
Correlation-Aware Stripe Organization for Efficient
Writes in Erasure-Coded Storage Systems

Zhirong Shen∗, Patrick P. C. Lee†, Jiwu Shu§‡, Wenzhong Guo∗‡
∗ College of Mathematics and Computer Science, Fuzhou University

∗ Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou, China
†Department of Computer Science and Engineering, The Chinese University of Hong Kong

§Department of Computer Science and Technology, Tsinghua University
zhirong.shen2601@gmail.com, pclee@cse.cuhk.edu.hk, shujw@tsinghua.edu.cn, guowenzhong@fzu.edu.cn

Abstract—Erasure coding has been extensively employed for
data availability protection in production storage systems by
maintaining a low degree of data redundancy. However, how
to mitigate the parity update overhead of partial stripe writes in
erasure-coded storage systems is still a critical concern. In this
paper, we reconsider this problem from two new perspectives:
data correlation and stripe organization, and propose CASO, a
correlation-aware stripe organization algorithm. CASO captures
data correlation of a data access stream. It packs correlated data
into a small number of stripes to reduce the incurred I/Os in
partial stripe writes, and further organizes uncorrelated data
into stripes to leverage the spatial locality in later accesses.
By differentiating correlated and uncorrelated data in stripe
organization, we show via extensive trace-driven evaluation that
CASO reduces up to 25.1% of parity updates and accelerates
the write speed by up to 28.4%.

I. INTRODUCTION

Today’s distributed storage systems continuously expand in
scale to cope with the ever-increasing volume of data storage.
In the meantime, failures also become more prevalent due to
various reasons, such as disk crashes, sector errors, or server
outages [7], [20], [25]. To achieve data availability, keeping
additional redundancy in data storage is a commonly used
approach to enable data recovery once failures occur. Two
representatives of redundancy mechanisms are replication and
erasure coding. Replication distributes identical replicas of
each data copy across storage devices, yet it significantly
incurs substantial storage overhead, especially in the face
of massive amounts of data being handled nowadays. On
the other hand, erasure coding introduces much less storage
redundancy via encoding computations, while reaching the
same degree of fault tolerance as replication [32]. At a high
level, erasure coding performs encoding by taking a group of
original pieces of information (called data chunks) as input and
generating a small number of redundant pieces of information

‡Corresponding author: Jiwu Shu and Wenzhong Guo. This work is
supported by National Natural Science Foundation of China (Grant No.
61602120, 61672159, 61232003, 61433008, and 61571129), the Fujian Col-
laborative Innovation Center for Big Data Application in Governments, Fujian
Provincial Natural Science Foundation (Grant No. 2017J05102), and the Tech-
nology Innovation Platform Project of Fujian Province (Grant No.2009J1007
and 2014H2005). This work is also supported by the Research Grants Council
of Hong Kong (GRF 14216316 and CRF C7036-15).

(called parity chunks), such that if any data or parity chunk
fails, we can still use a subset of available chunks to recover
the lost chunk. The collection of data and parity chunks that
are encoded together forms a stripe, and a storage system
stores multiple stripes of data and parity chunks for large-scale
storage. Because of the high storage efficiency and reliability,
erasure coding has been widely deployed in current production
storage systems, such as Windows Azure Storage [9] and
Facebook’s Hadoop Distributed File System [24].

However, while providing fault tolerance with low re-
dundancy, erasure coding introduces additional performance
overhead as it needs to maintain the consistency of parity
chunks to ensure the correctness of data reconstruction. One
typical operation is partial stripe writes [4], in which a subset
of data chunks of a stripe are updated. In this case, the parity
chunks of the same stripe also need to be renewed accordingly
for consistency. In storage workloads that are dominated by
small writes [3], [28], partial stripe writes will trigger frequent
accesses and updates to parity chunks, thereby amplifying I/O
overhead and extending the time of write operation. Partial
stripe writes also raise concerns for system reliability, as
different kinds of failures (e.g., system crashes and network
failures) may occur during the parity renewal and finally result
in the incorrectness of data recovery. Thus, accelerating partial
stripe writes is critical for improving not only performance, but
also reliability, in erasure-coded storage systems.

Our insight is that we can exploit data correlation [14]
to improve the performance of partial stripe writes. Data
chunks in a storage system are said to be correlated if they
have similar semantic or access characteristics. In particular,
correlated data chunks tend to be accessed within a short
period of time with large probability [14]. By extracting data
correlations from an accessed stream of data chunks, we
can organize correlated data chunks (which are likely to be
accessed simultaneously) into the same stripe, so as to reduce
the number of parity chunks that need to be updated.

