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Abstract—Dynamic Random Access Memory (DRAM) errors
are prevalent and lead to server failures in production data centers.
However, little is known about the correlation between DRAM
errors and server failures in state-of-the-art field studies on DRAM
error measurement. To fill this void, we present an in-depth data-
driven correlative analysis between DRAM errors and server
failures, with the primary goal of predicting server failures based
on DRAM error characterization and hence enabling proactive
reliability maintenance for production data centers. Our analysis is
based on an eight-month dataset collected from over three million
memory modules in the production data centers at Alibaba. We
find that the correctable DRAM errors of most server failures only
manifest within a short time before the failures happen, implying
that server failure prediction should be conducted regularly at
short time intervals for accurate prediction. We also study various
impacting factors (including component failures in the memory
subsystem, DRAM configurations, types of correctable DRAM
errors) on server failures. Furthermore, we design a machine-
learning-based server failure prediction workflow and demonstrate
the feasibility of server failure prediction based on DRAM error
characterization. To this end, we report 14 findings from our
measurement and prediction studies.

I. INTRODUCTION

Servers in modern data centers typically use dynamic
random access memory (DRAM) as main memory for fast data
management. However, DRAM errors (i.e., bit errors in DRAM
reads) are reportedly prevalent in production environments
[23], [31], [32], [39], [43]–[47], due to magnetic and electrical
interferences [4], [33], [36], operation disturbances [8], [25],
and hardware wear-outs [5]. Although error correcting codes
(ECC) are used in DRAM hardware to detect and correct
DRAM errors, DRAM errors still lead to server failures
(i.e., the servers no longer support data management for host
applications) if either (i) there exist too many erroneous bits in
DRAM that exceed the correctable limit of ECC or (ii) there
exist too many DRAM errors within a server that make the
server fail to operate even though each such DRAM error is
correctable by ECC. In production environments, the proportion
of server failures caused by DRAM errors is substantial. For
example, an earlier study shows that around 30% of hardware-
related server failures in high-performance computing sites
are caused by DRAM errors [42]; a more recent study shows
that DRAM errors account for 3.06% of all hardware-related
server failures in data centers, while such a percentage implies
thousands of server failures and is statistically significant [48].

Field studies in the literature [23], [31], [32], [39], [43]–[47]
have extensively analyzed the trends and statistical properties
of DRAM errors in production environments, yet little is known
about how DRAM errors are correlated with server failures.

Such a limitation is mainly attributed to the unavailability of
trouble tickets on server failures, thereby preventing existing
studies from further characterizing the relationships between
DRAM errors and server failures. We argue that understanding
the correlation between DRAM errors and server failures is
critical to proactive reliability maintenance; in particular, by
characterizing DRAM errors before server failures happen,
system administrators can proactively predict imminent server
failures that are caused by DRAM errors and apply repair
measures in advance (e.g., by relocating the data in the soon-
to-fail servers to other healthy servers).

To elaborate, the following questions remain unexplored but
are important for understanding the correlation between DRAM
errors and server failures. (i) How do DRAM errors cause
server failures? (ii) When and how common do DRAM errors
occur before server failures happen? (iii) How do component
failures with the manifestation of DRAM errors in the memory
subsystem lead to server failures? (iv) How do DRAM
configurations lead to server failures? (v) How do different
types of DRAM errors manifest in DRAM before server failures
happen? (vi) How can we accurately predict imminent server
failures based on DRAM error characterization?

In this practical experience report, we present an in-depth
data-driven analysis to study the correlation between DRAM
errors and server failures. We conduct our analysis from the
server failure prediction perspective, with the primary goal of
achieving accurate server failure prediction based on DRAM
error characterization. Specifically, we conduct a measurement
study on the production data centers at Alibaba. We study a
dataset collected from 250 K servers with more than 3 M Dual
In-line Memory Modules (DIMMs) over an eight-month period.
Our dataset covers DRAM error logs, trouble tickets of server
failures caused by DRAM errors, and inventory logs. We make
the following key contributions:

• We study the characteristics of correctable DRAM errors in
2,137 server failures that are caused by DRAM errors. We
find that in most server failures, correctable DRAM errors
only manifest within a short time before the failures happen
(e.g., within one hour for more than 40% of server failures).
If we conduct server failure prediction less frequently, many
such server failures become unpredictable as they do not
show any DRAM error symptoms.

• We analyze the impact of different aspects of DRAM errors
on server failures, including component failures in the
memory subsystem, DRAM configurations, and types of
correctable DRAM errors.



• We design a machine-learning-based server failure prediction
workflow that incorporates the characteristics of correctable
DRAM errors into feature generation. Based on our mea-
surement findings, we study how the choices of feature
generation, prediction models, and prediction parameters
affect the prediction accuracy. Our workflow achieves up to
62.9% of F1-score in the prediction of server failures that
are driven by correctable DRAM errors, and also reduces
thousands of hours of server downtime.
To this end, we report 14 findings from our measurement and

prediction studies. We release our dataset at https://github.com/
alibaba-edu/dcbrain/tree/master/dramdata and all the source
code at https://github.com/zncheng/dramanalysis.

II. BACKGROUND OF DRAM

DRAM organization. DRAM is formed by a group of DIMMs.
Specifically, each server in our data center has two processor
sockets, each of which is connected to two integrated memory
controllers. Each memory controller is further connected to
three channels with up to two DIMMs each. Thus, each server
can be equipped with a total of up to 24 DIMMs.

At a low level, a DIMM comprises multiple DRAM chips
grouped in ranks, such that the chips in the same rank can
be simultaneously accessed in a DRAM read/write. Each chip
contains multiple banks that can be operated in parallel. Each
bank is further partitioned into rows (e.g., 64 K) and columns
(e.g., 1 K), and the element in a row and a column is called a
cell, which can store a single bit of data.

