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Abstract—Modern key-value (KV) stores increasingly adopt
erasure coding to reliably store data. To adapt to the changing
demands on access performance and reliability requirements,
KV stores perform redundancy transitioning by tuning the re-
dundancy schemes with different coding parameters. However,
redundancy transitioning incurs extensive I/Os, which impair
the performance of KV stores. We propose a new family of
erasure codes, called Elastic Reed-Solomon (ERS) codes, whose
primary goal is to mitigate I/Os in redundancy transitioning.
ERS codes eliminate data block relocation, while limiting I/Os
for parity block updates via the new co-design of encoding matrix
construction and data placement. We realize ERS codes as a KV
store atop Memcached, and show via LAN testbed experiments
that ERS codes significantly reduce the latency of redundancy
transitioning compared to state-of-the-arts.

I. INTRODUCTION

Key-value (KV) stores improve scalability and access per-
formance of object storage compared to traditional relational
databases. To provide reliability guarantees against frequent
failures [13], modern KV stores increasingly adopt erasure
coding to provide low-cost data redundancy [2], [9], [10], [18],
[24], [36]. Compared to replication, erasure coding significantly
reduces the amount of redundancy to attain the same degree of
fault tolerance [29]. Among many erasure coding constructions,
Reed-Solomon (RS) codes [26] are one popular family of
erasure codes that minimize the storage overhead for reliability
guarantees. At a high level, RS codes encode k data blocks
into additional m redundant blocks, called parity blocks, such
that the k data blocks can be reconstructed from any k out of
k+m available data and parity blocks.

To adapt to the elastic demands on access efficiency and fault
tolerance, it is desirable for erasure-coded KV stores to support
redundancy transitioning, which dynamically adjusts the coding
parameters k and m to balance performance, storage overhead,
and reliability. We motivate that redundancy transitioning is
critical for modern KV stores for two reasons.
• Adaptation to workload changes. Real-world storage work-

loads exhibit highly skewed patterns of popularity [8], [16],
in which a small fraction of hot data is frequently accessed,
while the remaining large fraction of cold data is rarely
accessed. Also, the access patterns of storage workloads are
time-varying [34]. Fixing the coding parameters makes KV
stores inflexible to achieve both high performance and low
storage overhead. Given that erasure coding poses a design
trade-off between performance and storage efficiency [11],
practical KV stores should incorporate multiple redundancy
schemes, such that hot objects are encoded with high-

redundancy erasure codes for better performance, while cold
objects are encoded with low-redundancy erasure codes for
better storage efficiency.

• Adaptation to reliability requirements. Disk reliability
changes throughout the entire disk lifetime, so data centers
can dynamically switch across different redundancy schemes
to balance between storage overhead and fault tolerance [17].
Also, the reliability importance varies across data types, in
which the loss of important data may imply costly recovery
[27]. Such important data may be protected by erasure codes
with higher redundancy.
However, realizing I/O-efficient redundancy transitioning is

a non-trivial task, mainly because the redundancy transitioning
process often incurs data block relocation and parity block
updates, both of which incur substantial I/O costs. Specifically,
traditional erasure codes often map blocks to a fixed set of
nodes, such that the number of data blocks for an object is
equal to the number of nodes that store the object data. If
redundancy transitioning changes the number of data blocks
(i.e., k), then some data blocks have to be relocated to different
nodes, thereby incurring extra I/Os. Parity block updates further
aggravate I/Os: since the layout of data blocks has changed, the
parity blocks need to be updated accordingly with additional
I/Os, including the retrieval of all data blocks for recomputing
the new parity blocks and the writes of the newly computed
parity blocks to nodes.

In this paper, we propose a new family of RS codes, called
Elastic Reed-Solomon (ERS) codes, so as to enable I/O-efficient
redundancy transitioning for erasure-coded KV stores. ERS
codes build on the decoupling of block-to-node mappings
[27] by distributing data blocks into an extended number of
nodes, so as to completely eliminate data block relocation.
Furthermore, our key insight is that the computation of the
new parity blocks (after transitioning) can reuse the old parity
blocks (before transitioning), as both types of parity blocks
often share the same encoding operations for some overlapping
data blocks (defined in Section II-C). Based on this insight, we
propose a novel co-design of encoding matrix construction and
data placement for ERS codes to increase the number of such
overlapping data blocks. This allows the new parity blocks to
be computed from largely the old parity blocks plus a small
number of non-overlapping data blocks, thereby mitigating the
I/Os due to parity updates. Note that ERS codes preserve the
storage-optimality of the original RS codes.

We implement a KV store prototype that realizes ERS codes
based on Memcached [5]. Our prototype supports all basic KV



operations (e.g., PUT, GET, UPDATE, etc.), while enabling
redundancy transitioning. Our prototype experiments suggest
that ERS codes reduce the latency of redundancy transitioning
by up to 55.6% compared to the state-of-the-art stretched RS
codes in [27], which incur high parity update overhead.

The source code of our prototype of ERS codes is available
at http://adslab.cse.cuhk.edu.hk/software/ers.

II. BACKGROUND AND MOTIVATION

We present the background of erasure coding (Section II-A).
We define the redundancy transitioning problem and state its
challenges (Section II-B). We further motivate via examples
our solutions to the challenges (Section II-C).

A. Erasure Coding in KV Stores
Erasure coding incurs much less storage redundancy for the

same degree of fault tolerance compared to replication [29].
In this work, we focus on Reed-Solomon (RS) codes [26], a
popular family of erasure codes that have been widely studied
in modern KV stores [2], [9], [18], [24], [36]. We construct RS
codes, denoted by RS(k,m), with two configurable parameters k
and m. RS(k,m) takes k data blocks (denoted by D0, · · · ,Dk−1)
as input for encoding, and generates m parity blocks (denoted
by P0, · · · ,Pm−1), such that any k out of the k+m data and
parity blocks suffice to reconstruct the original k data blocks.
The k+m data and parity blocks that are encoded together
collectively form a stripe. A practical KV store comprises
multiple stripes that are encoded independently. It distributes
each stripe of k+m blocks across k+m nodes (denoted by
X0, ...,Xk+m−1) to tolerate any m node failures.