To this end, we propose CASO, a correlation-aware stripe
organization algorithm. CASO carefully identifies correlated
data chunks by examining the access characteristics of an
access stream of data chunks. It then accordingly classifies
data chunks into either correlated or uncorrelated data chunks.

For correlated data chunks, CASO constructs a correlation
graph to evaluate their degrees of correlation and formulates
the stripe organization as a graph partition problem. For
uncorrelated data chunks, CASO arranges them into stripes
by leveraging the spatial locality in further accesses.

CASO is applicable for general erasure codes, such as
the classical Reed-Solomon (RS) codes [23] and XOR-based
erasure codes [5], [10], [27], [33]–[35]. In addition, CASO
is orthogonal and complementary to previous approaches that
optimize the performance of partial stripe writes at coding
level [27], [28], [34] or system level [3], [11], and can be
deployed on top of these approaches for further performance
gains. To the best of our knowledge, CASO is the first work
to exploit data correlation in stripe organization to mitigate the
parity update overhead of partial stripe writes.

In summary, we make the following contributions.
• We carefully examine existing studies on optimizing partial

stripe writes and identify the remaining open issues.
• We propose CASO to leverage data correlation in stripe

organization for erasure-coded storage systems.
• We implement CASO and conduct extensive trace-driven

testbed experiments. We show that CASO decreases up to
25.1% of parity updates and accelerates the average write
speed by up to 28.4% compared to the baseline stripe
organization technique. Furthermore, we show that CASO
preserves the performance of degraded reads [12], which are
critical recovery operations in erasure-coded storage.
The rest of this paper proceeds as follows. Section II

presents the basics of erasure coding and reviews related work.
Section III formulates and motivates our problem. Section IV
presents the detailed design of CASO. Section V evaluates
CASO using trace-driven testbed experiments. Finally, Sec-
tion VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Basics of Erasure Coding
We first elaborate the background details of erasure coding

following our discussion in Section I. An erasure code is
typically constructed by two configurable parameters, namely
k and m. A (k,m) erasure code transforms the original data
into k equal-size pieces of data information called data chunks
and produces additional m equal-size pieces of redundant
information called parity chunks, such that these k +m data
and parity chunks collectively form a stripe. A storage system
comprises multiple stripes, each of which is independently
encoded and distributed across k + m storage devices (e.g.,
nodes or disks). We focus on erasure codes that are Maximum
Distance Separable (MDS), meaning that any k out of k+m
chunks of a stripe can sufficiently reconstruct the original
k data chunks, while the amount of storage redundancy to
achieve the fault tolerance is minimum among all possible
erasure code constructions. In other words, MDS codes can
tolerate any loss of at most m chunks with optimal storage
efficiency.

Reed-Solomon (RS) codes [23] are one well-known family
of MDS erasure codes, and they perform encoding operations

Data Chunks Parity Chunks

1 2 3 4 5 6 1 2 3

Fig. 1. Encoding of the (6, 3) RS code for a stripe, in which there are six
data chunks and three parity chunks. If one of the data or parity chunks is
lost, any six surviving chunks within the stripe can be used to reconstruct the
lost chunk.

based on Galois Field arithmetic [22]. RS codes support
general parameters of k and m, and have been widely deployed
in production storage systems, such as Google’s ColossusFS
[1] and Facebook’s HDFS-RAID [2]. Figure 1 illustrates a
stripe of the (6, 3) RS code, in which there are six data
chunks (i.e., k = 6) and three parity chunks (i.e., m = 3).
XOR-based MDS erasure codes are another special family of
MDS erasure codes that perform encoding using only XOR
operations. Examples of XOR-based erasure codes include
RDP Code [5], X-Code [35], STAR Code [10], HDP Code
[33], H-Code [34], and HV-Code [27]. XOR-based erasure
codes have higher computational efficiency than RS codes,
but they often put restrictions on the parameters k and m. For
example, RDP Code and X-Code require m = 2 and can only
tolerate double chunk failures. XOR-based erasure codes are
usually used in local storage systems, such as EMC Symmetrix
DMX [18] and NetApp RAID-DP [16]. Our work is applicable
for both RS codes and XOR-based erasure codes.

