M/k. The MDS property states that any k out of the n
encoded data fragments can be used to reconstruct the
original file. The main advantage of MDS codes is that
one can achieve optimal tradeoff between storage cost
and data reliability. Compared with full replication, MDS
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codes can achieve orders of magnitude higher reliability
with similar storage and bandwidth requirements [7].
Furthermore, full replication implies deploying more
disks and that energy cost is one of the major concerns
for data center [8], [9]. Thus, we expect that MDS codes
are more preferred over full replication in many practical
scenarios.

A special family of MDS codes is called MDS array
codes, which are designed to provide fault-tolerant stor-
age for RAID systems against double-disk failures (e.g.,
RDP code [10], EVENODD code [11], X-code [12]) or
triple-disk failures (e.g., STAR code [13]). MDS array
codes have an attractive property that they are compu-
tationally efficient, since their encoding and decoding
processes use only XOR operations. In this work, we
focus on RAID-6 array codes (e.g., RDP, EVENODD, X-
code), which tolerate any two concurrent disk failures.

RAID-6 array codes can be categorized into two
classes [14]. The first class is the horizontal codes, such as
RDP and EVENODD, where original data fragments are
stored in data disks while encoded fragments (known as
parities) are stored in dedicated parity disks (also known
as P and Q disks). Another class is vertical codes, such as
X-code, where parities are distributed across all disks.

When a disk failure occurs in a parallel storage system,
it is important to recover (or repair) the erased data in
the failed disk as quickly as possible to maintain the
system reliability guarantees [15]. It is challenging to
repair a failed disk when MDS codes, or specifically
MDS array codes, are used. A conventional approach is
to download the entire file and reconstruct the original
data, and then regenerate the data fragments of the
failed disk. The conventional approach will cost a great
deal of data transmission [16]. The total amount of data
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that must be processed during recovery plays a crucial
role in recovery time and affects the system service
performance [10], [17]. This is particularly important in
parallel storage systems, where network transmission
bandwidth is a potential performance bottleneck.

1.1 Related Work

Recent research studies (see survey in [18]) propose a
new class of MDS codes called the regenerating codes to
reduce the amount of data needed to recover a failed
disk/node in a parallel/distributed storage system. Au-
thors of [19], [20] derive the cut-set lower bound of
the amount of data needed for recovery based on the
network coding theory [21]. Authors of [22], [23] propose
the constructions of new MDS codes that can achieve
improved recovery performance. Hu et al. [24] further
consider cooperative recovery for multi-node failures.
However, regenerating codes have yet to see practical
deployment, possibly due to several constraints. Most
regenerating codes (e.g., [25]) require storage nodes be
programmable to support the encoding capability for
recovery, thereby limiting the deployable platforms for
practical storage systems. Some regenerating codes (e.g.,
[26]) can be implemented without the encoding capabil-
ity of a storage node, but generally introduce higher stor-
age overhead than traditional erasure codes. Note that
their encoding operations involve linear computations
on finite fields, and are more computationally expensive
than XOR-based MDS array codes.

Only few research studies (e.g., [27], [28], [29], [30])
consider the recovery problem of RAID-6 array codes.
Authors of [27] give lower bounds of repair bandwidth
for single disk failure recovery with different codes, and
they show that the lower bound is (3p2 − 2p + 5)/4 for
X-code. However, they do not present a formal proof
for the tight lower bound of X-code. Also, they do not
consider the load balancing problem among different
disks and provide experimental evaluation. Our work
addresses all the above issues. Authors of [28] consider
the single-disk recovery problem for a particular type of
MDS array codes called the RDP code. By using double
parities for single-disk failure recovery, they propose an
optimal recovery algorithm that reduces almost 25% of
disk reads for recovery. In [28], an optimal recovery
algorithm is also proposed for the EVENODD code.
However, X-code has some advantages over the RDP
and EVENODD codes (see below). Authors of [29] ex-
perimentally evaluate the online recovery performance
of single disk failure of RAID-6 codes, but they do not
present any new recovery algorithm. Authors of [30]
propose an efficient recovery scheme called the Path Di-
rected Recovery Scheme (PDRS), which can decrease the
disk I/O complexity by up to 25% for all vertical RAID-6
codes like P-code and X-code when recovering a single
failed disk. However, they do not formally derive the
lower bound of disk reads. Also, PDRS cannot consider
the load balancing problem among different disks during

recovery. Its performance decreases greatly as the size of
storage system increases as their experiments indicated.

Authors of [31] propose an enumeration approach
to solve the optimal recovery problem for MDS array
codes that tolerate a general number of failures. They
also show that the problem is NP-hard. Authors of [32]
propose efficient recovery heuristics for general MDS
array codes, and authors of [33] propose recovery heuris-
tics for RDP and EVENODD codes in a heterogeneous
environment. In this work, we focus on theoretically
studying the optimal recovery problem of X-code, which
is a RAID-6 array code.

Apart from optimizing the recovery performance
based on encoding/decoding-related schemes, other
studies propose different techniques on the failure re-
covery of storage systems, such as exploiting filesystem
semantics [34], optimizing reconstruction sequence [35],
outsourcing users’ workloads during recovery [36], and
exploring better cache utilization [37], [38], etc.

1.2 Contributions

In this paper, we consider the recovery problem of a
single-disk failure for parallel storage systems using a
well-known MDS array code called X-code [12], which
can tolerate double-disk failures. It has been proven that
X-code is optimal in computational complexity, update
complexity, and space efficiency among all the RAID-6
codes (note that B-code [39] is also shown to be update
optimal). Unlike RDP and EVENODD codes, both of
which are horizontal codes, X-code is a vertical code
that has a different geometrical structure where parities
are placed in rows rather than columns. Thus, X-code
has an advantage of achieving load balancing for data
updates within a stripe among different disks, instead of
aggregating parities in dedicated parity disks as in RDP
and EVENODD codes. Due to the different geometrical
structure, the recovery algorithms previously proposed
for RDP and EVENODD codes are no longer applicable
for X-code.

We observe that during the recovery process, the
accessed data from different disks will be transmitted to
a disk to generate the failed data. Thus, the transmission
overhead is determined by the amount of disk reads.
This poses the following open questions: In X-code-
based parallel storage systems, is there a way to reduce
the amount of data transmission for recovery (or the
number of disk reads for recovery)? What is the lower
bound of disk reads for recovering a single-disk failure
in X-code? According to the specific row-based parity
structure of X-code, can we design a recovery algorithm
that matches this lower bound? Can the proposed re-
covery algorithm maintain a load balancing property,
such that each disk is issued the same number of reads
during recovery? Such questions motivate us to fill the
void of achieving optimal recovery performance for an
optimal RAID-6 code such as X-code. Thus, the motivation
of this work is to minimize the data transmission in single-disk
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failure recovery and hence optimize the recovery performance
of X-code. Existing optimal recovery solutions for RAID-
6 are designed for the horizontal codes. To the best
of our knowledge, this is the first work that addresses
the optimal recovery problem for a vertical code in the
RAID-6 family.