A chip can have four or eight pins, referred to as x4 or x8
chips, respectively. Each rank forms 64 pins, either in 16 x4 or
in eight x8 DRAM chips, that are connected to a 64-bit data
bus for accessing data in 64-bit units (called words).
DRAM errors. We define a DRAM error as a symptom when
DRAM behaves abnormally, such that one or multiple bits
in DRAM are read differently from what they were written.
Modern DRAM adopts error correcting codes (ECC) to protect
against DRAM errors. Representative examples of ECC include
single-error-correction-double-error-detection (SEC-DED) [10]
for correcting any one flipped bit and detecting any two flipped
bits in a single word, as well as single device data correction
(SDDC) [1], [9] (or Chipkill ECC [11]) for correcting up to
four bits in a single word. Most servers in our data centers
use SDDC, except that servers of DRAM model B3 use SEC-
DED (Section III). To detect and correct any DRAM errors by
ECC, the memory controller scans the DRAM cells periodically
based on memory scrubbing [3]. Scrubbing in our data centers
is carried out every 24 hours.

If the number of erroneous bits in a DRAM error exceeds
the correctable limit of ECC, the DRAM error cannot be fixed.
We classify a DRAM error as: (i) a correctable error (CE) if it
can be corrected by ECC, or (ii) an uncorrectable error (UE)
if it can be detected but cannot be corrected by ECC.
Server failures. In this work, we focus on the server failures
that are caused by DRAM errors, such that the failed servers
can no longer support the normal DRAM access operations for
their hosted applications. Such failures are reported in trouble

tickets (Section III) by our maintenance system based on a set
of pre-configured rules. Specifically, we classify server failures
into three failure types:
• UE-driven failure: It refers to a server failure due to the

occurrence of UEs, in which the server crashes or cannot
allow its hosted applications to access data in DRAM. Once
a server shows a UE, our maintenance system immediately
treats the server as failed and reports a UE-driven failure.

• CE-driven failure: It refers to a server failure due to the
occurrence of an overwhelmingly large number of CEs that
cannot be properly handled by the server. Our maintenance
system reports a CE-driven failure if the server has at least
10 K CEs in the past 24 hours. A CE-driven failure can be
viewed as a denial of service attack [39] against the server.

• Miscellaneous failure: It refers to a server failure that is
intricately related to DRAM errors, such as when too many
DRAM pages are offline (e.g., at least 100 MB of offline
pages) or some DIMMs are disconnected from the server
and cannot be accessed by host applications. In such cases,
our maintenance system reports a miscellaneous failure even
though they are not directly driven by UEs or CEs.

III. DATASET

We collected data that records the DRAM errors and server
failures from 250 K servers deployed in production data centers
at Alibaba. Our dataset spans eight months; note that we
anonymize the exact dates to prevent the memory models from
being inferred based on the deployment dates. Our dataset
includes three data types: DRAM error logs, trouble tickets on
server failures, and inventory logs.
DRAM error logs. Each server collects its DRAM error logs
using mcelog [27], a Linux tool that collects DRAM errors
based on the Machine Check Architecture (MCA) [26]. It runs
a mcelog daemon to record the details of any DRAM error
event, including the server ID, DIMM ID, rank ID, bank ID,
row ID, column ID, and detecting source (i.e., whether the error
is detected by the memory scrubber or a DRAM read/write
operation). Specifically, when a memory controller detects a
DRAM error, it stores the error details in the hardware registers
of MCA. Then the memory controller interrupts the CPU to
notify both the operating system to handle the error and the
mcelog daemon to record the error event.

In total, our DRAM error logs include 75.1 M CEs from
30,496 servers (including both healthy and failed servers) and
87,186 write errors from 351 servers over the eight-month
span. In our analysis, we only focus on the CEs in the DRAM
error logs, since the write errors are much fewer and they
do not lead to server failures in our dataset. Note that UEs
are not collected here, but instead in trouble tickets since the
occurrence of a UE leads to a server failure.
Trouble tickets. Each server runs a background monitoring
daemon that monitors system-level abnormal events (e.g., server
crash) and sends system event logs to our centralized main-
tenance system, which checks for any server failure via rule-
based detection. If a server failure is detected, our maintenance
system issues a trouble ticket, which records the server ID,

https://github.com/alibaba-edu/dcbrain/tree/master/dramdata
https://github.com/alibaba-edu/dcbrain/tree/master/dramdata
https://github.com/zncheng/dramanalysis


Manufacturers Servers% 8 DIMMs 12 DIMMs 16 DIMMs 24 DIMMs
M1 23.6% 4.1% 12.1% 0.9% 6.5%
M2 51.9% 6.4% 32.7% 1.4% 11.3%
M3 21.5% 3.6% 14.2% 0.6% 3.1%
M4 3.1% 0.3% 2.7% 0.0% 0.0%

TABLE I: Server population: percentages of servers from each
manufacturer (“Servers%”) and percentages of servers for each number
of DIMMs attached to each server over the server population.

DRAM model Capacity Chip width Servers%
A1 32 GB x4 31.4%
A2 16 GB x4 30.0%
B1 32 GB x4 15.2%
B2 16 GB x4 0.2%
B3 16 GB x8 4.5%
C1 32 GB x4 13.3%
C2 16 GB x4 6.4%

TABLE II: DRAM populations: “Servers%” shows the percentages
of servers for each DRAM model over the server population.

timestamp, and failure type. Our system administrators will
further manually validate the trouble tickets and close them
once they are fixed (e.g., the failed DIMM is replaced).