B. Partial Stripe Writes

Maintaining consistency between data and parity chunks
is necessary during writes. Writes in erasure-coded storage
systems can be classified into full stripe writes and partial
stripe writes according to the write size. A full stripe write
updates all data chunks of a stripe, so it generates all parity
chunks from the new data chunks and overwrites the entire
stripe in a single write operation. In contrast, a partial stripe
write only updates a subset of data chunks of a stripe, and
it must read existing chunks of a stripe from storage to
compute the new parity chunks. Depending on the write
size, partial stripe writes can be further classified into read-
modify-writes for small writes and reconstruct-writes for large
writes [31]. Since small writes dominate in real-world storage
workloads [3], [28], we focus on read-modify-write mode,
which performs the following steps when new data chunks are
written: (i) reads both existing data chunks and existing parity
chunks to be updated, (ii) computes the new parity chunks
from the existing data chunks, new data chunks, and existing
parity chunks via the linear algebra of erasure codes [3], and
(iii) writes all the new data chunks and new parity chunks to
storage. Clearly, the parity updates incur extra I/O overhead.

Extensive studies in the literature propose to mitigate parity
update overhead. For example, H-Code [34] and HV Code [27]
are new erasure code constructions that associate sequential
data with the same parity information, so as to favor sequential
access. Shen et al. [28] develop a new data placement that

attempts to arrange sequential data with the same parity
information for any given XOR-based erasure code. Some
approaches are based on parity logging [3], [11], which store
parity deltas instead of updating parity chunks in place, so as
to avoid reading existing parity chunks as in original read-
modify-write mode.

C. Open Issues

When we examine existing studies on optimizing partial
stripe writes, there remain two limitations.

Negligence of data correlation. Data correlation exists in
real-world storage workloads [14]. Existing studies do not
consider data correlation in erasure-coded storage systems, so
they cannot fully mitigate parity update overhead. Specifically,
if correlated data chunks are dispersed across many different
stripes, then a write operation to those chunks will update all
the parity chunks in multiple stripes. Note that some studies
[27], [28], [34] favor sequential access, yet correlated data
chunks may not necessarily be sequentially placed. Previous
studies [6], [14], [30] exploit data correlation mainly to im-
prove pre-fetching performance, but how to use this property
to mitigate parity update overhead remains an open issue.

Absence of an optimization technique for RS codes.
Existing studies mainly focus on optimizing partial stripe
writes for XOR-based erasure codes [27], [28], [34]. Neverthe-
less, XOR-based erasure codes often put specific restrictions
on the coding parameters, while today’s production storage
systems often deploy RS codes for general fault tolerance (see
Section II-A). Thus, optimizing partial stripe writes for RS
codes is still an imperative need.

III. MOTIVATION

This paper aims to address the following problem: Given
an access stream, how can we organize the data chunks into
stripes based on data correlation, so as to optimize partial
stripe writes? In this section, we motivate our problem via
trace analysis and an example.

A. Trace Analysis

We infer data correlation by a “black-box” approach, which
finds correlated data chunks through analyzing a data access
stream without requiring any modification to the underlying
storage system [14]. We use two parameters to identify data
correlation: time distance and access threshold. We say that
two data chunks are correlated if the number of times when
they are accessed within a specific time distance reaches a
given access threshold.

To validate the significant impact of correlated data chunks
in data accesses, we select several real-world block-level work-
loads from the MSR Cambridge traces [17] (see Section V for
details about the traces). Each workload in the traces includes
a sequence of access requests, each of which describes the
timestamp of a request (in terms of Windows filetime), the
access type (i.e., read or write), the start address of the request,
and the size of the accessed data.

wdev_1 wdev_2 wdev_3 rsrch_0 rsrch_1 rsrch_2 web1 web_3 hm_1
0.0

0.2

0.4

0.6

0.8

1.0

Workloads

 Ratio of correlated data chunks
 Access frequency ratio of correlated data chunks

Fig. 2. An analysis on the real workloads about data correlation.

In this paper, we assume that two data chunks are said
to be correlated if both of them are accessed by requests
with the same timestamp value at least twice. Note that the
timestamp is represented in units of ticks that correspond
to 100-nanosecond intervals, yet the timestamp values are
rounded to the nearest 1,000. In other words, we set the time
distance as 100 microseconds and the access threshold as two.

Let nc denote the number of correlated data chunks that
we infer in a workload and let fc be the number of times
accessed to these nc correlated data chunks over the entire
workload. Suppose na denotes the number of distinct data
chunks requested in a workload, and fa represents the number
of times accessed to these na chunks in total. We consider
the ratio of the correlated data chunks (denoted by nc

na
) and

the access frequency ratio of correlated data chunks (denoted
by fc

fa
). We measure these two metrics in several selected

workloads of the MSR Cambridge traces, and the results are
shown in Figure 2. We make two observations.
• The ratios of correlated data chunks vary significantly

across workloads. For example, the ratio of correlated data
chunks in wdev_2 is 98.2% and the ratio in wdev_1 is
only 3.3%.