We show that the amount of disk reads for single-
disk failure recovery of X-code can be reduced by care-
fully designing the recovery approaches for the failed
disk/node. The main contributions of this paper are:

1) We formally derive the tight lower bound of
disk reads and data transmission for a single-
disk failure recovery of X-code-based parallel stor-
age systems and propose a recovery algorithm
called Minimum-Disk-Read-Recovery (MDRR), which
matches the theoretical lower bound and reduces
about 25% of disk reads compared with the con-
ventional approach.

2) We formally prove that in general, disk read cannot
be balanced while matching the lower bound of
disk reads within a stripe, and cannot be balanced
among different disks by simply rotating disks.

3) We propose a leap rotation scheme which balances
disk reads among different disks within a groups
of p−1 stripes, where p is the number of disks in a
storage system, while matching the lower bound
of disk reads. We call this group-based scheme
GMDRR.

4) To evaluate our proposed recovery schemes, we
conduct extensive testbed experiments on a net-
worked storage system called NCFS [40]. Instead of
using a disk simulator as in [28], our testbed exper-
iments capture the behavior of actual read/write
operations on real storage devices during failure
recovery. Our experimental results conform to our
theoretical findings. For example, when NCFS is
used with heterogeneous types of storage nodes,
MDRR and GMDRR reduce the recovery time of
the conventional recovery approach by 18.0% and
up to 22.0%, respectively.

The paper proceeds as follows. Section 2 provides
an overview of X-code and the conventional recovery
scheme of single-disk failure. Section 3 presents a new
hybrid recovery scheme which can reduce the amount of
data needed for recovery. In Section 4, we theoretically
prove the lower bound for the number of disk reads
to recover data in a failed disk. Section 5 presents
a recovery algorithm which is read-optimal and load
balanced. Section 6 presents experimental results and
Section 7 concludes the paper.

2 BACKGROUND OF X-CODE

2.1 How X-code Works?

We consider a storage system that consists of p disks (or
storage nodes)1, where p is a prime number greater than

1. We use the terms “disks” and “nodes” interchangeably in this
paper.

or equal to 5. X-code [12] takes a p× p two-dimensional
array. The first p− 2 rows in the array store information
symbols2 and the last two rows store the coded symbols,
which are often termed as parity symbols, generated from
information symbols. A parity symbol in row p− 2 (row
p− 1) is generated by XOR-summing all the information
symbols along the same diagonal of slope −1 (slope 1).
Fig. 1 shows how X-code stores symbols for p = 5, i.e.,
we have d3,0 = d0,2⊕d1,3⊕d2,4 and d4,0 = d0,3⊕d1,2⊕d2,1.

X-code was originally proposed to tolerate two disk
failures in disk array systems. Each disk in the system is
divided into strips of fixed size and each strip is divided
into p segments (denoted as symbols). A stripe consists of
p strips, one in each disk. X-code is implemented within
a stripe. Fig. 1 is an example, where each column is a
strip in a disk and a symbol di,j is the i-th segment
in disk Dj . Note that in X-code, each parity symbol is
only a function of information symbols and does not
depend on other parity symbols. Thus, each update of an
information symbol affects only the minimum number
of two parity symbols, thus achieving optimal encoding
complexity.

2.2 Single-Disk Failure Recovery

X-code aims to tolerate failures of any two disks. How-
ever, in practice, single-disk failure occurs much more
frequently than simultaneously having two disks failed.
This motivates us to design efficient recovery schemes
for single-disk failure in X-code-based storage systems.
In [12], only the recovery for a double-disk failure is
considered, but no recovery algorithm is considered
specifically for a single-disk failure. A conventional re-
covery approach for single-disk failure is: (1) the parity
symbol of slope −1 in row p− 2 can only be recovered
by XOR-summing all symbols along the same diagonal
of slope −1; (2) other symbols are recovered by XOR-
summing all symbols along the same diagonal of slope 1.

Fig. 2 shows an example of the conventional recovery
approach when disk D0 fails in an X-code-based system
with 7 disks. In Fig. 2, the symbols marked “×” are
erased symbols. The parity symbol d5,0 marked “�” is
recovered by the parity of slope −1, while other erased
symbols marked “©” are recovered by the parities of
slope 1. A surviving symbol marked “�” (or/and “©”)
is used for the recovery as a symbol in a diagonal of
slope −1 (or/and slope 1).

If we use the conventional approach to recover a
single failed disk Dk, the total number of disk reads
is calculated as: (1) The recovery of the parity symbol
dp−2,k reads p − 2 symbols along a diagonal of slope
−1; (2) The recovery of each of the other symbols in Dk

reads p− 2 symbols along a diagonal of slope 1, totally
(p−2)×(p−1) symbols. Thus, the conventional approach

2. We use the term “symbols” to represent device blocks or data
chunks. A symbol can also correspond to a set of consecutive sectors
of a disk.
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Disk0 Disk1 Disk2 Disk3 Disk4

d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

Disk0 Disk1 Disk2 Disk3 Disk4
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d4,0 d4,1 d4,2 d4,3 d4,4

In
fo

rm
a
ti
o
n

R
o
w

s
P
a
ri

ty
R

o
w

s

Fig. 1. An example of the encoding strategy of X-code when p = 5.

issues a total of p−2+(p−2)(p−1) = p(p−2) disk reads
(per stripe).

However, we note that there are p − 3 overlapping
symbols among the p−2 symbols read along the diagonal
of slope −1 and the (p − 2) × (p − 1) symbols along
the diagonals of slope 1. So the number of different
symbols read from all disks can be reduced. In Fig. 2(a),
(7− 2)× (7− 1)+1= 31 different symbols are read from
disks. There are 4 overlapping symbols marked both “�”
and “©”, which are the common symbols read along the
diagonal of slope −1 and along the diagonals of slope 1.
In the conventional approach, these 4 symbols are read
twice from disks, each for the recovery of two erased
symbols. The issue is that the conventional approach
seeks to recover each symbol individually, without con-
sidering other erased symbols in the same stripe being
also recovered.