Mathematically, the encoding process of RS codes can be
specified via an m× k encoding matrix (denoted by Gm×k),
constructed by the Vandermonde matrix [22]. Given a data
vector (i.e., a column vector of k data blocks), RS codes
multiply the encoding matrix Gm×k by the data vector to
compute the parity vector (i.e., a column vector of m parity
blocks) over the Galois Field GF(2ω ), where ω is the size of
a coding unit (in bits). For example, when (k,m) = (2,2) and
ω = 4, the matrix-vector product representation is:[

P0
P1

]
= G2×2×

[
D0
D1

]
=

[
1 1
1 8

]
×
[

D0
D1

]
. (1)

There are two approaches of applying erasure coding to
objects in KV stores, namely per-object coding [2], [18], [24],
which divides each object into k data blocks for encoding,
and cross-object coding [9], [10], [36], which stores multiple
objects within a data block and collects every k data blocks for
encoding. In this work, we mainly consider per-object coding,
which exhibits better load balancing and I/O performance [24].
We target the workloads with large-size objects (e.g., in cloud
storage), in which each object can be divided into multiple
data blocks for encoding.

B. Redundancy Transitioning
Problem definition. Redundancy transitioning focuses on
changing the coding parameters k and m of existing erasure-
coded objects, so as to adapt to the varying access charac-
teristics and reliability demands (Section I). In this work, we
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Fig. 1. Example of SRS(2,1,3), which eliminates data block relocation in the
transitioning from RS(2,1) to RS(3,1). The data and parity blocks of the same
color constitute a stripe.

pay special attention to the transitioning from RS(k,m) to
RS(k′,m), where k < k′ (i.e., the number of tolerable failures
m remains unchanged). By increasing k, we can reduce the
storage redundancy and increase the overall storage efficiency.
We pose the transitioning for general coding parameters k and
m as future work.

Redundancy transitioning inevitably changes the encoding
layout of a stripe (in our case, the number of data blocks
changes from k to k′), so we need to update both the encoding
matrix and the corresponding parity blocks. There are two key
I/O operations, namely data block relocation, which relocates
existing data blocks to form a new stripe, and parity block
updates, in which the parity blocks are updated based on the
new encoding matrix Gm×k′ . Both operations incur additional
I/O costs in KV stores (Section I). In this work, we focus on
mitigating the I/O costs in redundancy transitioning.

To eliminate data block relocation during redundancy tran-
sitioning, Ring [27] proposes Stretched Reed-Solomon (SRS)
codes (denoted by SRS(k,m,k′)), whose idea is to store the k
data blocks of RS(k,m) in k′ > k nodes (i.e., relaxing the tight
coupling of the same block-to-node mappings). SRS(k,m,k′)
operates on a group of multiple stripes. It first computes
the least common multiple (LCM) of k and k′, denoted by
l = lcm(k,k′). It distributes l data blocks into k columns (in
logical storage) in column-major order. It encodes every k data
blocks into m parity blocks via RS(k,m). It finally stores the l
data blocks evenly over k′ nodes (in physical storage), while
keeping the parity blocks in m nodes. As the data blocks of
SRS(k,m,k′) are now stored in k′ nodes, transitioning from
RS(k,m) to RS(k′,m) has no data block relocation.

To illustrate, Figure 1 shows an example of SRS(2,1,3). Let
si (i≥ 0) be a pre-transitioning stripe (before transitioning), and
let s′i (i≥ 0) be a post-transitioning stripe (after transitioning).
Before transitioning, there are l

k = 3 pre-transitioning stripes
(i.e., s0, s1, and s2) for RS(2,1). After transitioning, there are
l
k′ = 2 post-transitioning stripes (i.e., s′0 and s′1) for RS(3,1).
We can see that the data block distribution for RS(3,1) is
preserved, so data block relocation is eliminated. However, the
parity blocks need to be updated accordingly (i.e., P′0 and P′1).

Challenges. While SRS codes eliminate data block relocation,
it is still challenging to realize I/O-efficient redundancy
transitioning due to the expensive parity block updates. The
reasons are two-fold.



Challenge 1: The encoding matrices before and after
redundancy transitioning substantially differ. We elaborate this
issue via an example of transitioning from RS(4,3) to RS(5,3).

We first show the encoding process of the pre-transitioning
stripe, in which the encoding matrix G3×4 is multiplied by the
four data blocks {D0,D1, · · · ,D3}:P0

P1
P2

= G3×4×

D0
D1
D2
D3

=

1 1 1 1
1 15 2 14
1 12 8 5

×
D0

D1
D2
D3

 . (2)

We next show the encoding process of the post-transitioning
stripe to generate {P′0,P′1,P′2}, formed by multiplying the matrix
G3×5 by {D0,D1, · · · ,D4}:

P′0
P′1
P′2

= G3×5×


D0
D1
D2
D3
D4

=

1 1 1 1 1
1 3 6 10 14
1 10 4 15 11

×


D0
D1
D2
D3
D4

 . (3)

Since P0 =D0+D1+D2+D3 and P′0 =D0+D1+D2+D3+
D4 (in Galois Field arithmetic), we can simply retrieve D4 to
update P0 into P′0. However, P1 = D0+15D1+2D2+14D3 and
P′1 = D0 +3D1 +6D2 +10D3 +14D4, so in order to update P1
into P′1, we have to retrieve D1,D2,D3, and D4. Similarly,
updating P2 into P′2 also needs to retrieve D1,D2,D3, and D4.
Thus, in order to transition from RS(4,3) to RS(5,3), we need
to access D1,D2,D3 and D4 (i.e., a total of four data blocks)
for parity block updates.

Challenge 2: The placement of data blocks also determines
the number of data blocks to be read during redundancy
transitioning. For example, in Figure 1, we can only find one
common data block D0 in s0 and s′0, as well as one common
data block D1 in s1 and s′1. If we use P0 and P1 to generate
P′0 and P′1, respectively, then P′0 = P0 + D2 + D3 + D4, and
P′1 = P1 +D3 +D4 +D5. Thus, we need to retrieve four data
blocks (i.e., D2,D3,D4 and D5) from other nodes to generate
the new parity blocks. The I/O overhead of parity block updates
is higher for larger coding parameters (e.g., from RS(4,3) to
RS(5,3)), where we have to retrieve more data blocks.