• Correlated data chunks receive a considerable number
of data accesses. For example, 70.0% of data accesses
are issued for correlated data chunks in wdev_1, while
in wdev_2 the access frequency ratio of correlated data
chunks reaches 98.0%.
In addition, previous work [13] reveals that most read

(resp. write) requests will access read-only (resp. write-only)
data chunks. As correlated data chunks exhibit similar access
characteristics, a read-only (resp. write-only) data chunk is
expected to be more correlated to another data chunk that is
also read-only (resp. write-only).

B. Motivating Examples

Our trace analysis suggests that correlated data chunks
receive a significant number of data accesses, and they tend
to be accessed together. Thus, we propose to group correlated
data chunks into the same stripes, so as to mitigate parity
update overhead in partial stripe writes. We illustrate this idea
via a motivating example. Figure 3 shows two different stripe
organization methods with the (4, 2) RS code. Note that the
placement of parity chunks is rotated across stripes to evenly
distribute parity updates across the whole storage space, as

D1 D2 D3 D4 P1 P2

D5 D6 D7 P4P3 D8

Stripe 1Stripe 1

Stripe 2Stripe 2

Data ChunkData Chunk Parity ChunkParity Chunk Correlated Data ChunkCorrelated Data Chunk

Original Stripes Original Stripes

(a) Baseline stripe organization.

D1

D2

D3 D4 P1 P2D5

D6 D7 P4P3 D8

Stripe 1Stripe 1

Stripe 2Stripe 2

Data ChunkData Chunk Parity ChunkParity Chunk Correlated Data ChunkCorrelated Data Chunk

New Stripes New Stripes

(b) New stripe organization.

Fig. 3. Motivation: Two different stripe organization methods.

commonly used in practical storage systems [21]. Thus, in
Stripe 1, the last two chunks are parity chunks, while in
Stripe 2, the parity chunks will be placed at the first and last
column. Now, suppose that D1 and D5 are write-only data
chunks and they are correlated. Figure 3(a) shows a baseline
stripe organization (BSO) methodology, which is considered
for RS codes in the plugins of HDFS [36]. Specifically, BSO
places sequential data chunks across k+m storage devices in
a round-robin fashion [19]. As shown in Figure 3(a), BSO
places D1 and D5 in two different stripes. When D1 and
D5 are updated, the associated four parity chunks P1, P2,
P3, and P4 also need to be updated. On the other hand,
by leveraging data correlation, the new stripe organization
method can arrange D1 and D5 in the same stripe (shown
in Figure 3(b)). In this case, updating both chunks only needs
to renew two associated parity chunks P1 and P2 in Stripe 1.

Besides, correlated data chunks in a stripe are dispersed
onto different disks and the access parallelism to them will be
improved.

IV. CORRELATION-AWARE STRIPE ORGANIZATION

We now present CASO, a correlation-aware stripe
organization algorithm. The main idea of CASO is to capture
data correlations by first carefully analyzing a short period of
an access stream and then separating the stripe organization for
correlated and uncorrelated data chunks. Table I summarizes
the major notations used in this paper and their descriptions.

A. Stripe Organization for Correlated Data Chunks

Organizing correlated data chunks is a non-trivial task and is
subject to two key problems: how to identify data correlation,
and how to organize identified correlated data chunks into
stripes. How to capture data correlation has been extensively
studied, yet organizing the correlated data chunks into stripes
is not equivalent to simply finding the longest frequent chunk
sequence as in prior approaches such as C-Miner [14] and CP-
Miner [15]. In stripe organization, we should select correlated
data chunks that are predicted to receive the most write
operations within a stripe, and the longest chunk sequence
may not be the solution we expect.

TABLE I
MAJOR NOTATIONS.