We finally collected a total of 3,017 trouble tickets over the
eight-month span. Each trouble ticket corresponds to a server
failure associated with a distinct server. Among all trouble
tickets, 2,137 of them show at least one CE before the server
failure, while the remaining ones do not show any CE before the
server failure (e.g., some of them only show a UE). Since our
study aims to analyze whether server failures are predictable
via the characterization of CEs (Section IV-B), unless otherwise
specified, we only focus on the 2,137 trouble tickets in which
server failures are preceded by at least one CE. Among these
2,137 trouble tickets, there are 567 UE-driven failures, 809
CE-driven failures, and 761 miscellaneous failures.
Inventory logs. We further collected the product details about
the DIMMs and servers in our dataset, so as to analyze
the correlation between server failures and DRAM hardware
configurations (Section V-B). Our servers are from four
manufacturers (denoted by M1, M2, M3, and M4). Table I
shows the percentages of servers from each manufacturer, as
well as the percentages of servers for each number of DIMMs
attached to a server. M2 accounts for the largest fraction
(51.9%) of servers among all manufacturers, and most of the
servers (61.7%) are equipped with 12 DIMMs.

Our dataset covers seven DRAM models from three major
vendors. Due to proprietary concerns, we denote each DRAM
model by “Vendor”“k”, where “Vendor” is represented by a
letter (‘A’, ‘B’, and ‘C’) and “k” means the k-th model in the
same vendor. Table II shows the percentages of servers and
the hardware characteristics (e.g., capacities and chip widths).
All DIMMs in a server are from the same DRAM model.
Limitations. We do not consider silent data corruptions [12]
as well as the impact of application workloads and the absolute
server age on DRAM errors, as such information is unavailable
in our dataset. We also do not consider the security exploits
that cause DRAM errors (e.g., Rowhammer attacks [25] that
trigger bit flips), as all applications running in our data centers
are under centralized administration.
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Fig. 1: Finding 1. Percentages of servers with CEs and server failures.

IV. CHARACTERIZATION OF SERVER FAILURES

We start with the high-level characterization of server
failures caused by DRAM errors. We first compare the
overall distributions of server failures with those in prior
work (Section IV-A) and present our analysis methodology
(Section IV-B). We further measure how CEs occur before
server failures (Section IV-C).

A. Overall Distributions

We first examine the overall distributions of servers with
CEs and server failures over the eight-month span, and make
comparisons with Facebook’s study on DRAM errors published
in 2015 [39]. Figure 1(a) shows the percentage of servers with
CEs over all servers in each month. The percentage of servers
with CEs stays stable with time, with 5.23% in each month
on average. Overall, 11.8% of servers experience CEs; the
percentage is slightly higher than 9.62% reported by Facebook
[39]. One major reason of having a higher percentage of servers
with CEs in our dataset is that our DIMMs have larger capacities
(16 GB or 32 GB) than in [39] (e.g., 2-24 GB). Figure 1(b)
shows the percentage of server failures over all servers in
each month (we consider all 3,017 server failures here to
calculate the overall failure rates). While our dataset includes
250 K servers, some servers may be added to or removed from
production over time during the eight-month span. We observe
that the percentage of server failures per month remains fairly
stable across months, with an average of 0.19% (i.e., there exist
hundreds of server failures per month). Overall, our results
indicate that DRAM errors and the server failures caused
by DRAM errors still pose reliability concerns to modern
production data centers.

Finding 1. Our dataset has a higher percentage of servers
with CEs than Facebook’s study [39], and the percentage of
server failures per month remains fairly stable across months.

B. Analysis Methodology

We conduct our measurement study from the server failure
prediction perspective. Our goal is to characterize the man-
ifestation of CEs before a server failure happens; by doing
so, we can extract the proper features for model training and
failure prediction based on machine learning (Section VI).
Specifically, for each server failure, let t0 be the time at which
its first CE occurs, and t1 be the time at which the server
failure occurs. Let T be the prediction window, defined as the
time interval prior to the server failure at which the failure
prediction should be conducted. We say that a server failure
is predictable if t0 ≤ t1 −T (Figure 2(a)), meaning that there
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Fig. 2: Predictable and unpredictable server failures based on the
length of the prediction window.

exists some CEs for our feature extraction1; otherwise, a server
failure is unpredictable if t0 > t1 −T (Figure 2(b)), as no CE
is observed when the prediction is conducted. Our analysis
examines different types of CE manifestations by varying the
length of T , so as to understand the predictability of a server
failure. Note that the prior work [6] also defines the prediction
window, but it focuses on the prediction of UEs, while we
focus on the prediction of server failures.

In practice, we cannot exactly know when a server failure
happens. We need to perform server failure prediction periodi-
cally, such that the periodic interval should be no larger than the
prediction window in order to capture all possible predictable
server failures with respect to the prediction window.

Our analysis treats the first CE observed in our dataset as
the real first CE, but the real first CE may occur prior to the
dataset collection. This leads us to falsely classify a predictable
server failure that appears near the beginning of the dataset
as unpredictable (i.e., no CE is observed in the dataset but
some CEs exist prior to the dataset collection). Nevertheless,
if we consider a small prediction window (as shown in our
following analysis), the misclassification has limited impact.
For example, if the prediction window is set to 30 minutes, we
may falsely classify the server failures that appear in the first
30 minutes of the dataset, but they only account for 0.05% of
all server failures in the whole dataset.

C. Characteristics of CEs Before Server Failures

We first examine the relative percentage of predictable server
failures (i.e., there exists CEs before the prediction) for each
failure type (i.e., CE-driven, UE-driven, and miscellaneous) by
varying the prediction window from one minute to 30 days.
Figure 3 shows that while large fractions of server failures
are predictable in a short prediction window (e.g., 96.5%-
99.9% when the prediction window is one minute), the
relative percentages of predictable server failures decrease
significantly as the prediction window increases. For example,
the relative percentages of predictable CE-driven, UE-driven,
and miscellaneous failures decrease to 31.8%, 33.5%, and
40.3% when the prediction window increases to one day,
respectively. Thus, keeping a short prediction window is critical
for accurate prediction. For example, if we choose a longer
prediction window for predicting server failures (e.g., an hour),
we will miss a significant fraction of server failures (e.g., 55.4%
of CE-driven failures).