Typically memory read is significantly faster than disk
read. If we store a symbol marked both “�” and “©”
in memory after it is read from disk for the recovery of
an erased symbol, it can be read from memory for the
recovery of another erased symbol. Thus, we can reduce
the number of symbols to be read directly from disk so
as to speed up recovery.

Apart from the two parity symbols, each of the other
erased symbols can be recovered from a parity of either
slope 1 or slope −1. Thus, there are many choices to
recover a single failed disk. Fig. 2(b) shows another
recovery choice for the case in Fig. 2(a). In Fig. 2(b), there
are 9 overlapping symbols marked both “�” and “©”,
so only 26 different symbols are read from disks, which
is less than 31 in Fig. 2(a).

The motivation of this work is to use both parities of
slope 1 and slope −1 for single-disk failure recovery so
as to maximize the number of overlapping symbols of parities
of slope −1 and slope 1. This allows us to maximize the
number of symbols read from memory and minimize
the number of symbols to be read directly from disks
for recovery.

3 HYBRID RECOVERY OF SINGLE DISK FAIL-
URE

In this section, we formally define the different choices
for single-disk failure recovery. First, we give some
definitions.
Definition 1: We define the following:

• For 0 ≤ i ≤ p−1, define the i-th parity set of slope 1
as Li = {dm,n|〈m+n〉p = 〈i− 2〉p, 0 ≤ m ≤ p− 3 and
0 ≤ n ≤ p− 1} ∪ {dp−1,i}. (Note: 〈x〉p = x mod p.)

• For 0 ≤ j ≤ p− 1, define the j-th parity set of slope
−1 as Rj = {dm,n|〈m − n〉p = 〈p− 2 − j〉p, 0 ≤ m ≤
p− 2 and 0 ≤ n ≤ p− 1}.

Li consists of parity symbol dp−1,i and all symbols
along the i-th diagonal of slope 1 which are used to
generate dp−1,i. Rj consists of parity symbol dp−2,j and
all symbols along the j-th diagonal of slope −1 which
are used to generate dp−2,j . One can refer to Fig. 1 to
understand Li and Rj . From the encoding of X-code,
the following lemma states how an erased symbol can
be reconstructed.
Lemma 1: Given an erased symbol d,

1) If d ∈ Li, it can be reconstructed by XOR-summing
all the symbols in Li − {d}.

2) If d ∈ Rj , it can be reconstructed by XOR-summing
all the symbols in Rj − {d}.

3) d can only be recovered by 1) or 2).

For the ease of discussion, we always let Dk be the
failed disk, i.e., all symbols in column k are lost and
need to be recovered. The following lemma shows the
possible recovery choices for each erased symbol in Dk.
Lemma 2: Given a failed disk Dk,

1) Symbol di,k (0 ≤ i ≤ p− 3) can be recovered either
by XOR-summing all symbols in L〈i+k+2〉p −{di,k}
or by XOR-summing all symbols in R〈k−i−2〉p −
{di,k}.

2) Symbol dp−2,k can only be recovered by XOR-
summing all symbols in Rk − {dp−2,k}.

3) Symbol dp−1,k can only be recovered by XOR-
summing all symbols in Lk − {dp−1,k}.
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(a) Conventional recovery
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(b) Hybrid recovery

Fig. 2. Two recovery approaches for p = 7.
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Fig. 3. Recovery sequence for the failed Disk 0 of p = 7.

Proof: According to the encoding scheme of X-code,
an information symbol di,k(0 ≤ i ≤ p − 3) belongs to
L〈i+k+2〉p and R〈k−i−2〉p . Thus, di,k can be recovered by
either XOR-summing all symbols in L〈i+k+2〉p − {di,k}
or XOR-summing all symbols in R〈k−i−2〉p − {di,k}
according to Lemma 1. However, the parity symbol
dp−2,k only belongs to Rk, it can only be recovered by
XOR-summing all symbols in Rk − {dp−2,k}. Similarly,
3) of Lemma 2 holds.

In the following, we use a recovery sequence of Li and
Rj of length p to represent a possible recovery choice. For
example, suppose that a disk array of seven disks with
disk D0 being failed. R5L3L4R2L6R0L0 is a recovery
choice which recovers symbols d1,0, d2,0, d4,0 and d6,0
with parities of slope 1 and recovers d0,0, d3,0 and d5,0
with parities of slope −1, as illustrated in Fig. 3. Since
dp−2,0 and dp−1,0 are parity symbols of slope −1 and
slope 1, respectively, the last two of a recovery sequence
must be R0 and L0, respectively. Our goal is to find
a recovery sequence with maximum number of overlapping
symbols in the parity sets of slope −1 and in the parity sets
of slope 1 to reduce the symbols read from disks.

4 A LOWER BOUND OF DISK READS

We now derive a lower bound of the number of disk
reads and propose a recovery algorithm which matches
this lower bound. We first give a necessary and sufficient
condition for two parity sets to share an overlapping
symbol.
Lemma 3: We have

1) For any i, j, 0 ≤ i, j ≤ p−1, i 6= j, |Li

⋂

Lj | = 0 and
|Ri

⋂

Rj | = 0.
2) For any i, j, 0 ≤ i, j ≤ p − 1, if 〈i − j〉p = 0 or 2,

|Li

⋂

Rj | = 0; otherwise |Li

⋂

Rj | = 1.

Proof: Because any two diagonals along slope 1 (or slope
−1) are parallel, there is no overlapping symbol in a pair
of parity sets of slope 1 (or slope −1). So 1) of Lemma 3
concludes.

Now we prove 2) of Lemma 3. Let dm,n be an over-
lapping symbol of Li and Rj , i.e., dm,n ∈ Li

⋂

Rj . From
the definitions of Li and Rj , 〈m + n〉p = 〈i − 2〉p and
〈m− n〉p = 〈p− 2− j〉p. So

〈2m〉p = 〈p− 4 + i− j〉p. (1)

From Definition 1, a parity symbol only belongs to
one parity set. So an overlapping symbol must be an
information symbol. From dm,n ∈ Li

⋂

Rj , 0 ≤ m ≤ p−3
holds. Notice that p is a prime number greater than or
equal to 5, therefore

1) If 〈i − j〉p = 0, 〈p − 4 + i − j〉p = 〈p − 4〉p. Since p
is greater than or equal to 5, 〈p − 4〉p = p − 4. If
2m < p, 〈2m〉p = 2m is even and Equation (1) does
not hold because p − 4 is odd. Otherwise 2m > p,
and 〈2m〉p = 2m−p. If Equation (1) holds, 2m−p =
p−4 and m = p−2. It contradicts to 0 ≤ m ≤ p−3.
So Equation (1) does not hold, and Li