C. Motivation

Our major goal is to mitigate the I/Os for parity block
updates in redundancy transitioning, by limiting the number of
data blocks to be retrieved. We call a data block an overlapping
data block if its coefficients encoded into the old parity blocks
of the pre-transitioning stripe are the same as its coefficients
encoded into the new parity blocks of the post-transitioning
stripe; otherwise, we call it a non-overlapping data block. Our
main insight is that during redundancy transitioning, we do
not need to retrieve the overlapping data blocks, as the old
and new parity blocks share the same encoding operations
for the overlapping data blocks. We only need to access the
non-overlapping data blocks as their encoding operations differ
in the old and new parity blocks. Our idea is to increase the
number of overlapping data blocks (or equivalently, decrease
the number of non-overlapping data blocks to be retrieved

during redundancy transitioning). We motivate our solutions
via the following examples.

Motivation 1 (Using an enlarged encoding matrix). Instead
of directly using the encoding matrices of RS codes for the
pre-transitioning and post-transitioning stripes, we adopt a
large-sized encoding matrix before redundancy transitioning
and add dummy blocks for encoding. For example, in order
to transition from RS(4,3) to RS(5,3), the pre-transitioning
encoding process can be denoted by:

P0
P1
P2

= G3×5×


D0
D1
D2
D3
0

=

1 1 1 1 1
1 3 6 10 14
1 10 4 15 11

×


D0
D1
D2
D3
0

 . (4)

The key difference between the conventional and new encod-
ing mechanisms is that the conventional approach employs an
m×k dimensional encoding matrix Gm×k to encode the k data
blocks, while we exploit an m×k′ dimensional encoding matrix
Gm×k′ to encode the k′ data blocks (with k data blocks and
k′−k dummy blocks). For example, the conventional approach
uses G3×4 to encode D0,D1,D2 and D3 (see Equation (2)).
We now adopt G3×5 to encode D0,D1,D2,D3 and one dummy
block (Equation (4)).

Recall that in the transitioning from RS(4,3) to RS(5,3)
using the conventional encoding matrix (i.e., Equation (2)),
there is only one overlapping data block D0 in the pre-
transitioning and post-transitioning stripes. Now, if we use an
enlarged matrix (i.e., Equation (4)), there are four overlapping
data blocks, i.e., D0, D1, D2, and D3. To update P1 into P′1,
we now simply retrieve the only non-overlapping data block
D4. The transitioning between P2 and P′2 is similar.

Motivation 2 (Producing more overlapping data blocks).
Our insight is that even though we adopt an enlarged encoding
matrix, the conventional rigid data placement in column-major
order still leads to a limited number of overlapping data blocks
in both the pre-transitioning and post-transitioning stripes. Thus,
we aim to allow more overlapping data blocks via a new
placement strategy. For example, in Figure 2, we distribute the
data blocks logically in k nodes and physically in k′ nodes, both
in row-major order. In Figure 2, there are two overlapping data
blocks D0 and D1 in s0 and s′0, as well as two overlapping data
blocks D4 and D5 in s2 and s′1. We can compute P′0 = P0 +D2
and P′1 = P2+D3 = P2+P1+D2. Thus, we need to access only
D2 for parity block updates. Note that in general, the row-major
order does not necessarily imply efficient data placement, and
we still need to carefully design a data placement strategy to
increase the number of overlapping data blocks.

Summary. The above motivating examples suggest that we can
explore a new co-design of encoding matrix construction and
data placement, so as to increase the number of overlapping
data blocks. This allows the new parity blocks to be recomputed
from largely the old parity blocks plus a small number of non-
overlapping data blocks that need to be retrieved. This mitigates
the I/Os of parity updates.
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Fig. 2. Example of transitioning from RS(2,1) to RS(3,1) under the placement
in row-major order. The blocks of the same color constitute a stripe.

III. ELASTIC REED-SOLOMON CODES

We present Elastic Reed-Solomon (ERS) codes, a new family
of erasure codes for I/O-efficient redundancy transitioning. ERS
codes exploit both new encoding matrix construction and data
placement to increase the number of overlapping data blocks,
so as to mitigate the I/Os for parity updates. We first present
an overview of ERS codes (Section III-A). We then present the
design details of the encoding matrix of ERS codes to increase
the number of overlapping data blocks (Section III-B). Finally,
we present our data placement strategy based on our new
encoding matrix to further increase the number of overlapping
data blocks (Section III-C).

A. Design Overview

ERS codes (denoted by ERS(k,m,k′)) build on the decou-
pling of block-to-node mappings in SRS codes [27] by storing
the k data blocks of RS codes in k′ nodes, where k ≤ k′.
Similar to SRS, ERS first computes the LCM of k and k′,
i.e., l = lcm(k,k′), and divides an object into l data blocks
denoted by D0, · · · ,Dl−1. It then arranges the l data blocks
into k logical columns, and encodes every k data blocks with
the same logical offset to calculate m parity blocks. It finally
distributes the l data blocks over k′ nodes such that each node
stores exactly l

k′ blocks, and distributes the parity blocks on m
nodes. Note that for a group of l

k stripes, the parity blocks are
put on the same m nodes, while for different groups of stripes,
we put the parity blocks on different nodes to balance the
I/O overhead for parity updates. Like SRS codes, as the data
blocks are now distributed over k′ nodes, ERS codes also do
not require data block relocation when objects are transitioned
from RS(k,m) to RS(k′,m).

However, ERS coding differs from SRS coding in the
following aspects. First, ERS coding logically distributes l
data blocks into k nodes in row-major order, and hence
introduces a considerable number of overlapping data blocks
for redundancy transitioning (e.g., Figure 2). In addition, ERS
coding encodes every k data blocks using a novel encoding
matrix, and physically distributes l data blocks over k′ nodes
according to a novel placement strategy, so as to increase the
number of overlapping data blocks. As a result, ERS coding
requires only a small number of non-overlapping data blocks
and can reduce the I/Os for parity block updates.