1Note that whether a server failure can be correctly predicted depending on
the machine learning workflow (Section VI).
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Fig. 3: Finding 2. Relative percentage of predictable server failures
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Finding 2. A significant fraction of server failures become
unpredictable if the prediction window increases (e.g., beyond
one day). Keeping a short prediction window (e.g., at the
minute granularity) is necessary to achieve accurate server
failure prediction.

We next study the number of CEs that can be observed
before the prediction is conducted. For each predictable server
failure, we count the number of CEs before the prediction
is conducted (i.e., the number of CEs outside the prediction
window). We then compute the average number of CEs over all
predictable server failures for each failure type. Figure 4 shows
the average number of CEs before prediction for each failure
type versus the prediction window. The average numbers of
CEs for predictable CE-driven and miscellaneous failures are
generally high; for example, they are 8.7-22.3 K and 5.5-10.1 K
when the prediction window ranges from one minute to one day,
respectively. Their numbers drop when the prediction window
increases beyond seven days, due to fewer predictable server
failures (Figure 3). On the other hand, the average number
of CEs before prediction for predictable UE-driven failures
is small; for example, it is only 333-518 when the prediction
window ranges from one minute to one day.

We further study the CEs of healthy servers. The average
number of CEs over all healthy servers in the whole eight-
month period is 835, which is much less than those for
predictable CE-driven and miscellaneous failures (note that
we exclude three healthy servers with unexpectedly more
than 3.9 M CEs). This suggests that the number of CEs can
be an effective indicator for distinguishing between healthy
servers and CE-driven or miscellaneous failures in server failure
prediction. However, UE-driven failures have a limited number
of CEs (comparable to that in healthy servers), and we need
other features to aid our prediction.

Finding 3. The number of CEs before prediction is significant
in both predictable CE-driven and miscellaneous failures,
implying that it can serve as an effective indicator for server
failure prediction.

We further study the frequency of CE occurrences before
the prediction is conducted. For each predictable server failure,
we measure the mean time between errors (MTBE), defined
as the average time between a pair of adjacent CEs before the
prediction is conducted. We collect all MTBE samples across
all predictable server failures for each failure type and plot
the median one to avoid the extreme cases. Figure 5 shows
the median MTBE for each failure type versus the prediction



0.1

1

10

100

1m 5m 10m 20m 30m 1h 1d 7d 30d
Prediction window

#
 o

f 
C

E
s 

(K
)

UE-driven CE-driven Misc

Fig. 4: Finding 3. Average number of CEs before prediction for each
failure type versus the prediction window (y-axis is in log scale).

0.1

1

10

100

1000

1m 5m 10m 20m 30m 1h 1d 7d 30d
Prediction window

M
T

B
E

 (
m

in
u

te
s)

UE-driven

CE-driven

Misc

Fig. 5: Finding 4. Median mean time between errors (MTBE) before
prediction for each failure type versus the prediction window (y-axis
is in log scale).

window. The median MTBE values for all failure types are
generally small in short prediction windows; for example, they
are 5.3, 14.3, and 1.1 minutes for predictable UE-driven, CE-
driven, and miscellaneous failures when the prediction window
is one hour, respectively. Also, as the prediction window
decreases, the median MTBE values become smaller. This
suggests that the CEs tend to occur in bursts as a server failure
is approaching.

Finding 4. The MTBE is generally small in all predictable
server failures in short prediction windows. Also, the MTBE
decreases as the prediction window decreases.

In summary, CEs typically occur within a short time before
the prediction is conducted, and hence a large fraction of server
failures become unpredictable when the prediction window is
large. Thus, we need to use a short prediction window (e.g., at
the minute granularity) to periodically predict server failures
for accurate prediction.

V. IMPACTING FACTORS ON SERVER FAILURES

To accurately predict server failures via machine learning,
we need to generate effective features by understanding how
different factors affect server failures. Thus, we analyze
different impacting factors, including component failures in
the memory subsystem, (Section V-A), DRAM configurations
(Section V-B), and types of CEs (Section V-C), on server
failures. Such impacting factors later are used as features in
our machine-learning-based server failure prediction workflow
(Section VI). In this section, we focus on the predictable server
failures when the prediction window is five minutes, as system
administrators in our case take at least five minutes to repair
server failures (Section VI-A).

A. Component Failure Analysis

CEs can manifest in different components in the memory
subsystem [39], [44]. Here, we examine the impact of different

Component Condition

Socket failure More than 1K errors across more than one channel
in the same socket

Channel failure More than 1K errors across more than one bank
in the same channel, excluding above errors

Bank failure More than 1K errors across more than one row,
excluding above errors

Row failure More than one column in the same row has errors,
excluding above errors

Column failure More than one cell in the same column has errors,
excluding above errors

Cell failure More than one error in the same cell within one
minute, excluding above errors

Random errors Remaining errors, excluding above errors

TABLE III: Categories of component failures in the memory
subsystem [39].
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Fig. 6: Finding 5. Relative percentages of predictable server failures
associated with component failures.
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Fig. 7: Finding 5. Relative percentages of CEs due to component
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failed components in the memory subsystem on server failures.
We consider six components based on the hierarchical archi-
tecture of the memory subsystem, namely sockets, channels,
banks, rows, columns, and cells (Section II). Following the
classification method in [39], we classify the CEs into different
component failures, as shown in Table III.