⋂

Rj = ∅.
|Li

⋂

Rj | = 0.
2) If 〈i− j〉p = 2, 〈p− 4+ i− j〉p = 〈p− 2〉p. Similar to

1), |Li

⋂

Rj | = 0.
3) If 〈i−j〉p = 1 or 3, 〈p−4+ i−j〉p = p−4+〈i−j〉p is

even. Let m = (p− 4+ 〈i− j〉p)/2 and n = (i+ j)/2.
dm,n is the only symbol in Li

⋂

Rj . |Li

⋂

Rj | = 1.
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4) If 〈i − j〉p is no smaller than 4, 〈p − 4 + i − j〉p =
〈i− j〉p−4. If 〈i− j〉p−4 is even, let m = (〈i− j〉p−
4)/2; otherwise let m = (〈i − j〉p + p − 4)/2. Let
n = (i + j)/2. dm,n is the only symbol in Li

⋂

Rj .
|Li

⋂

Rj | = 1.

So Lemma 3 concludes.

Suppose that RS=S0S1...Sp−1 is a recovery sequence
for Dk, where Si is to recover symbol di,k . From Defi-
nition 1, if di,k is recovered by a parity set of slope 1,
Si = L〈i+k+2〉p ; otherwise, di,k is recovered by a parity
set of slope −1, Si = R〈k−i−2〉p . Since dp−2,k and dp−1,k

are parity symbols of slope −1 and slope 1 respectively,
Sp−2 is Rk and Sp−1 is Lk. From Lemma 3, we can
conclude that:

1) |Lk

⋂

Rk| = 0; i.e. there is no overlapping symbol
of parity set Rk for recovering dp−2,k and parity set
Lk for recovering dp−1,k,

2) For 1 ≤ i ≤ p − 3, whether Si = L〈i+k+2〉p or Si =
R〈k−i−2〉p , |(Lk

⋃

Rk)
⋂

Si| = 1,
3) Whether S0 = L〈k+2〉p or S0 = R〈k−2〉p ,

|(Lk

⋃

Rk)
⋂

S0| = 0.

Apart from dp−2,k and dp−1,k which must be recovered
by Rk and Lk respectively, there are still p − 2 symbols
d0,k, d1,k, ..., dp−3,k in Dk to be recovered. The above
three conclusions show that there are p−3 overlapping
symbols in Lk

⋃

Rk and the union of parity sets for the
recovery of d0,k, d1,k, ..., dp−3,k. The following lemma
formally states the number of overlapping symbols in
the recovery.
Lemma 4: If a recovery sequence RS recovers x sym-
bols of d0,k, d1,k, ..., dp−3,k with parity sets of slope 1 and
other p− 2−x symbols with parity sets of slope −1, RS
has

N(x,O) = (p− 2− x)× x+ (p− 3)− |O|, (2)

overlapping symbols, where O = {(m,n)|0 ≤ m < n ≤
p− 3, Sm and Sn are parity sets, but not both of slope 1
(or slope −1), and share no overlapping symbol}.
Proof: In Equation (2), p−3 is the number of overlapping
symbols of Lk

⋃

Rk and the union of other parity sets
of RS . If each pair of a parity set of slope 1 and a
parity set of slope −1 in RS (excluding Rk and Lk) has
an overlapping symbol, there are totally (p− 2− x)× x
of these overlapping symbols. So Lemma 4 concludes.

In Equation (2), N(x,O) = p2−9
4 is maximized when

x = p−1
2 or p−3

2 , and |O| = 0. In the following, we prove

that N(x,O) = p2−9
4 cannot be matched, and show that

some recovery sequences match N(x,O) = p2−9
4 − 1. We

firstly introduce Lemma 5.
Lemma 5: Define A: a[0], a[1], ..., a[p− 3] with

{

a[i] = i, i is even,

a[i] = p− 3− i, i is odd.
(3)

Then A satisfies that

1) {a[i]|0 ≤ i ≤ p− 3}={i|0 ≤ i ≤ p− 3};
2) Given a pair of parity sets, Sm and Sn (m 6= n),

suppose that one of them is of slope 1 and the other
is of slope −1. Then Sm

⋂

Sn = ∅ if and only if
there is i, 0 ≤ i ≤ p − 3, such that a[i] = m, and
a[i+ 1] = n or a[i− 1] = n.

Proof: According to the definition of A, if i is odd, a[i] is
odd; otherwise a[i] is even. So 1) of Lemma 5 concludes
from a[i] 6= a[j] for i 6= j and 0 ≤ a[i] ≤ p− 3.

Now we prove 2) of Lemma 5. Suppose that
Sm

⋂

Sn = ∅. Without loss of generality, suppose that Sm

is of slope 1 and Sn is of slope −1, i.e. Sm = L〈k+m+2〉p

and Sn = R〈k−n−2〉p . Since Sm

⋂

Sn = ∅, i.e., L〈k+m+2〉p
⋂

R〈k−n−2〉p = ∅, we can conclude from Lemma 3 that

〈(k+m+2)− (k−n− 2)〉p = 〈m+n+4〉p = 0 or 2. (4)

Because 0 ≤ m,n ≤ p − 3, 4 ≤ m + n + 4 ≤ 2p − 2. So
m + n + 4 = p or m + n + 4 = p + 2 from Equation (4),
therefore n = p− 2−m or n = p− 4−m.

Because p is an odd number, one of m and n is odd
number also and another is even. If m is odd and n is
even, we know that a[p − 3 − m] = m, a[n] = n from
the definition of A. Let i = p− 3 −m. If n = p− 2−m,
n = i+1; otherwise n = p−4−m and n = i−1. So there
is i, 0 ≤ i ≤ p − 3, such that a[i] = m, and a[i + 1] = n
or a[i− 1] = n. The proof of case of n being odd and m
being even is similar.

If there is i, 0 ≤ i ≤ p − 3, such that a[i] = m, and
a[i+1] = n or a[i−1] = n in A. Without loss of generality,
suppose that m is odd and n is even, then a[p−3−m] =
m, a[n] = n from the definition of A. So i = p − 3 −m,
and n = i+ 1 = p− 2−m or n = i− 1 = p− 4−m. We
have

1) n = p − 2 − m: then 〈m + n + 4〉p = 2. Note that
one of Sm and Sn is a parity set of slope 1, and the
other is of slope −1. If Sm is of slope 1 and Sn is of
slope −1, i.e. Sm = L〈k+m+2〉p and Sn = R〈k−n−2〉p ,
〈(k+m+2)− (k−n− 2)〉p = 2; otherwise, Sm is of
slope −1 and Sn is of slope 1, i.e. Sm = R〈k−m−2〉p

and Sn = L〈k+n+2〉p , 〈(k+n+2)−(k−m−2)〉p = 2.
From Lemma 3, Sm

⋂

Sn = ∅.
2) n = p− 4 −m: then 〈m + n+ 4〉p = 0, the proof is

similar to case of n = p− 2−m.