Notation Description

k number of data chunks in a stripe
m number of parity chunks in a stripe
nc number of correlated data chunks
nu number of uncorrelated data chunks
D set of correlated data chunks {D1, D2, · · · , Dnc}
E set of connections among correlated data chunks D
C correlation function maps E to non-negative numbers

G, Gi correlation graph over D, the i-th correlation subgraph
λ dnc

k
e, i.e., the number of correlation subgraphs

Di the i-th data chunk
E(Di, Dj) connection between Di and Dj
C(Di, Dj) correlation degree between Di and Dj
Si set of data and parity chunks in the i-th stripe
Di set of data chunks in Gi, set of data chunks in Si
R(·) function to calculate correlation degrees of data chunks
O all possible stripe organization methods

D1

D2 D8D5

D9D6

D4

3

2

2

2

22

D7

D3

3

2

2 3

Analyzed access stream:

Period 1: (D1, D2, D3)

Period 2: (D1, D4, D5)

Period 3: (D1, D2, D3, D4, D5)

Period 4: (D1, D2, D3)

Period 5: (D1, D3, D6, D9)

Period 6: (D5, D7, D8, D9)

Period 7: (D5, D6, D7)

Period 8: (D5, D8, D11, D12)

Period 9: (D5, D6, D9, D13)

Period 10: (D5, D7, D14, D15)

4

2

Fig. 4. An example of correlation graph constructed from an access stream.

1) Correlation Graph: To theoretically evaluate the cor-
relation among data chunks, CASO constructs an undirected
graph G(D, E , C) over correlated data chunks, which we call
the correlation graph.

In the correlation graph G(D, E , C), suppose that D =
{D1, D2, · · · , Dnc

} denotes the set of correlated data chunks
that are identified, where nc is the number of correlated data
chunks, and E is a set of connections. If data chunks Di

and Dj are correlated (see Section III-A for the definition of
correlation), then there exists a connection E(Di, Dj) ∈ E . C
is a correlation function that maps E to a set of non-negative
numbers. For the connection E(Di, Dj) ∈ E , C(Di, Dj)
is called the correlation degree between Di and Dj , which
represents the number of times that both of Di and Dj are
requested within the same time distance in an access stream.

Figure 4 presents an access stream which is partitioned into
10 non-overlapped periods according to a given time distance.
If the access threshold is set as 2, then we can derive a set of
correlated data chunks D = {D1, D2, · · · , D9} (i.e., nc = 9)
and accordingly construct a correlation graph. For example, as
the number of periods when both of D1 and D3 are requested
is 4, then we set C(D1, D3) = 4 in the figure.

After establishing the correlation graph, the next step is to
organize the correlated chunks into stripes. Suppose that there
are nc correlated data chunks and the system selects the (k,m)
RS code. Then the correlated data chunks will be organized

D1

D2 D8D5

D9D6

D4

3

2

2

D7

D3 2

3

2

Correlation subgraph
in Stripe 1 Correlation subgraph

in Stripe 2

Correlation subgraph
in Stripe 3

Fig. 5. An example of three correlation subgraphs (suppose k = 3). There
are three stripes, where D1 = {D1, D2, D4}, D2 = {D5, D7, D8}, and
D3 = {D3, D6, D9}. Then the correlation degrees of the data chunks in the
three subgraphs are R(D1) = 5, R(D2) = 5, and R(D3) = 4, respectively.

into λ = dnc

k e stripes, namely {S1,S2, · · · ,Sλ}. Note that
the last stripe Sλ may include fewer than k correlated data
chunks, and it can be padded with dummy data chunks with
all zeros.

Grouping the correlated data chunks will accordingly de-
compose the correlation graph G into λ subgraphs termed
Gi(Di, Ei, C) for 1 ≤ i ≤ λ, where Di (1 ≤ i ≤ λ) denotes
the set of data chunks in Gi. After the graph partition, the
correlated data chunks in a subgraph will be organized into
the same stripe. Suppose that Di = {Di1 , Di2 , · · · , Dik}, and
let R(·) be a function to calculate the sum of the correlation
degrees of data chunks in a set. Then the sum of the correlation
degrees of the data chunks in Di can be given by

R(Di) =
∑

Dix ,Diy∈Di,E(Dix ,Diy)∈E

C(Dix , Diy). (1)

Let O be the set of all possible stripe organization methods.
Then our objective is to find an organization method that
maximizes the sum of correlation degrees for the λ correlation
subgraphs, so that the most writes are predicted to be issued
to the data chunks within the same stripe. We formulate this
objective function as follows:

Max
λ∑
i=1

R(Di), for all possible methods in O. (2)

For example, we configure k = 3 in erasure coding and
group the nine correlated data chunks in Figure 4 into three
subgraphs as shown in Figure 5. The data chunks grouped in
the same subgraph will be organized into the same stripe. We
can see that the sum of correlation degrees of the data chunks

in these three subgraphs is
3∑
i=1

R(Di) = 14.