We first examine the relative percentages of predictable
server failures associated with different component failures. For
each CE found in a server failure, we check which component
failure that covers the CE. Given that a server failure may
contain a large number of CEs, it may be associated with more
than one component failure. Figure 6 shows that 94.1% of
predictable server failures are associated with bank failures,
row failures, column failures, or random errors in the memory
subsystem. In particular, row failures account for 51.1% of
UE-driven failures and 44.3% of CE-driven failures, while
column failures account for 64.6% of miscellaneous failures.

We next examine the relative percentage of CEs across
component failures. Figure 7 shows that channel and bank
failures lead to high relative percentages of CEs. Specifically,
channel failures have the highest relative percentages of CEs
for CE-driven and miscellaneous failures (62.1% and 75.8%,
respectively), while bank failures have the highest relative
percentage of CEs for UE-driven failures (49.0%). However,
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DRAM model A1 A2 B1 B2 B3 C1 C2
Population 78 K 72 K 38 K 0.5 K 11 K 33 K 16 K

Number of failure 369 127 934 13 35 597 62
Unpredictable failures 18 8 92 1 3 37 4

TABLE IV: Finding 6. Failure rates for different DRAM models.

we notice that the relative percentages of predictable server
failures associated with channel and bank failures are less than
10% and 25%, respectively (Figure 6). The reason that both
channel and bank failures have high percentages of CEs is that
channels and banks are associated with a larger number of cells
than rows and columns in the memory subsystem, meaning
that any failed channel or bank can lead to a larger number of
CEs than any failed row or column. For example, we find one
extreme case with 3.7 M CEs due to one channel failure for CE-
driven failures and seven extreme cases with at least 100 K CEs
(up to 1.4 M CEs due to one channel failure) for miscellaneous
failures. This suggests that a higher-level component in the
hierarchical architecture of the memory subsystem has more
severe impact on the number of CEs. Thus, DRAM chipmakers
may need to improve the reliability of channels and banks.

Finding 5. Most predictable server failures are due to bank
failures, row failures, column failures, or random errors, while
most CEs are associated with channel and bank failures.

B. Impact of DRAM Configurations on Server Failures

We study how hardware configurations are correlated with
server failures. We consider three scenarios: DRAM models,
number of DIMMs per server, and server manufacturers.
DRAM models. Figure 8 shows the relative percentages of
predictable server failures decomposed by the DRAM model.
The relative percentages of predictable server failures of A2,
B2, B3, and C2 are lower than 10% for each failure type.
On the other hand, A1, B1, and C1 account for high relative
percentages of predictable server failures, up to 43.9% (B1),
32.9% (C1), and 48.8% (B1) for UE-driven, CE-driven, and
miscellaneous failures, respectively.

We provide justifications for the large relative percentages
of predictable server failures from some DRAM models by
examining the number of server failures of each DRAM model.
Table IV shows that A1, B1, and C1 have more server failures
than the other DRAM models, indicating that a DRAM model
with many server failures generally has a large fraction of
predicable server failures.

Finding 6. A DRAM model with a large number of failures
has a large fraction of predictable server failures.
Number of DIMMs per server. Figure 9 shows the relative
percentages of predictable server failures decomposed by the
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decomposed by the server manufacturer.

number of DIMMs per server. The predictable server failures
with 12 DIMMs have the largest fraction; for example, the
fraction is 43.4-62.8% for different failure types. The main
reason is that the servers with 12 DIMMs have the largest
population, accounting for 61.7% of all servers (Table I). On
the other hand, the predictable server failures with 16 DIMMs
have the lowest fraction, as the servers with 16 DIMMs due
to its smallest population (2.9% of all servers). Note that the
predictable server failures with 24 DIMMs have a significantly
larger fraction than with 8 DIMMs, even though the servers
with 8 DIMMs and 24 DIMMs have similar populations. Thus,
the fraction of predictable server failures generally increases
with the number of attached DIMMs.

Finding 7. The fraction of predictable server failures
generally increases with the number of DIMMs per server.
Server manufacturers. Figure 10 shows the relative percent-
ages of predictable server failures decomposed by the server
manufacturer. The UE-driven and miscellaneous failures from
M2 account for a large fraction of predictable server failures
(48.3% and 62.3%, respectively), while the CE-driven failures
from M4 account for the largest fraction (40.9%). The reason is
that there exist large fractions of such failed servers equipped
with the DRAM model B1 (i.e., 52.9% of UE-driven failures
and 58.5% of miscellaneous failures from M2, as well as 48.8%
of CE-driven failures from M4) (Finding 6).

Finding 8. The fraction of predictable server failures varies
across server manufacturers, yet predictable server failures
are mainly attributed to the DRAM model.

C. Characteristics of Different Types of CEs

We classify CEs into different types and analyze their
characteristics. First, as CEs can be detected by memory
scrubbing and memory read transactions (reported by mcelog
(Section III)), we classify CEs into scrubbing errors and read
errors, respectively. Also, we classify CEs into soft errors
and hard errors based on the frequency of CE occurrences
[23], [45], [46]. Specifically, if multiple CEs occur in the same
cell in multiple scrubbing periods (i.e., 24 hours in our case
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(Section II)), we refer to these CEs collected from this cell as
hard errors; otherwise, we refer to them as soft errors.

We first examine the average numbers of scrubbing and read
errors per predictable server failure for different failure types.
Figure 11 shows that the average numbers of scrubbing errors
are larger than those of read errors across failure types, for
example, by 1.7 K and 0.4 K for CE-driven and miscellaneous
failures, respectively. It implies that memory scrubbing is
critical for detecting CEs before server failures occur.

Finding 9. Memory scrubbing generally detects more CEs
than memory read transactions before server failures occur.