From above, 2) of Lemma 5 concludes.

We are now ready to give a lower bound of disk reads
so as to recover a single failed disk.
Theorem 1: We have

1) A lower bound of disk reads for the recovery of

single disk failure is 3p2−8p+13
4 .

2) There are four recovery sequences which match the
lower bound of disk reads to recover a single failed
disk.

Proof: Since it needs p−2 symbols to recover each of the
erased symbols, the number of disk reads is (p−2)×p−
N(x,O). Using the sequence A defined in Lemma 5, we
analyze the upper bound of N(x,O) in Lemma 4.
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If |O| = 0, Sa[i] ∩ Sa[i+1] 6= ∅ for 0 ≤ i ≤ p − 4 from
the definition of O and the definition of A in Lemma 5.
From 2) of Lemma 5, both of Sa[i] and Sa[i+1] are parity
sets of slope 1 (or slope −1). So all of Sa[0], Sa[1], ...,
Sa[p−3] are parity sets of slope 1 (or all of slope −1).
From 1) of Lemma 5, all of S0, S1, ..., Sp−3 must be parity
sets of slope 1 (or all of slope −1), which means that all
information symbols must be recovered by parity sets of
slope 1 or all by parity sets of slope −1, i.e. x = p− 2 or

0 in Equation (2). Therefore N(x,O) < p2−9
4 .

We now show that some recovery sequences match

N(x,O) = p2−9
4 − 1 overlapping symbols, which maxi-

mize N(x,O).
If |O| = 1, from the proof of case |O| = 0, there is

only one l such that one of Sa[l] and Sa[l+1] is a parity
set of slope 1, and the other is of slope −1. To satisfy
the condition that x = (p − 1)/2 or (p − 3)/2 (so as to
maximize N(x,O)) in Equation (2), l must be p−5

2 or p−3
2 .

So we can divide A into two successive subsequences
a[0], ..., a[l] and a[l + 1], ..., a[p − 3], such that all of
Sa[0], ..., Sa[l] are parity sets of slope 1 (or all of slope
−1), while all of Sa[l+1], ..., Sa[p−3] are parity sets of
slope −1 (or all of slope 1) correspondingly. There are

only four recovery sequences which have p2−9
4 − 1 = p2−13

4
overlapping symbols. They are:

1) RS1: Sa[i] = L<a[i]+k+2>p
, 0 ≤ i ≤ p−3

2 ; Sa[i] =

R<k−a[i]−2>p
, p−1

2 ≤ i ≤ p− 3;

2) RS2: Sa[i] = R<k−a[i]−2>p
, 0 ≤ i ≤ p−3

2 ; Sa[i] =

L<a[i]+k+2>p
, p−1

2 ≤ i ≤ p− 3;

3) RS3: Sa[i] = L<a[i]+k+2>p
, 0 ≤ i ≤ p−5

2 ; Sa[i] =

R<k−a[i]−2>p
, p−3

2 ≤ i ≤ p− 3;

4) RS4: Sa[i] = R<k−a[i]−2>p
, 0 ≤ i ≤ p−5

2 ; Sa[i] =

L<a[i]+k+2>p
, p−3

2 ≤ i ≤ p− 3;

RSi(1 ≤ i ≤ 4) maximize the number of overlapping
symbols, and minimize disk read with (p−2)×p−N(x,O)

= (p− 2)× p− p2−13
4 = 3p2−8p+13

4 symbols.

Authors of [19] derive the information theoretic lower
bound of the amount of data needed for recovery based
on a linear network code defined over a sufficiently large
finite field. This lower bound approaches to a factor of
50% for double-fault tolerant codes as the size of the
storage system increases. Authors of [41], [42] design
new codes which match the information theoretic lower
bound. However, the size of the field to realize the
codes must be no less than 3, which implies that the
codes cannot be implemented only with XOR operations
and their computational complexities will be higher than
those of the popular XOR-based RAID-6 codes. Authors
of [42] also prove that to match the information theoretic
lower bound of repair bandwidth, the size of the field to
realize the code must be no less than 3. Authors of [43]
design a vector code with a repair bandwidth of 50%
of the survived data amount, where repair bandwidth is
the data amount transmitted in the storage system for
the repair, not the data amount read from the disk. The
repair scheme in [43] reads all data from each surviving

node in the system, encodes the data at each node to
an encoded one with 50% of size and then transmits the
encoded one to the back-up node.

In an X-code-based storage system, any failed symbol
can only be recovered by XOR-summing all other sym-
bols in its parity of slope 1 (or slope −1). Given a failed
disk Dk, suppose that di,k and dj,k (i 6= j) are two lost
symbols in disk Dk. Because the diagonals of slope −1
which di,k and dj,k lie at are parallel (the diagonals of
slope 1 are also parallel), di,k does not lie at the two
diagonals of slope 1 and slope −1 which dj,k lies at,
which means that di,k can not be used to recover dj,k.
So any recovered symbol can not be used to recover
other lost symbols. Therefore the above four recovery
sequences are with the minimal disk reads. Theorem 1
is tight for X-code.

In the following, we select RS4 as an example to
present our recovery algorithm, MDRR (Minimum Disk
Read Recovery), for single-disk failure which minimizes

disk read. RS4 reduces p2−13
4 symbols read from disks.

Compared with p(p − 2) disk reads of the conventional
recovery algorithm, MDRR reduces approximately 1/4
of disk reads. Fig. 4 gives a comparison of the number
of disk reads between the conventional recovery and
MDRR with different p.

Algorithm 1 Minimum Disk Read Recovery (MDRR) of
Single Disk Failure for X-code

Suppose disk Dk is failed.

1) For 0 ≤ i ≤ p−5
2 , if i is odd, recover di,k by XOR-

summing all symbols in L〈k+i+2〉p − {di,k}; other-
wise, recover di,k by XOR-summing all symbols in
R〈k−i−2〉p − {di,k}.

2) For p−3
2 ≤ i ≤ p−1, if i is even, recover di,k by XOR-

summing all symbols in L〈k+i+2〉p − {di,k}; other-
wise, recover di,k by XOR-summing all symbols in
R〈k−i−2〉p − {di,k}.