Figure 2 shows an example of ERS(2,1,3) with the row-
major order placement. As k = 2 and k′ = 3, we can deduce
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Fig. 3. Row-major order placement for (k,m,k′) = (4,3,5). The data and
parity blocks of the same color constitute a stripe. The data blocks with black
check marks indicate the non-overlapping data blocks.

that l = lcm(2,3) = 6. We start by sequentially arranging l = 6
data blocks (i.e., D0, · · · ,D5) into k = 2 logical columns in row-
major order. Every k = 2 data blocks with the same logical
offset (i.e., same color in the figure) are encoded into m = 1
parity block in logical storage. The l = 6 data blocks are then
physically stretched across k′ = 3 nodes also in row-major
order in physical storage. We can see that the distribution of
data blocks for RS(3,1) is preserved, so data block relocation
is eliminated in the transitioning from RS(2,1) to RS(3,1).
We can also show that P′0 = P0 + D2, and P′1 = P2 + D3 =
P2 +P1 +D2. Thus, we only require to retrieve D2 to update
the parity blocks in redundancy transitioning.

B. Encoding Matrix Design

Overall idea. We assume that the sequential data blocks are
placed on k′ nodes based on row-major order by default as
shown in Figure 3. In physical storage, all l data blocks
form a l

k′ × k′ dimensional array that is composed of the
data blocks from l

k pre-transitioning stripes. For each pre-
transitioning stripe, we exploit an m×k′ dimensional encoding
matrix (i.e., Gm×k′) to encode the k′ blocks, which comprise
k data blocks and k′− k additional dummy blocks; here, the
dummy blocks can be zero blocks. The new encoding matrix
Gm×k′ is still constructed by the Vandermonde matrix [22].
Note that the dummy blocks are not involved in the encoding
operations, so they do not incur extra computational overhead.
Our approach of utilizing an enlarged matrix is analogous to
the shortening scheme [21], which is carefully tailored for
redundancy transitioning.

Algorithm details. If a block is stored on a node Xi, then we
say the node id of this block is i. For example, in Figure 3,
D0 and D1 are stored on X0 and X1, so the node ids of D0 and
D1 are 0 and 1, respectively. Algorithm 1 presents the detailed
procedure to encode the pre-transitioning stripes utilizing a
larger encoding matrix. To be specific, we use Gm×k′ for
encoding (Line 1). For each data block in a pre-transitioning
stripe si, we set its id in the data vector as its node id in the
physical storage (Lines 3-5). There are k data blocks in si
and we add extra k′− k dummy blocks to constitute k′ blocks
(Line 6), and then encode the k′ blocks (Line 7).

Example. For ERS(4,3,5), we show the encoding process of
s1. The encoding matrix we use for encoding is G3×5. The
node ids of the four data blocks D4,D5,D6,D7 of s1 are 4, 0,



Algorithm 1 The encoding method
1: Select Gm×k′ for encoding
2: for each stripe si (0≤ i≤ l

k −1) do
3: for each data block D j (0≤ j ≤ k−1) do
4: Set its id in the data vector as its node id
5: end for
6: Add k′− k dummy blocks into the remaining k′− k positions

in the data vector to constitute k′ blocks
7: Encode the k′ blocks
8: end for

1, 2, respectively (Figure 3). With one extra dummy block, the
encoding process is shown as follows.

P3
P4
P5

= G3×5×


D5
D6
D7
0

D4

=

1 1 1 1 1
1 3 6 10 14
1 10 4 15 11

×


D5
D6
D7
0

D4

 . (5)

Redundancy transitioning process. We now explore the
transitioning process using the designed matrix. Let pi (0≤ i≤
l
k −1) be the column vector composed of the old parity blocks
of si, i.e., pi = [Pi×m, · · · ,Pi×m+m−1]

T , and p′i (0≤ i≤ l
k′ −1)

be the column vector composed of the new parity blocks of
s′i, i.e., p′i = [P′i×m, · · · ,P′i×m+m−1]

T . Let g j (0 ≤ j ≤ k′ − 1)
be the j-th column of the encoding matrix Gm×k′ . For
example, for ERS(4,3,5), p0 = [P0,P1,P2]

T , p′0 = [P′0,P
′
1,P
′
2]

T

and g4 = [1,14,11]T . The transitioning method is illustrated in
Algorithm 2. We first initialize all new parity blocks (Lines 1-3).
For a pre-transitioning stripe si, if it shares the most overlapping
data blocks with a post-transitioning stripe s′j, then the old
parity blocks in pi are used to generate the new parity blocks
in p′j (Lines 5-7). We next retrieve only the non-overlapping
data blocks of si, i.e., the data blocks in si but not s′j (Line 8).
A non-overlapping data block is encoded into the old parity
blocks in pi but not the new parity blocks in p′j, so we need
to use it to update the new parity blocks in p′j. For each non-
overlapping data block Dx, we find its node id y (Line 10), so
gy represents the coding coefficients of Dx encoded into the
parity blocks. We then use Dx and its coefficient vector gy to
update the new parity blocks in p′j (Lines 11-12). Furthermore,
such a non-overlapping data block Dx will fall into another post-
transitioning stripe s′z (different from s′j) (Line 13), and Dx will
be encoded into the new parity blocks in p′z. Thus, we finally
use Dx to update the new parity blocks in p′z (Lines 14-15).