We next examine the average numbers of hard and soft
errors per predictable server failure for different failure types.
Figure 12 shows that the average numbers of hard errors are
larger than those of soft errors by 4.0 K and 1.4 K for CE-driven
and miscellaneous failures, respectively. It implies that hard
errors occur more commonly than soft errors for CE-driven and
miscellaneous failures, conforming to the observation that hard
errors are more common in prior studies [23], [43]. However,
the average number of soft errors is larger than that of hard
errors by 0.3 K for UE-driven failures. The reason is that system
administrators put the UE-driven failed servers offline once
a UE occurs, avoiding letting the soft errors on these failed
servers become hard errors.

Finding 10. Hard errors generally occur more commonly
than soft errors before server failures.

VI. SERVER FAILURE PREDICTION

In this section, we design a server failure prediction workflow
based on our characterization of server failures (Section IV)
and analysis of impacting factors on server failures (Section V).

A. Prediction Methodology

Formulation. We formulate the server failure prediction
problem as an offline classification problem. Specifically, we
extract and generate features for each server from the DRAM
error logs and inventory logs, and refer to the features as input
variables. We view the status of a server from the trouble tickets
as a target variable. We feed the input variables into a prediction
model and predict the status of a server in the near future. As

our trouble tickets include three types of server failures (i.e.,
UE-driven, CE-driven, and miscellaneous failures) with various
characteristics, we regard the server failure prediction for each
failure type as a binary classification, instead of a multi-class
classification for all failure types.
Feature generation. We define the feature window as a time
interval before the prediction is conducted. During the feature
window, we extract and generate features for each server with
CEs (including both failed and healthy servers). As CEs occur
within a short time (Section IV-C), we set the default feature
window size as five minutes to include the latest CEs of servers.
The number of feature windows for each server depends on its
collection period within the training data (i.e., the collection
period divided by the feature window size), since some servers
are added into production in the midst of the dataset. Within
the feature window, we extract four feature groups, with a total
of 52 features, from each server:
• Counter features. We consider six counter features of CEs,

including the numbers of CEs, hard errors, soft errors, read
errors, and scrubbing errors, as well as the MTBE.

• Component features. We consider 13 component features
related to component failures in two categories. First, we
count the number of CEs from each of the seven component
failures (i.e., socket, channel, bank, row, column, and cell
failures, as well as random errors). Second, we count the
number of components with CEs from each of the six
component failures excluding random errors (i.e., socket,
channel, bank, row, column, and cell failures).

• Statistical features. We calculate three statistical values (i.e.,
mean, median, and standard deviation) for the number of
CEs from each of the six component failures excluding
random errors (i.e., socket, channel, bank, row, column, and
cell failures) over all the failed components in the feature
window. We consider 18 statistical features in total.

• Configuration features. We convert the categorical values
of DRAM configurations (i.e., DRAM models, number of
DIMMs per server, and server manufacturers) in the inventory
log into numerical values by one-hot encoding [41]. We
generate 15 configuration features for different configuration
settings, including seven features from the DRAM models,
four features from the number of DIMMs per server, and
four features from the server manufacturers.
For each server, we generate a sample as a collection of

features within the feature window at each prediction time.
Note that if there is no CE within a feature window for a
server, we do not generate any sample for the server. When we
perform prediction for a failure type, we refer to the samples
of server failures for the failure type as positive samples, and
refer to the samples of healthy servers and server failures from
the other two failure types as negative samples.
Training and prediction. Before we train the prediction model,
we need to address the data imbalance issue, i.e., the number
of positive samples is much less than that of negative samples
(Section III). We mitigate this issue by three steps. First, for
each failure type, we train a prediction model without including
the other two failure types to avoid their interference (i.e., three



prediction models in total are trained). Second, we label extra
samples within one day before each server failure as positive
samples (note that labeling more extra samples (e.g, within
seven days) before each server failure as positive samples does
not make significant differences). Finally, we downsample the
negative samples [21] to make the ratio of positive to negative
samples as 1:50. We have also tested different ratios (from 1:10
to 1:200), and 1:50 achieves the highest prediction accuracy.

We feed the processed samples into each of the three
prediction models. We use Random Forests [7] as the default
prediction model, as the previous studies [6], [35] show that
Random Forests have high accuracies in disk failure [35]
and DRAM error [6] prediction; we also compare different
prediction models in Exp#2. We periodically predict server
failures for each failure type within one day. We set the length
of the time interval between two adjacent predictions (called
the prediction interval). Currently, we set the default prediction
interval as five minutes, since this is the minimum duration to
relocate application services from a predicted failed server to
another healthy server in production, according to the system
administrators of the production data centers at Alibaba.
Evaluation metrics. To evaluate the effectiveness of server
failure prediction, we adopt the time-series cross-validation by
performing training and testing over the eight-month span in
our dataset. Specifically, we train the prediction model in a five-
month period and predict the server failures in the upcoming
testing month, in which we perform prediction periodically at
regular prediction intervals. We consider three sets of training
(i.e., 1st to 5th, 2nd to 6th, and 3rd to 7th months) and testing
periods (i.e., 6th, 7th, and 8th month, respectively). We evaluate
the following accuracy metrics:
• Precision: The fraction of the number of server failures being

correctly predicted over all server failures (including those
being correctly and falsely predicted) for a failure type;

• Recall: The fraction of the number of server failures being
correctly predicted over all actual predictable server failures
(including those being correctly predicted and those being
missed) for a failure type; and

• F1-score: 2× precision× recall/(precision+ recall).
We fix the threshold of false positive rate as 1% by adjusting the
decision threshold of server failures and hyper-parameters of
prediction models, which is also used in disk failure prediction
[20], [50] for large-scale data centers. We report the average
results for the three testing months and include the error bars
that show the minimum and maximum results across the three
testing months. In practice, we generate features and train
prediction models only once per month, and the process of
feature generation and model training takes only a few hours in
total. On the other hand, we run prediction every five minutes,
and the prediction process takes less than one minute for a
one-month test set.
Implementation details. We implement our server failure pre-
diction workflow in Python (v3.6.9) in 950 LoCs. Specifically,
we implement downsampling using imbalanced-learn (v0.8.1)
[28] and different prediction models using scikit-learn (v0.24.2)
[40] and LightGBM (v3.3.1) [34].