5 DISK READ BALANCING

In the previous section, we derived a lower bound of
disk reads and presented the MDRR algorithm to match
the lower bound. But MDRR does not possess the disk
read balancing property, i.e., it reads different number
of symbols from different disks. In case of unbalanced
disk read, a disk with a heavier load will slow down
the recovery and degrade the availability of the system.
Here, we prove that disk read cannot be balanced in a
stripe while matching the lower bound in general cases.
Furthermore, it cannot be balanced by disk rotation. We
then present a method which balances disk read in a
group of p− 1 stripes while matching the lower bound.
Theorem 2: If a single disk failure recovery algorithm
matches the lower bound of disk reads, then it cannot
balance disk read from different disks for the recovery
within a stripe in any cases except p = 7.
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disks.

Proof: Only four recovery sequences RSi (1 ≤ i ≤ 4)
read minimum number of symbols for the recovery. We
prove Theorem 2 with RS1. The proofs of RS2, RS3,
RS4 are similar. We say that disk read is balanced within
a stripe if the numbers of disk reads of each disk differ
by at most one.

First, RS1 matches the lower bound of disk reads, i.e.,
3p2−8p+13

4 . On average, it reads r = 3p2−8p+13
4×(p−1) symbols

from each disk. However, it reads p − 3 symbols from

disk D〈k+1〉p . When |(p− 3)− r| = | (p−4)2−17
4×(p−1) | is no more

than 1, it is possible to balance disk read.
If p > 7, |(p − 3) − r| > 1, and disk read cannot

be balanced within a stripe. By enumerating all four
recovery sequences with minimal disk read, when
p = 5, Algorithm 1 cannot balance disk read because
the numbers of disk read on different disks differ by
two; but when p = 7, disk read is balanced.

Note that (p − 3) − r increases rapidly with the in-
crease of p when p > 7. Unbalanced disk read becomes
more serious as p increases. Fig. 5 gives the ratios of
the maximum to the minimum number of disk reads
among different disks. From Theorem 2, we know that
in general, it is impossible to balance disk reads while
matching the lower bound within a stripe. One may
think that disk read can be balanced by simply rotating

disks in different stripes. In the following, we show
that simply rotating disks cannot balance disk read and
present a method which balances disk read in a group
of p − 1 stripes. We will firstly introduce the notion of
logical disk.
Definition 2: Given a disk array system with p disks D0,
D1, ..., Dp−1, which are called physical disks. Let PDs =
{0, 1, 2, ..., p − 1} and T :t0t1...tp−1 be a permutation of
PDs, define the logical disk of Dj to T as LDtj = Dj ,
0 ≤ j ≤ p− 1.

X-code can be understood using the notion of logical
disks where di,j is the symbol stored at row i of logical
disk LDj . Fig. 6 shows an example of p = 5, where the
logical disks correspond to a permutation, 02413. The
logical disks of D0, D1, ..., D4 are LD0 = D0, LD2 =
D1, LD4 = D2, LD1 = D3, LD3 = D4, respectively. For
example, d2,3 is the symbol at row 2 of logical disk LD3,
which is physically stored in disk D4 because LD3 = D4.
Similarly, d4,1 is physically stored in disk D3 because
LD1 = D3.

Rotating the physical disks once corresponds to a
permutation 12...(p − 1)0 of PDs with LDj=D〈j−1〉p ,
0 ≤ j ≤ p − 1. We will show that recovery sequences
RSi (1 ≤ i ≤ 4) cannot balance disk reads by simply
rotating the disks.
Lemma 6: X-codes implemented on the following two
groups of logical disks are equivalent:

1) Group 1: LDj = Dj , j = 0, 1, ..., p− 1.
2) Group 2: LDj = Dj−1, j = 0, 1, ..., p− 1.

Proof: Group 2 is a rotation of all the physical disks of
Group 1. From the definition of X-code, we have the
following two equations:















dp−2,j =
p−3
∑

k=0

dk,〈j+k+2〉p ,

dp−1,j =
p−3
∑

k=0

dk,〈j−k−2〉p ,

(5)

where di,j is the symbol at row i of logical disk LDj .
Suppose that d

′

i,j , d
′′

i,j are the symbols at row i of logical
disk LDj of Group 1 and Group 2 respectively. From
the definition of the two groups, symbols d

′

i,〈j−1〉p
and

d
′′

i,j(0 ≤ i ≤ p−3) store at row i of the same physical disk,

i.e., d
′

i,〈j−1〉p
= d

′′

i,j . So we have the following equalities
from the definition of X-code.



































d
′′

p−2,j =
p−3
∑

k=0

d
′′

k,〈j+k+2〉p
=

p−3
∑

k=0

d
′

k,〈(j−1)+k+2〉p

= d
′

p−2,〈j−1〉p
.

d
′′

p−1,j =
p−3
∑

k=0

d
′′

k,〈j−k−2〉p
=

p−3
∑

k=0

d
′

k,〈(j−1)−k−2〉p

= d
′

p−1,〈j−1〉p
.

(6)

From Equation (6), two parity symbols also satisfy d
′′

i,j

= d
′

i,〈j−1〉p
, i = p − 2 and p − 1. So X-codes based on

logical disks of Group 1 and Group 2 are exactly the
same.
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Fig. 6. An example of X-code encoding based on logical disks.

Definition 3: Given two logical disks LDj1 and LDj2 ,
the logical distance from LDj1 to LDj2 is defined as
LDI(j1, j2) = 〈j2 − j1〉p.

Note that logical distance is asymmetric, i.e., it is
possible that LDI(j1, j2) 6= LDI(j2, j1). For example,
when p = 7, LDI(2, 4) = 2, but LDI(4, 2) = 5.
Theorem 3: If a recovery sequence RS for X-code sys-
tem matches the lower bound of disk read, it cannot
balance disk reads by simply rotating disks.
Proof: If LDI(j1, j2) = LDI(l1, l2), there is t such that
l1 = 〈j1 − t〉p and l2 = 〈j2 − t〉p from Definition 3. From
Lemma 6, we know that the number of symbols read
from LDl2 when LDl1 fails equals to the number of
symbols read from LDj2 when LDj1 fails by t times of
rotation. This implies that the number of symbols to be
read in a stripe from physical disk Dj when physical
disk Dk fails depends on the logical distance from the
logical disk of Dj to the logical disk of Dk in the stripe.
Because rotation does not change the logical distance
from a physical disk to the failed physical disk, RS
reads the same number of symbols from a physical
disk in different stripes by simply rotating. The disk
read of RS is not balanced in a stripe, and it cannot be
balanced by simply rotating disks.