For example in Figure 3, in transitioning from RS(4,3) to
RS(5,3), we show the update mechanisms for p′0 and p′1. Since
s0 shares the maximum number of overlapping data blocks
with s′0, the old parity blocks in p0 are used to generate the new
parity blocks in p′0. There is no non-overlapping data block in
s0. We can also find that the non-overlapping data block D4 of
s1 will fall into s′0. We then use D4 and its coefficient vector
g4 (the node id of D4 is 4) to update p′0.P′0

P′1
P′2

=

P0
P1
P2

+
 1

14
11

×D4. (6)

Algorithm 2 The transitioning method
1: for i = 0 to l

k′ −1 do
2: Initialize p′i to be zero vector
3: end for
4: for each pre-transitioning stripe si (0≤ i≤ l

k −1) do
5: Find the post-transitioning stripe s′j, such that si shares the

most overlapping data blocks with s′j
6: // pi is used to generate p′j
7: Set p′j = p′j +pi
8: Retrieve the non-overlapping data blocks of si
9: for each non-overlapping data block Dx do

10: y← node id of Dx
11: // Use Dx to update p′j
12: Set p′j = p′j +gy×Dx
13: z← id of post-transitioning stripe that includes Dx
14: // Use Dx to update p′z
15: Set p′z = p′z +gy×Dx
16: end for
17: end for

Since s1 and s2 both share the most overlapping data blocks
with s′1, both p1 and p2 are added into p′1. The non-overlapping
data blocks of s1, and s2 are D4 (with node id 4), and D10
and D11 (with node ids 0 and 1), respectively. We then use D4
(and g4), D10 (and g0), and D11 (and g1) to update p′1.

P′3
P′4
P′5

=

P3
P4
P5

+
 1

14
11

×D4 +

P6
P7
P8

+
1 1

1 3
1 10

×[D10
D11

]
. (7)

As we use the enlarged encoding matrix, only a small number
of non-overlapping data blocks are needed for parity updates.
For example in Figure 3, in transitioning from RS(4,3) to
RS(5,3) using the designed matrix, we only need to retrieve
four non-overlapping data blocks, i.e., D4,D10,D11 and D15 for
parity updates. However, with SRS(4,3,5), the transitioning
exhibits very few overlapping data blocks, so we need to access
nearly all data blocks.

C. Data Placement Design

In Section III-B, we utilize an enlarged encoding matrix to
increase the number of overlapping data blocks under the row-
major order data placement. However, the row-major order does
not always imply efficient data placement. In this subsection,
we design the placement strategy to further increase the number
of overlapping data blocks based on the enlarged matrix.

Overall idea. We attempt to put the data blocks of l
k pre-

transitioning stripes into a l
k′ × k′ dimensional array, such that

the number of overlapping data blocks of the pre-transitioning
stripes is maximized. As the number of data blocks in a pre-
transitioning stripe is k, we can deduce that the maximum
number of overlapping data blocks between a pre-transitioning
stripe and a post-transitioning stripe is k. Note that a row in
the array maps to a post-transitioning stripe. Thus, if we place
a pre-transitioning stripe entirely in one row, then the number
of overlapping data blocks between this pre-transitioning stripe



Algorithm 3 The placement policy
1: // Put α same-row stripes
2: for the i-th (0≤ i≤ β −1) row do
3: Put b k′

k c same-row stripes in it, with starting node id (i× (k−
r)) mod k′

4: end for
5: for the i-th (β ≤ i≤ l

k′ −1) row do
6: Put b k′

k c same-row stripes in it, with starting node id ((i−
β +1)× r) mod k′

7: end for
8: // Locate the remaining β cross-row stripes
9: for the i-th (0≤ i≤ β −1) cross-row stripe do

10: Put r data blocks in the r empty positions of the i-th row
11: Put k− r data blocks sequentially in the empty positions of

the β -th to ( l
k′ −1)-th rows

12: end for

and a post-transitioning stripe is maximized to k. To this
end, we first place the maximum number of pre-transitioning
stripes such that each of them is entirely put in one row (i.e.,
with number of overlapping data blocks of k). As a row can
accommodate at most b k′

k c pre-transitioning stripes and there
are l

k′ rows, we can place α = b k′
k c ×

l
k′ stripes such that

each of them is entirely put in one row (i.e., with number of
overlapping data blocks of k).

Since there remain r = k′ mod k empty positions in each row
after filling b k′

k c pre-transitioning stripes, the maximum number
of overlapping data blocks between each of the remaining
β = l

k −α pre-transitioning stripes and a post-transitioning
stripe (i.e., a row) is at most r. We then place r data blocks of
each remaining stripe in the empty positions of a row to make
the number of overlapping data blocks of this stripe be r, and
k− r data blocks on other rows.

To place each pre-transitioning stripe, we must make sure
that the k data blocks are distributed into k nodes to guarantee
node-level fault tolerance.

Algorithm details. We call a pre-transitioning stripe a same-
row stripe if it is entirely put in one row; otherwise, we call it
a cross-row stripe. Algorithm 3 shows the placement strategy.
In each of the first β rows, we put b k′

k c same-row stripes
in it, and the starting node id of the stripes is (i× (k− r))
mod k′ (0≤ i≤ β −1) (Lines 2-4). In each of the remaining
l
k′ − β rows, we also put b k′

k c same-row stripes in it, and
the starting node id of the stripes is ((i−β +1)× r) mod k′

(β ≤ i ≤ l
k′ − 1) (Lines 5-7). In total, we put α same-row

stripes (with number of overlapping data blocks of k). Note
that the same-row stripes have different starting node ids in
different rows, which is to guarantee node-level fault tolerance.
For the i-th (0≤ i≤ β −1) cross-row stripe, we place r data
blocks in the empty positions of the i-th row such that the
number of overlapping data blocks of it is r (Line 10), and
k− r data blocks on other rows (Line 11).

Example. We show in Figure 4 the designed placement for
(k,m,k′) = (4,3,5). In the first row (i.e., β = 1), we put b k′

k c=
1 same-row stripe in it, and the starting node id of the stripe is 0
(Line 3). In each of the remaining three rows (i.e., l

k′ −β = 3),

D0 D2

X1 X2 X3 X4

D1 D3 D16

D5D4 D6 D7

D8D18 D9 D10
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X1 X2 X3 X4
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Fig. 4. Placement illustration for (k,m,k′) = (4,3,5). We omit the placement
of the parity blocks as it does not affect the number of overlapping data blocks.
The data blocks of the same color constitute a stripe. Note that s0,s1,s2,s3
are α = 4 same-row stripes, and s4 is β = 1 cross-row stripe. The data blocks
with black check marks indicate the non-overlapping data blocks.

we also put b k′
k c= 1 same-row stripe in it, and the starting node

ids of the stripes in the second, third and fourth rows are r = 1,
2r = 2, and 3r = 3, respectively (Line 6). In total, we put α = 4
same-row stripes, and the number of overlapping data blocks
between each pre-transitioning stripe and a post-transitioning
stripe (i.e., a row) is maximized to k = 4.