B. Results

Exp#1 (Effectiveness of feature generation). We examine the
effectiveness of feature generation for different combinations
of feature groups. Figure 13 shows the precision, recall, and F1-
score of different combinations of feature groups for different
failure types. Using all feature groups generally increases the
precision, recall, and F1-score for different failure types. For
example, compared with using the counter features only, the
precision using all feature groups increases from 7.7%, 35.3%,
and 19.6% to 13.0%, 59.6%, and 33.4% for UE-driven, CE-
driven, and miscellaneous failures, respectively, while the recall
using all feature groups increases from 16.3%, 21.9%, and
27.0% to 22.5%, 66.8%, and 38.2% for UE-driven, CE-driven,
and miscellaneous failures, respectively. In particular, the
configuration features significantly improve both the precision
and recall of CE-driven failures, implying that the configuration
features generated from the categorical values can complement
the other feature groups with numerical features.

However, for UE-driven and miscellaneous failures, using
all features increases the precision, but decreases the recall. In
particular, the highest F1-score of UE-driven failure is from
using the counter, component, and statistical features, while
the highest F1-score of miscellaneous failures is from using
the counter and component features. A possible reason is
that M2 accounts for the largest fraction (51.9%) of servers
(including healthy and failed servers) among all manufacturers
(Table I), while a large fraction of predictable UE-driven and
miscellaneous failures are from M2 (Figure 10). Thus, the
configuration features are less effective to distinguish UE-
driven and miscellaneous failures from healthy servers.

Finding 11. Using all feature groups generally increases the
F1-score. The increase is significant for CE-driven failures.
Exp#2 (Effectiveness of prediction models). We examine
several classical machine learning algorithms, including logistic
regression (LR) [22], support vector machine (SVM) [38],
LightGBM [24], Random Forests (RF) [7], as well as a classical
deep neural network algorithm Multi-Layer Perceptron (MLP)
[2]. For each prediction model, we tune the hyper-parameters
and decision thresholds by grid search to maximize the F1-
score. In particular, for MLP, we tune the number of hidden
layers from 1 to 20 and the number of neurons in each hidden
layer from 10 to 200.

Figure 14 shows the precision, recall, and F1-score of various
prediction models. Due to the trade-off between the precision
and recall, we focus on the F1-scores of different prediction
models for fair comparisons. For UE-driven failures, different
prediction models have small differences on the F1-score;
LightGBM achieves the highest F1-score (17.5%). For CE-
driven and miscellaneous failures, tree-based prediction models
(i.e., LightGBM and RF) and MLP achieve much higher F1-
scores than LR and SVM. RF (LightGBM) achieves the F1-
score of 62.9% (60.1%), and 35.2% (27.3%) for CE-driven
and miscellaneous failures, respectively. The F1-score of MLP
is lower than that of RF by up to 8.6%. A possible reason is
that MLP (like general deep learning models) requires much
training data for high accurate prediction, while the number of
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Fig. 13: Finding 11. Exp#1 (Effectiveness of feature generation).
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Fig. 15: Finding 13. Exp#3 (Impact of the prediction interval).

samples (including 6 K positive ones at most) for each training
set after down-sampling is around 240 K obtained from 12 K
servers. Also, RF is shown to achieve high accuracy in prior
failure prediction studies [6], [35]. Furthermore, we observe
that the F1-score of CE-driven failures is much higher than
those of UE-driven and miscellaneous failures. The reason is
that CE-driven failures show the symptoms of a large number of
CEs before server failures happen (Finding 3), which provides
more information for classification.

Finding 12. Tree-based prediction models generally achieve
the highest F1-score in our server failure prediction. Also,
the prediction of CE-driven failures has the highest F1-score
among the three failure types since a large number of CEs
manifest before the CE-driven failures happen.

Exp#3 (Impact of the prediction interval). Figure 15 shows
the precision, recall, and F1-score for different failure types
versus the prediction interval. Both the precision and recall
generally decrease when the prediction interval increases.
Specifically, the precision decreases to 8.1%, 8.1%, and 15.0%
for UE-driven, CE-driven, and miscellaneous failures, respec-
tively, while the recall decreases to 5.0%, 6.7%, 15.2% for
UE-driven, CE-driven, and miscellaneous failures, respectively,
when the prediction interval increases to one day. The reason
is that the relative percentage of predictable server failures
decreases when the prediction window increases (Finding 2).
As a result, the F1-score of UE-driven, CE-driven, and

miscellaneous failures decreases to 7.8%, 7.2%, and 15.0%,
respectively, when the prediction interval increases to one day.

Finding 13. The F1-score decreases significantly when the
prediction interval increases.