2) Correlation-Aware Stripe Organization Algorithm:
Finding the organization method that maximizes the sum of
correlation degrees through enumeration is extremely time
consuming. It requires to iteratively choose k correlated data
chunks to construct a stripe from those that are unorganized
yet. Suppose that there are nc correlated data chunks. Then the
enumeration of all possible stripe organization methods will

Algorithm 1: Stripe organization for correlate data chunks.

Input: A correlation graph G(D, E , C).
Output: The λ stripes that are organized.

1 Set D = {D1, D2, · · · , Dnc}
2 Set Di = ∅ for 1 ≤ i ≤ λ
3 for i = 1 to λ− 1 do
4 Select Di1 and Di2 with the maximum correlation degree

in G(D, E , C)
5 Update D = D − {Di1 , Di2}, Di = Di ∪ {Di1 , Di2}
6 for each data chunk Dx ∈ D do
7 Calculate R(Di ∪ {Dx})
8 Find the data chunk Dy , where

R(Di ∪ {Dy}) = Max{R(Di ∪ {Dx})|Dx ∈ D}
9 Set D = D − {Dy}, Di = Di ∪ {Dy}

10 Repeat step 6∼step 9 until Di includes k data chunks
11 Remove the connections between the data chunks in Di

and those in D over G(D, E , C)

12 Organize the remaining correlated data chunks into Dλ
13 For each stripe, generate the corresponding parity chunks

need
(
nc

k

)
·
(
nc−k
k

)
· · ·
(
nc−(λ−1)k

k

)
tests1, where λ = dnc

k e. To
improve the search efficiency, we propose a greedy algorithm
(see Algorithm 1) to organize the correlated data chunks. The
main idea is that for each stripe, it first selects a pair of data
chunks with the maximum correlation degree among those that
are unorganized yet, and then iteratively chooses a data chunk
that has the maximum sum of correlation degrees with those
that have already been selected for the stripe.

In the initialization of Algorithm 1, D includes all the
correlated data chunks. The set Di (1 ≤ i ≤ λ), which is used
to include the data chunks in the stripe Si, is set as empty
(step 1∼step 2). For the stripe Si (1 ≤ i ≤ λ − 1), we first
choose two data chunks that have the maximum correlation
degree in G(D, E , C) from those that have not been organized
yet (step 4). These two data chunks will be excluded from D
and added into Di (step 5). After that, we scan every remaining
data chunk Dx in D and calculate its sum of correlation
degrees with the data chunks in Di (step 6∼step 7). We then
choose the one Dy that has the maximum sum of correlation
degrees with the data chunks in Di, exclude it from D, and
append it to Di (step 8∼step 9). We repeat the selection of data
chunks in Di until Di has included k data chunks (step 10).
Once these k data chunks in Di have been determined, the
algorithm then removes the connections of the data chunks
in Di with those in D, and turns to the organization of the
next stripe (step 11). Finally, the storage system organizes
the remaining data chunks (step 12), and encodes the k data
chunks in Di (1 ≤ i ≤ λ) by generating m parity chunks
(step 13).
An example: We show an example in Figure 6 based on
the correlation graph in Figure 4. In this example, we set
k = 3 and thus λ = dnc

k e = 3. At the beginning, D =
{D1, D2, · · · , D9} and Di = ∅ for 1 ≤ i ≤ 3.

1
(i
j

)
denotes the number of combinations of selecting j chunks from i

chunks, where j ≤ i.

D1

D2 D8D5

D9D6

D4

3

2

2

2

22

D7

D3

3

2

2 3

4

2

(a) D1 and D3 are selected in Stripe 1.

D1

D2
D8D5

D9D6

D4

3

2

22

D7

D3

3

2 3

4

2

Correlation subgraph
in Stripe 1

(b) D2 is selected in Stripe 1.

D1

D2 D8D5

D9D6

D4

3

2

22

D7

D3

3

2 3

4

2

Correlation subgraph
in Stripe 1

(c) D5 and D7 are selected in Stripe 2.

D1

D2 D8D5

D9D6

D4

3

D7

D3

3

2 3

4

2

Correlation subgraph
in Stripe 1

Correlation subgraph
in Stripe 2

(d) D4 is selected in Stripe 2.

D1

D2 D8D5

D9D6

D4

3

D7

D3

3

2 3

4

2

Correlation subgraph
in Stripe 1

Correlation subgraph
in Stripe 2

(e) D6 and D9 are selected in Stripe 3.