The remaining β = 1 cross-row stripe has r = 1 data block
in the first row and k− r = 3 data blocks in the second to
fourth rows, such that the number of overlapping data blocks
between it and a post-transitioning stripe (i.e., a row) is r = 1.

Analysis. We maximize the number of overlapping data blocks
of the first α same-row stripes to be k, and then maximize the
number of overlapping data blocks of the remaining β cross-
row stripes to be r subject to the condition that the number of
overlapping data blocks of the α same-row stripes is maximized.
The non-overlapping data blocks now only exist in the β cross-
row stripes, and the number of non-overlapping data blocks
retrieved for parity updates is thus ( l

k −b
k′
k c×

l
k′ )× (k− r).

For example, in transitioning from RS(4,3) to RS(5,3) using
the designed placement, we need three non-overlapping data
blocks, i.e., D17,D18 and D19 for parity updates (Figure 4).
Recall that the row-major order placement needs four data
blocks (Section III-B). Thus, the designed placement decreases
the number of non-overlapping data blocks to further save the
I/Os for parity updates.

Note that in theory, the optimal placements should be the
ones that maximize the sum of the number of overlapping data
blocks of all stripes. We pose it as a future work to discuss
whether our placements are optimal or not.

Proof of fault tolerance. We now prove that our placement
strategy preserves node-level fault tolerance:

(i) It is obvious that each of the α same-row stripes is spread
over k nodes, thus following the fault tolerance requirement.

(ii) The first cross-row stripe has r data blocks distributed in
the empty positions of the first row (with node ids of b k′

k c×
k, · · · ,k′−1), and k− r data blocks distributed in other rows
(with node ids of 0, · · · ,k− r−1). Therefore, the k data blocks
of the first cross-row stripe are sequentially distributed into k
different nodes.
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Fig. 5. Architecture of the ERS KV store prototype.

(iii) The second cross-row stripe has r data blocks distributed
in the second row (with node ids of (b k′

k c × k + k − r)
mod k′, · · · ,k− r− 1), and k− r data blocks distributed in
different rows (with node ids of k − r, · · · ,(2(k − r) − 1)
mod k′). Thus, the node ids of the second cross-row stripe
are right rotated by k− r based on the first stripe, and so the
second cross-row stripe is also spread across k different nodes.

(iv) By induction, we can conclude that the node ids of
the (i+1)-th cross-row stripe are right rotated by k− r based
on the i-th cross-row stripe. Thus, each cross-row stripe is
sequentially spread across k different nodes.

IV. SYSTEM DESIGN AND IMPLEMENTATION

We prototype a KV store that realizes ERS codes. We present
the architecture of our prototype (Section IV-A). We show the
metadata management of the prototype (Section IV-B). We next
discuss how to maintain consistency during redundancy transi-
tioning (Section IV-C). We finally show our implementation
of the prototype atop Libmemcached (Section IV-D).

A. Architecture

Figure 5 shows the architecture of the ERS KV store
prototype, which mainly comprises multiple clients, multiple
servers, and a proxy. The clients interact with the foreground
user applications while the servers store the object data. The
proxy acts as an interface for the clients to access the objects
in the servers. The proxy implements multiple redundancy
strategies (e.g., RS codes, ERS codes), and realizes the basic I/O
operations (e.g., PUT, GET, UPDATE, etc.) and the redundancy
transitioning processes. In particular, the transitioning processes
are coordinated by the proxy in that the proxy downloads the
old parity blocks and a subset of data blocks, recomputes the
new parity blocks, and finally uploads the new parity blocks.
To avoid the proxy being the single-point-of-failure, we can
deploy multiple proxies for backup. It is also noteworthy that
the proxy-based design can be seen in other cloud storage
systems (e.g., Bluesky [28], OpenStack [6]).

When first storing objects, users can specify the coding
parameters k,m and k′, and then the objects are stored using
ERS(k,m,k′). If the reliability requirements change, users
can call the transitioning functions to update the redundancy
schemes from RS(k,m) into RS(k′,m).

B. Metadata Management

For each object, the ERS KV store prototype divides and
encodes it into l data blocks and m× l

k parity blocks, each of
which is stored as a new KV pair. The metadata (e.g., the key
length, the value length) of each new KV pair is maintained
by each server.

For each set of coding parameters k,m and k′, the proxy
maintains two lists: (i) a list of keys of the objects under
transitioning and (ii) a list of keys of the objects that have
been transitioned. Also, the proxy avoids the I/O requests to
the objects that are currently under transitioning, and ensures
that the I/O requests to the transitioned objects are processed
based on RS(k′,m).

C. Consistency

We discuss one open issue in our prototype, i.e., maintaining
consistency during redundancy transitioning. During transi-
tioning, we need to update the parity blocks in the servers
that store the parity blocks. We must guarantee that all parity
blocks are consistently and successfully updated. A solution to
maintain consistency is to incorporate the two-phase commit
protocol into the update process. In the first phase, the proxy
sends the new parity blocks, and the servers store the new
parity blocks in their temporarily allocated buffers and respond
acknowledgments to indicate whether the parity blocks have
been successfully received and buffered. In the second phase,
if the proxy receives the acknowledgements from all servers
that buffer the new parity blocks, it notifies all servers to
commit and store the new parity blocks; otherwise, it notifies
all servers to discard the buffered parity blocks. To reduce the
communication overhead of the two-phase commit protocol, we
can leverage the piggybacking approach to reduce two rounds
of communication into one round [9].

D. Implementation

We implement ERS codes atop Libmemcached 1.0.18 [4]
that acts as the proxy, by adding about 3,800 SLoC. We also
deploy multiple Memcached servers [5] for object storage. We
leverage the Jerasure Library [23] to realize ERS codes. To
show the improvements of ERS codes over SRS codes, we
also implement SRS codes into Libmemcached.