Exp#4 (Post-analysis of correctly predicted server failures).
Finally, we analyze whether there is sufficient time to success-
fully repair the correctly predicted server failures in production.
Recall that system administrators require at least five minutes to
repair a server failure (Section VI-A). In our default setting, our
goal is to predict server failures within one day. If a correctly
predicted server failure happens at least five minutes later (and
within one day), it can be successfully repaired; otherwise, it
cannot be repaired. Table V shows the numbers of correctly
predicted server failures that happen within next five minutes
or happen at least five minutes later and within one day, as well
as the total amount of reduced server downtime of all correctly
predicted and successfully repaired server failures for each
failure type; here, the server downtime is defined as the duration
from the actual server failures until the failures are repaired,
similar to the node hours due to UEs [6] and unavailable time
of failed servers [30]. The numbers of UE-driven, CE-driven,
and miscellaneous failures that can be successfully repaired
are 27, 156, and 69 (i.e., 79.4%, 85.2%, and 98.6% among
the correctly predicted server failures for the failure type),
respectively. Also, predicting such correctly predicted server
failures can reduce a significant amount of server downtime,



Within
5 minutes

At least
5 minutes later

Reduced server
downtime (hours)

UE-driven 7 27 1,775
CE-driven 27 156 15,520

Miscellaneous 1 69 5,975
TABLE V: Finding 14. Exp#4 (Post-analysis of correctly predicted
server failures).

for example, by up to 15,520 hours for all successfully repaired
CE-driven failures. Thus, our server failure prediction workflow
allows a large fraction of correctly predicted server failures
to be successfully repaired, and further reduces thousands of
hours of server downtime.

Finding 14. A large fraction of correctly predicted server
failures can be successfully repaired, which can reduce
thousands of hours of server downtime.

VII. RELATED WORK

Measurement of DRAM reliability. Prior studies [4], [18],
[36], [37], [52] analyze DRAM errors in laboratory settings
and show how DRAM errors are caused by external factors
(e.g., alpha particles [36], cosmic rays [52], and ground-level
radiation [4]) or internal factors (e.g., denser semiconductor
technologies at lower voltages [37] and latent inherent faults
in DRAM cells [18]).

Recent field studies characterize DRAM errors in production
commodity data centers [23], [31], [32], [39], [43], [44]. Li et
al. [31], [32] study a cluster of 212 servers, and observe that
hard errors account for a non-trivial fraction among DRAM
errors [31] and may lead to incorrect executions in software
systems and applications [32]. Schroeder et al. [43] show
that hard errors dominate among all DRAM errors in the
server fleet at Google, and there exist strong temporal and
spatial correlations among DRAM errors. Hwang et al. [23]
measure DRAM errors and study their implications on system
designs (e.g., page retirement policies and background memory
scrubbing). Siddiqua et al. [44] find that CEs are mainly caused
by the failures in memory controllers, buses, and channels.
Meza et al. [39] characterize DRAM errors over 14 months
in a server fleet at Facebook. Both [39] and ours analyze the
component failures in the memory subsystem and measure the
server failure rates caused by DRAM errors. However, our
analysis addresses the following issues that are not considered
in [39]: (i) considering the server failures that cannot normally
support host applications (instead of the servers with DRAM
component failures); (ii) showing how the characteristics of
DRAM errors affect our subsequent predictive analysis at
different time intervals before server failures happen, especially
on short time scales in minutes or days (instead of on a monthly
basis); and (iii) analyzing the predictability of server failures.

Several studies characterize DRAM errors in production
supercomputing clusters [5], [19], [29], [45]–[47], including
Jaguar [19], [46], [47], Cielo [29], [45], [47], Hopper [45],
Blake [16], and an in-house supercomputing cluster containing
low-power memory without ECC protection [5]. Similar to
commodity data centers, hard errors dominate among all
DRAM errors [46], yet the studies also draw different findings

on how DRAM errors are affected by DRAM aging and the
physical DRAM locations [47].
Prediction of DRAM reliability. Several studies analyze the
predictability of DRAM reliability, including UEs [6], [15], [17]
and failures in micro-level components (e.g., rows, columns,
and cells) [13]. Giurgiu et al. [17] predict UEs based on CEs
and sensor metrics (e.g., processor temperature and DRAM
power). Du et al. [13], [15] use online learning to predict
micro-level component failures [13], and further leverage CEs
in the micro-level components to predict UEs [15]. Boixaderas
et al. [6] predict UEs for supercomputers and focus on the
cost-benefit analysis by quantifying the costs of UE prediction
and mitigation. Yu et al. [51] take DRAM failure prediction as
a multi-class classification problem by extracting handcrafted
features from system kernel logs and DRAM error logs. Du
et al. [14] predict whether a row fault is prone to UEs based
on CE patterns and make the pages impacted by UEs offline.
Wang et al. [49] leverage workload features from node-level
performance metrics and cell-level DRAM access patterns
for predicting UEs. In contrast, our work targets the accurate
prediction of DRAM-related server failures collected from
trouble tickets based on the standard accuracy metrics.

VIII. CONCLUSION

We present an in-depth data-driven analysis on the correlation
between DRAM errors and server failures based on a large-scale
dataset collected from 250 K production servers at Alibaba
over eight months. Our study provides guidelines for the
design of a machine-learning-based server failure prediction
workflow with high prediction accuracy based on DRAM error
characterization.

We highlight the findings in our server failure prediction:

• We consider three failure types in server failure prediction
and train the prediction model for each failure type, instead
of only UEs as in prior work [6], [15], [17]. Our prediction
also reduces thousands of hours of server downtime.

• UE-driven failures are less predictable than CE-driven failures
and miscellaneous failures. We achieve the F1-score up to
62.9% and 36.1% for CE-driven and miscellaneous failures.
However, UE-driven failures are hard to predict, since only a
small number of CEs occur before these failures (Finding 3).

• Using all feature groups increases the prediction accuracy
for predicting CE-driven failures, while for UE-driven and
miscellaneous failures, counter and component features are
more useful than statistical and configuration features.

• The prediction interval needs to be short to predict server
failures, since CEs typically occur within a short time before
the prediction is conducted (Finding 2). Also, tree-based
prediction models generally achieve the highest F1-score.
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