In the following, we will provide a method, Leap Ro-
tation, to logically number physical disks. Leap rotation
will balance disk reads in a group of successive p − 1
stripes, which are numbered 1, 2, ..., p− 1.
Definition 4: Given physical disk D0, D1, ..., Dp−1, the
logical disk of Dk with l-th Leap Rotation LP l is LD〈k×l〉p ,
k = 0, 1..., p− 1, l = 1, 2, ..., p− 1.

Fig. 7 is an example of leap rotation within p − 1
successive stripes with p = 5, where the l-th stripe is
implemented with the l-th leap rotation LP l. To show
that leap rotation balances disk read in p−1 stripes while
matching the lower bound of disk read, we first present
some properties of a prime number in Lemma 7.
Lemma 7: Given a prime number p, we have

LD0 LD1 LD2 LD3 LD4

D0 D1 D2 D3 D4

D0 D3 D1 D4 D2

D0 D2 D4 D1 D3

D0 D4 D3 D2 D1

Stripe 1

Stripe 2

Stripe 3

Stripe 4

Fig. 7. Logical disks in different stripes when p = 5.

1) for 1 ≤ l ≤ p − 1, {〈l × j〉p|j = 0, 1, ..., p − 1} =
{0, 1, ..., p− 1}.

2) for any x, y with 0 ≤ x, y ≤ p− 1, x 6= y, {〈x × l −
y × l〉p|l = 1, 2, ..., p− 1} = {1, 2, ..., p− 1}.

Proof: If 〈l × j1〉p = 〈l × j2〉p for some 0 ≤ j1, j2 ≤ p− 1,
we can conclude that 〈l × (j1 − j2)〉p = 0. Because p is
a prime, this equation implies p|l or p|(j1 − j2). Because
1 ≤ l ≤ p − 1 and 0 ≤ j1, j2 ≤ p − 1, j1 = j2. So 1) of
Lemma 7 is proved. Similarly, 2) of Lemma 7 concludes.

Theorem 4: A recovery sequence reads the same num-
ber of symbols from different disks in a group of p − 1
stripes if the l-th stripe is X-coded with the logical disks
numbered by l-th leap rotation LP l.

Proof: 1) of Lemma 7 ensures that LP l is reasonable,
i.e. the logical numbers of all disks in l-th stripe are
0, 1, ..., p− 1 respectively. So X-code can be implemented
based on the logical disks.

From 2) of Lemma 7, for any two physical disks
Dx and Dy (x 6= y), the logical distances from Dx

to Dy in different stripes are different. So the logical
distances from Dx to Dy in p− 1 stripes are 1, 2, ..., p− 1
respectively. Suppose that physical disk Dk fails, for
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any surviving physical disk Dj (j 6= k), the logical
distances from Dj to Dk in p− 1 stripes are 1, 2, ..., p− 1
respectively. So the number of symbols read from Dj

in p − 1 stripes is exactly the sum of the number of
symbols read from all surviving disks in one stripe, or
the number of symbols read from all surviving disks for

the recovery of a stripe, 3p2−8p+13
4 . So disk read can be

balanced in p−1 successive stripes with leap rotations.

Remark: Usually the size of the data in a stripe is
much smaller than the memory size of a disk system. So
the data in a group of p− 1 stripes can be read from the
disks to the memory in one round of disk reads. Hence,
the disk read of a recovery sequence can be balanced in
a group of p− 1 stripes.

With the Leap Rotation, we propose a recovery ap-
proach called Group-based MDRR (GMDRR) as: (1) In
the l-th stripe, the X-code is implemented with the
logical disks based on LP l. (2) MDRR is executed in each
stripe.

6 EXPERIMENTS ON A PARALLEL STORAGE

TESTBED

We empirically evaluate different recovery schemes for
X-code in a real networked storage system deployed
in a local area network. We compare three recovery
algorithms: (i) the conventional approach that downloads
the entire original file and recovers the lost data, (ii)
the MDRR algorithm, and (iii) the GMDRR algorithm.
Our goal is to validate our theoretical analysis in a real
network environment, by showing that our proposed
MDRR and GMDRR algorithms actually improve the
recovery performance of X-code in practice. Note that
our experiments are different from the simulations used
by [28], as we consider read/write operations on real
storage devices over a networked environment so as
to capture the actual recovery performance in realistic
settings.

6.1 Methodology

We implement the recovery schemes on NCFS [40], a
network-coding-based parallel/distributed file system.
NCFS manages all data read/write operations and trans-
parently stripes data across p storage nodes, each corre-
sponding to a disk or a storage device. In the current
NCFS implementation, each symbol corresponds to a
chunk. Note that NCFS supports the recovery operation
for a single-node failure. The recovery operation consists
of three steps: (i) reading data from surviving nodes, (ii)
reconstructing lost data inside NCFS, and (iii) writing
data to a new node.

Fig. 8 shows the network topology considered in our
experiments. We deploy NCFS on a Linux-based server
equipped with Intel Quad-Core 2.66GHz, 4GB RAM, and
a harddisk with the SATA interface. NCFS interconnects
multiple storage nodes via a 1-Gbps switch. There are

Gigabit Switch

NCFS 

...

storage nodes: 

PCs / NAS devices

Fig. 8. Topology used in our testbed. Each storage node
corresponds to a disk.

two types of storage nodes: (i) Pentium 4 PCs, each
equipped with a 100-Mbps Ethernet interface, and (ii)
network attached storage (NAS) devices, each equipped
with a 1-Gbps Ethernet interface. We consider two types
of topologies: (i) homogeneous, in which all storage nodes
are PCs, and (ii) heterogeneous, in which the storage nodes
are a mixture of PCs and NAS devices. In each topology,
we also have a spare Pentium 4 PC that serves as the new
node where the recovery operation places the recovered
data. Furthermore, we configure the storage volume of
each storage node as 1GB in our experiments.

We first write 40 files of size 100MB each to NCFS,
which then stripes the data across the storage nodes. We
choose to store large files to mimic the file patterns in
real-life distributed storage systems (e.g., [1]). We then
disable one node, and activate the recovery operation
of NCFS to recover the data of the failed node in a
new node. We consider both offline and online recovery
modes, i.e., no files are read and files are being read
during recovery, respectively. For each recovery scheme,
we evaluate the overall recovery time per megabyte of data.
Our results are averaged over five runs.

6.2 Results

Summary of results. Experiments show that MDRR and
GMDRR reduce the recovery time of the conventional
approach by around 20%, conforming to the theoreti-
cal findings. Specifically, in the heterogeneous topology,
MDRR and GMDRR can reduce the recovery time by
18.0% and 22.0%, respectively, and GMDRR generally
uses less recovery time than MDRR regardless of which
node (column) is failed. The improvements of MDRR
and GMDRR are similar in both offline and online
recovery modes.