V. EVALUATION

We present evaluation results of the ERS KV store prototype.
We show via numerical analysis and testbed experiments the
performance gain in redundancy transitioning of ERS (i.e., ERS
codes with the row-major order placement and the designed
matrix) and ERS+ (i.e., ERS codes with the designed matrix
and the designed placement) over SRS (i.e., SRS codes).

A. Numerical Analysis

We analyze the number of data and parity blocks read
for parity block updates when an object is transitioned from
RS(k,m) to RS(k′,m).

SRS. For SRS, if we exploit the old parity blocks to generate
the new parity blocks, then we have to read all old parity
blocks and almost all data blocks. To save the storage I/Os, we
resort to reading all data blocks and calculating the new parity
blocks directly without using any old parity block. Hence, the
number of blocks read is l.

ERS and ERS+. For ERS and ERS+, we read the old parity
blocks and the non-overlapping data blocks to generate the
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Fig. 6. Numerical results of the number of blocks read for parity block updates.

TABLE I
COMPARISONS OF SRS, ERS, AND ERS+ UNDER PARAMETRIC ANALYSIS.

number
improve

average
ratio

best
ratio

best
parameter

ERS over SRS 221 46.2% 73.8% (6, 1, 14)
ERS+ over ERS 123 14.8% 53.6% (13, 1, 14)

new parity blocks. In particular, the number of blocks read of
ERS+ is m× l

k +( l
k −b

k′
k c×

l
k′ )×(k−r), where r = k′ mod k.

Analysis of representative parameters. We consider param-
eters with small k,m and k′, such as (k,m,k′) = (2,1,3),
and (k,m,k′) = (4,1,5). We also consider parameters that are
deployed in practical systems, for example (k,m) = (6,3) (used
by Google ColossusFS [3]), (k,m) = (8,3) (used by Yahoo
Object Store [7]), (k,m) = (10,4) (used by Facebook HDFS
[25]), and (k,m) = (12,4) (used by Microsoft Azure [14]).

Figure 6 shows the results for 23 sets of coding parameters.
We summarize the observations as follows.
• ERS significantly outperforms SRS in terms of the number of

blocks read, while ERS+ further reduces the I/Os of ERS. For
example, for (k,m,k′) = (6,2,7), ERS reduces the number of
blocks read of SRS by 45.2%, while ERS+ further reduces
the number of blocks read of ERS by 17.4%.

• In some cases (e.g., (k,m,k′) = (2,1,3)), ERS has the same
number of blocks read as ERS+.

• When m increases, the number of blocks read of SRS (i.e., l)
stays unchanged, while those of both ERS and ERS+ increase.
Therefore, ERS and ERS+ have better improvements over
SRS with smaller m. For example, for (k,m,k′) = (12,3,14),
ERS (ERS+) saves the number of blocks read of SRS by
53.6% (63.1%), while for (k,m,k′)= (12,4,14), ERS (ERS+)
saves the number of blocks read of SRS by 45.2% (54.8%).
Note that m = 3 and m = 4 are enough for data protection
in practical deployment.

Analysis of general parameters. We now consider more
parameters and see how ERS (ERS+) behaves under general
parameters. We set 3≤ k′ ≤ 14,2≤ k ≤ k′−1,1≤ m≤ 4 and
m < k, and there are a total of 244 sets of parameters.

Table I compares SRS, ERS and ERS+ in four aspects: i)
number improve, the number of parameters where ERS (ERS+)
outperforms SRS (ERS), ii) average ratio, the average reduction
ratio of the number of blocks read of ERS (ERS+) over SRS
(ERS), iii) best ratio, the maximum reduction ratio of the
number of blocks read of ERS (ERS+) over SRS (ERS), and

iv) best parameter, the parameters corresponding to the best
ratio. There are 221 sets of parameters where ERS outperforms
SRS, and ERS reduces the number of blocks read of SRS by
46.2% on average, and up to 73.8% under (k,m,k′) = (6,1,14).
Note that in the remaining 23 sets of parameters, k′ is divisible
by k, and both SRS and ERS only require the old parity blocks
to generate the new parity blocks, so SRS equals ERS in
the number of blocks read. There are 123 sets of parameters
where ERS+ further outperforms ERS. ERS+ can save the
I/Os of ERS by 14.8% on average, and up to 53.6% under
(k,m,k′) = (13,1,14).

B. Testbed Experiments

Setup. We deploy the ERS KV store prototype on a local
cluster which comprises 8 physical nodes, each of which runs
Ubuntu 16.04.5 LTS with a quad-core 3.40 GHz Intel Core i5-
3570, 16 GB RAM, and a Seagate ST1000DM003 7200 RPM
1 TB SATA hard disk. Each node has 10 Gbps of network
bandwidth. We deploy the proxy in one node, and the servers
in the remaining nodes.

Methodology. We assume the following default configurations.
We adopt transitioning from RS(2,1) to RS(3,1). We consider
various object sizes from 1 KB to 4 MB. We set the network
bandwidth as 10 Gbps. We vary different settings in our
experiments. We measure the normal read and write time
and the transitioning time of an object. The results of each
experiment are averaged over ten runs.

Experiment 1 (Normal read/write latency under differ-
ent object sizes). We first evaluate the normal I/O per-
formance of the ERS KV store prototype and the vanilla
Memcached (denoted by Rep). We consider (k,m,k′) = (2,1,3)
for SRS/ERS/ERS+. We set the replication factor of Rep as
two such that Rep can tolerate the same number of failures
as SRS/ERS/ERS+. We evaluate the write time and read time
under different object sizes. Figure 7 shows the results.