D1

D2 D8D5

D9D6

D4

3

D7

D3

3

2 3

4

2

Correlation subgraph
in Stripe 1

Correlation subgraph
in Stripe 2

Correlation subgraph
in Stripe 3

(f) D8 is selected in Stripe 3.

Fig. 6. An example of organizing correlated data chunks in CASO.

To determine the three data chunks in D1, we first select the
two data chunks D1 and D3, which we find have the maximum
correlation degree of C(D1, D3) = 4 in G(D, E , C). Then we
update D = {D2, D4, D5, · · · , D9} and set D1 = {D1, D3}
(see Figure 6(a)). The algorithm then scans the remaining
data chunks in D. We first consider D2, which connects
both D1 and D3 and has the sum of correlation degrees
C(D1, D2) + C(D2, D3) = 6. We next turn to D4 in D,
which only connects D1 and has the correlation degree of
C(D1, D4) = 2. We repeat the test for all the remaining data
chunks in D, and finally select D2 that has the maximum sum
of correlation degrees with the data chunks in D1. We update
D = {D4, D5, · · · , D9} and D1 = {D1, D2, D3}. Once the
number of data chunks in D1 equals k (i.e., 3 in this example),
we delete the edges connecting the data chunks in D and
those in D1 (i.e., E(D1, D4), E(D1, D5), and E(D3, D6)),
as shown in Figure 6(b).

Following this principle, we obtain D2 = {D4, D5, D7}
(see Figure 6(d)) and D3 = {D6, D8, D9} (see Figure 6(f)).

We can see that
3∑
i=1

R(Di) = 17.

Algorithm 2: Stripe organization for uncorrelated data
chunks.

1 for each uncorrelated data chunk Di do
2 Organize it into the (λ+ d i−nc

k
e)-th stripe

3 For each organized stripe, calculate the m parity chunks
4 Store the chunks of each stripe on k +m storage devices with

only one chunk being kept on one device

D10, D11, D12, D13, D14, …D10, D11, D12, D13, D14, …

Uncorrelated Data Chunks

D10, D11, D12 D13, D14, D15

Analyzed access stream:

Period 1: (D1, D2, D3)

Period 2: (D1, D4, D5)

Period 3: (D1, D2, D3, D4, D5)

Period 4: (D1, D2, D3)

Period 5: (D1, D3, D6, D9)

Period 6: (D5, D7, D8, D9)

Period 7: (D5, D6, D7)

Period 8: (D5, D8, D11, D12)

Period 9: (D5, D6, D9, D13)

Period 10: (D5, D7, D14, D15)

......

Fig. 7. An example of stripe organization for uncorrelated data chunks.

B. Stripe Organization for Uncorrelated Data Chunks

We also consider the organization of uncorrelated data
chunks to optimize partial stripe writes. We have two obser-
vations.

1) Spatial locality can be utilized in stripe organization to
reduce the parity updates in partial stripe writes. For
example, if two sequential data chunks in the same stripe
are written, then we only need to update their common
parity chunks.

2) Uncorrelated data chunks still account for a large propor-
tion of all the accessed data chunks in many workloads
(e.g., wdev_1, wdev_3, rsrch_1, rsrch_2, and
web_1 in Figure 2).

Therefore, we propose to organize the uncorrelated da-
ta chunks in a round-robin fashion [19]. Suppose that
{Dnc+1, Dnc+2, · · · , Dnc+nu

} denotes the set of uncorrelated
data chunks, where nc and nu are the numbers of correlated
and uncorrelated data chunks, respectively. For the data chunk
Di, we say i is the chunk identity of Di. In addition, we
can configure the number of uncorrelated data chunks that
satisfy spatial locality based on the deployment environment.
For example, for the data chunks with sequential logical chunk
addresses in the direct-attached storage [8] or the data chunks
that belong to the same file in distributed storage systems [36],
we can make their chunk identities contiguous.

Algorithm 2 gives the main steps to organize uncorrelated
data chunks. It scans the uncorrelated data chunks. For the
uncorrelated data chunk Di (nc+1 ≤ i ≤ nc+nu), it will be
organized into the (λ + d i−nc

k e)-th stripe. After determining
the stripe identity that every uncorrelated data chunk belongs
to, the algorithm then calculates the m parity chunks for each
stripe and stores the k+m chunks (including the k data chunks
and m parity chunks) of each stripe on k+m storage devices
with only one chunk being assigned to one device.

TABLE II
CHARACTERISTICS OF SELECTED WORKLOADS.