Experiment 1 (Impact of chunk size on the recovery
performance). We first evaluate the impact of chunk size
on the recovery performance. Here, we vary the chunk
size from 4KB to 1024KB, which is configurable in the
current NCFS implementation. Fig. 9 shows the recov-
ery times for the conventional approach and MDRR.
We observe that in both approaches, the recovery time
decreases as the chunk size increases, mainly because
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Fig. 9. Experiment 1: Impact of chunk size.
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Fig. 10. Experiment 2: Recovery time in the homoge-

neous topology (Column 0 is failed).

the number of disk I/O requests decreases with a larger
chunk size. Note that the rate of increase diminishes
as the chunk size further increases. Thus, we expect
that the recovery time stabilizes for a large chunk size.
Nevertheless, for all chunk sizes that we choose, our
proposed MDRR approach outperforms the conventional
approach consistently.

In the following experiments, we fix the chunk size to
be 4KB, which is the default disk block size in existing
Linux extended file systems.

Experiment 2 (Recovery in the homogeneous topol-
ogy). We now evaluate the recovery performance in
the homogeneous topology. We consider p = 5, 7, and
11 storage nodes. Fig. 10 shows the recovery time (in
offline recovery mode) when the failure is in Column 0.
We observe that both MDRR and GMDRR reduce the
recovery time of the conventional approach, for example,
by 22.3% and 22.5% when p = 11, respectively. Note that
the difference between MDRR and GMDRR is very small
in the homogeneous setting.

We also look into the performance breakdown (not
shown in the figure), and find that the step of reading
data from the survival nodes accounts for more than
90% of the overall recovery time. This also justifies our
objective of minimizing the data reads during recovery.

We point out that our experimental results are consis-
tent with our theoretical findings. In theory, the improve-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

P=5 P=7 P=11R
e
c
o
v
e
ry

 t
im

e
 (

in
 s

e
c
o
n
d
s
) 

p
e
r 

M
B

Conventional
MDRR

GMDRR

Fig. 11. Experiment 3: Recovery time in the heteroge-

neous topology.

ments of MDRR over the conventional approach are 20%
(p = 5), 25.7% (p = 7), and 27.3% (p = 11), while our
experiments indicate that the improvements are 19.5%
(p = 5), 22.6% (p = 7), and 22.32% (p = 11). We observe a
slight drop in improvements in our experiments, mainly
because of the additional overhead of reconstructing
data and writing data to a new node.

Experiment 3 (Recovery in the heterogeneous topol-
ogy). We now evaluate the recovery performance when
the storage nodes are of different types. We consider
three setups: (i) p = 5, with 3 PCs in Columns 0-2 and
2 NAS devices in Columns 3-4, (ii) p = 7, with 4 PCs in
Columns 0-3 and 3 NAS devices in Columns 4-6, and (iii)
p = 11, with 8 PCs in Columns 0-7 and 3 NAS devices.
Recall that the NAS devices have a higher access speed
(with 1-Gbps interface) than the PCs (with only 100-
Mbps interface).

Fig. 11 shows the recovery time (in offline recovery
mode) when the failed node is in Column 0. Both
MDRR and GMDRR reduce the recovery time of the
conventional method, say, by 18.0% and 22.0% when p =
11, respectively. The advantage of GMDRR over MDRR
is more obvious in this case since it seeks to balance
the number of disk reads and will not download more
chunks from the nodes that have a slower access speed
(e.g., PCs in our case).

To further evaluate GMDRR, suppose now that the
failed node appears in another different column (i.e.,
aside from Column 0). Fig. 12 shows how the location
of the failed node affects the recovery time performance
when p = 5. Both MDRR and GMDRR still reduce the
recovery time of the conventional approach regardless of
which node (column) is failed, while the improvement of
GMDRR is more significant than MDRR in some cases.
In particular, if the failed node is located in Column 1,
GMDRR further reduces the recovery time of MDRR by
at least 9%.

Experiment 4 (Online recovery). In this experiment,
we study the online recovery mode, in which we repair
a failed node while files are being read. During the
recovery process, we also independently download a
number of files (of size 100MB each) from NCFS. This
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Fig. 12. Experiment 3: Recovery time in the heteroge-
neous topology when the failed node is located in another

different column (p = 5).

mimics a read-intensive access pattern. Here, we focus
on the heterogeneous topology as in Experiment 2.

Fig. 13 shows the recovery time (now in online recov-
ery mode) for different recovery schemes when the failed
node is Column 0. In general, the recovery time for each
scheme is larger than that in offline recovery mode (see
Fig. 10), yet the improvements of MDRR and GMDRR
over the conventional approach still exist. For example,
GMDRR reduces the recovery time of the conventional
approach by 16.26% when p = 11. Note that GMDRR
outperforms MDRR (e.g., the recovery time is reduced
by 8.4%) by balancing the data reads among the storage
nodes.

While the emphasis of our work is on improving
the recovery performance, MDRR and GMDRR are also
beneficial to file downloads during recovery. We measure
the per-file download time for the files whose entire
downloads occur during the time window of the re-
covery operation. Fig. 14 plots the per-file download
time for different recovery schemes. Both MDRR and
GMDRR reduce the per-file download time compared
to the conventional approach (e.g., by at least 6% when
p = 11), since they minimize the data reads during
the recovery process. We emphasize that we here only
provide a preliminary study on how the online recovery
using MDRR and GMDRR can improve normal usage,
while the actual improvements depend on the workload
of file access patterns. We pose the further analysis as
future work.

7 CONCLUSIONS

We study the optimal recovery problem of a single-
disk/node failure in X-code-based parallel storage sys-
tems. Since existing optimal recovery solutions are
mainly designed for RAID-6 horizontal codes, to our
knowledge, this is the first work that addresses the
optimal recovery problem of RAID-6 vertical codes. We
propose a recovery algorithm MDRR which reduces the
disk reads about 25% compared with the conventional
recovery scheme, and matches the theoretical lower
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bound of disk reads for the recovery. Because MDRR
issues unbalanced disk read among different disks and
its disk read cannot be balanced by disk rotation, we
present a leap rotation scheme which makes sure that
MDRR issues balanced disk read among disks in a
group of p − 1 stripes. The principle of leap rotation is
implementing data encoding based on logical number of
disks, and this rotation scheme can be applied to balance
disk reads in storage systems with different codes, which
is one of our future work.
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