From Figure 7(a), the write time increases with a larger
object size. According to the theoretical analysis, both SRS
codes and ERS codes divide an object into l data blocks,
and encode them to produce m× l

k parity blocks. Thus, SRS
codes should have similar write latency to ERS codes. From
Figure 7(a), the experimental results comply with the theoretical
analysis. Also, SRS codes and ERS codes have higher write
latency than Rep. The reasons are two-fold. First, SRS and
ERS generate l +m× l

k requests for writing, while Rep only
requires two requests. Second, SRS and ERS connect to k′+m
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Fig. 7. Exp#1: Normal write/read time.
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Fig. 9. Exp#3: Transitioning time under different coding parameters.

servers when sending the requests, while Rep only connects
to two servers. Thus, SRS codes and ERS codes have more
connection overhead.

From Figure 7(b), the read time also increases with a larger
object size. The read latency of SRS/ERS/ERS+ is also higher
than that of Rep (e.g., with object size ≥ 1 MB).

Experiment 2 (Transitioning latency under different object
sizes). We evaluate the transitioning time under different object
sizes. We consider transitioning from RS(2,1) to RS(3,1).
Figure 8 shows the results (the error bars show the maximum
and minimum results across ten runs).

We can see that the transitioning time increases with a larger
object size, and ERS and ERS+ constantly outperform SRS.
Note that ERS codes not only reduce the transitioning I/Os,
but also connect to fewer servers during transitioning (e.g.,
SRS connects to four servers while ERS connects to only two
servers). For example, ERS reduces the transitioning time of
SRS from 9.9% to 34.2%, while ERS+ reduces the transitioning
time of SRS from 5.7% to 31.9%, across all object sizes. We
can also see that the improvements of ERS and ERS+ over
SRS become more prominent with larger object sizes, since
the network now dominates the overall performance. ERS and
ERS+ have similar transitioning time, which is consistent with
the numerical results.

Experiment 3 (Transitioning latency under different coding
parameters). We next evaluate the transitioning time under
different coding parameters. We consider three sets of (k,m,k′),
i.e., (2,1,3), (4,1,5), and (5,1,6). We consider two object
sizes: 1 MB and 4 MB. Figure 9 shows the results (the error
bars show the maximum and minimum results across ten runs).

From Figure 9(a), ERS and ERS+ reduce the transitioning
time of SRS by 34.2% and 31.9%, 26.3% and 29.5%, and 23.6%
and 27.6%, for (2,1,3), (4,1,5), and (5,1,6), respectively.
From Figure 9(b), ERS and ERS+ reduce the transitioning time

TABLE II
EXP#4: TRANSITIONING TIME (µS) UNDER LIMITED BANDWIDTH.

Setting SRS ERS ERS+
(4,1,5), 1Gbps 64084 36532 34079
(4,1,5), 10Gbps 21353 12896 11087
(5,1,6), 1Gbps 67352 33916 29897
(5,1,6), 10Gbps 20215 12685 10789

of SRS by 32.5% and 28.9%, 39.6% and 48.1%, and 37.2%
and 46.6%, for (2,1,3), (4,1,5), and (5,1,6), respectively.
We can see that ERS greatly reduces the transitioning time
of SRS due to the effect of the designed encoding matrix.
ERS+ can further lower the transitioning time of ERS via
designing data placement with more overlapping data blocks
(e.g., (k,m,k′) = (4,1,5) and (k,m,k′) = (5,1,6)).

Experiment 4 (Transitioning latency under limited network
bandwidth). We now evaluate the transitioning performance
under limited bandwidth. We configure the bandwidth to 1 Gbps
in our testbed. We consider (k,m,k′) = (4,1,5) and (k,m,k′) =
(5,1,6) with object size of 4 MB. Table II shows the results.

We can see that ERS consistently outperforms SRS, while
ERS+ further outperforms ERS. For example, under 1 Gbps
network, ERS and ERS+ reduce the transitioning time of
SRS by 43.0% and 46.8% for parameter (k,m,k′) = (4,1,5),
and ERS and ERS+ reduce the transitioning time of SRS
by 49.6% and 55.6% for parameter (k,m,k′) = (5,1,6). Also,
the improvements of ERS and ERS+ over SRS are greater
with more limited bandwidth. For example, ERS+ reduces the
transitioning time of SRS by 46.6% under 10 Gbps network,
and 55.6% under 1 Gbps network, for (k,m,k′) = (5,1,6).

VI. RELATED WORK

Redundancy transitioning. Several studies address efficient
redundancy transitioning for different storage architectures.
AutoRAID [30], DiskReduce [12], and EAR [19] study the
transitioning from replication to RAID or erasure coding. Some
studies propose efficient data redistribution approaches for
RAID [31], [37], [39] and erasure-coded distributed storage
systems [15], [32]–[34], [38]. In this work, we specifically
focus on redundancy transitioning for KV objects in in-memory
KV stores, which pose high elasticity demands in real-world
deployment [1], [20].

Erasure coding in KV stores. Erasure coding has been
extensively studied in modern KV stores for low-cost fault



tolerance [2], [18], data availability [9], [36], and tail latency
mitigation [24]. In particular, prior studies [10], [27], [35],
[40] address the elasticity of erasure-coded in-memory KV
stores. PaRS [40] adjusts the replication factor of the data
blocks that have varying popularity, yet it requires data block
relocation and incurs expensive parity block updates. TEA [35]
realizes the transitioning from replication to erasure coding in
in-memory stores. ECHash [10] avoids parity block updates via
a new fragmented erasure coding model with node additions
or removals, while keeping coding parameters unchanged; in
contrast, our work addresses the change of coding parameters.
The closest work to ours is Ring [27], which also addresses
redundancy transitioning for KV objects. In contrast to Ring,
our work puts specific emphasis on mitigating I/Os during
redundancy transitioning via a co-design of encoding matrix
construction and data placement.

VII. CONCLUSION

We study how to enable I/O-efficient redundancy transition-
ing in erasure-coded KV stores. We propose a new class of
erasure codes, ERS codes, to mitigate I/O costs for redundancy
transitioning. ERS codes eliminate data block relocation, and
reduce I/Os for parity block updates via the co-design of
encoding matrix construction and placement strategy. We
implement a KV store that realizes ERS codes atop Memcached
to allow redundancy transitioning. Both numerical studies and
testbed experiments validate the efficiency of ERS codes in
redundancy transitioning.
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