Workloads wdev 1 wdev 2 wdev 3 web 1 web 3 rsrch 0 rsrch 1 rsrch 2 src2 1

Number of read operations 0 189 11 87,057 10,049 99,779 42 136,364 643,669
Average read size (KB) 0 6.12 63.27 45.90 74.89 11.47 6.72 4 60.31

Number of write operations 1,055 181,076 670 73,833 21,330 948,796 13,737 71,222 14,104
Average write size (KB) 5.13 8.16 2.03 9.22 20.83 8.74 6.19 4.25 13.34

An example: We set k = 3 in erasure coding. Figure 7 shows
an example based on the access stream in Figure 4. From
Figure 4, the correlated data chunks are {D1, D2, · · · , D9}
and are organized into λ = 3 stripes. We then identify the
uncorrelated ones {D10, D11, · · · , D9+nu}, where nu is the
number of uncorrelated data chunks for being encoded. To
organize D10, it will be organized in the 4-th stripe. Following
this method, we can obtain the stripes that preserve a high
degree of data sequentiality as shown in Figure 7.

C. Complexity Analysis

Complexity of Algorithm 1. Algorithm 1 has to construct λ
stripes. Suppose that there are nc correlated data chunks. For
each stripe, to select the first two correlated data chunks with
the maximum correlation degree, the algorithm needs no more
than n2c trials (step 4 in Algorithm 1). To select the remaining
k − 2 correlated data chunks for each stripe, the algorithm
should repeat the following steps.

• Scan no more than nc data chunks in D (step 6).
• For each data chunk, calculate the sum of correlation

degrees with no more than k data chunks that have been
chosen in the candidate stripe (step 7).

Therefore, the complexity of determining the stripe iden-
tity for each correlated data chunks (i.e., step 1∼ step 12)
is O(λn2c + λnck

2). In step 13, as the number of stripes
organized by correlated data chunks is λ and each stripe will
calculate m parity chunks, the complexity of calculating parity
chunks is O(λm). Finally, the complexity of Algorithm 1 is
O(λn2c + λnck

2 + λm).
Complexity of Algorithm 2. We then analyze the complexity
of Algorithm 2. Suppose that nu denotes the number of uncor-
related data chunks. The algorithm needs to scan every uncor-
related data chunk, so the complexity of determining the stripe
identities for uncorrelated data chunks (i.e., step 1∼step 2)
is O(nu). The number of stripes organized by uncorrelated
data chunks is O(dnu

k e) and each stripe will calculate m
parity chunks, so the complexity of calculating parity chunks
is O(dnu

k e · m). Finally, the complexity of Algorithm 2 is
O(nu + dnu

k e ·m).

V. PERFORMANCE EVALUATION

In this section, we carry out extensive testbed experiments to
evaluate the performance of CASO. We would like to answer
the following questions:

• How many parity updates can be reduced by CASO for
different erasure codes?

• How many parity updates can be reduced by CASO
when the number of access requests analyzed for data
correlation changes?

• How much write speed can be accelerated by CASO?
• Will CASO affect the performance of degraded reads

(i.e., read operations that include temporarily unavailable
data chunks)?

A. Experiment Preparation

In this evaluation, the parameter k+m is configured in the
range from 6 to 12, which covers typical system configura-
tions of existing storage systems [1]. Specifically, we mainly
consider three erasure codes: the (4, 2) RS code, the (6, 3)
RS code that is employed in Google Colossus FS [1], and the
(8, 4) RS code.

Our evaluation is driven by real-world block-level work-
loads from MSR Cambridge Traces [17], which describe
various access characteristics of enterprise storage servers. The
workloads are collected from 36 volumes that span 179 disks
of 13 servers for one week. Each workload records the start
position of the I/O request and the request size. Here, we select
9 volumes, most of which have small write size (i.e., smaller
than 10KB). Therefore, this selection can better evaluate the
performance of partial stripe writes with small write size.
Table II lists the characteristics of the selected workloads.

Evaluation Methods. In the evaluation, the chunk size is
set as 4KB, which is consistent with the deployment of erasure
codes in real storage systems [3], [29].

For each workload, we only select a small portion of access
requests for correlation analysis. To describe the ratio of access
requests of a workload that are analyzed in CASO, we first
define the concept of “analysis ratio” as follows.

analysis ratio =
num. of analyzed access requests in CASO

num. of access requests of a workload
.

After correlation identification, we group the correlated data
chunks that are inferred in the analysis (see Algorithm 1),
and organize the remaining data chunks by the logical chunk
addresses (see Algorithm 2). To fairly evaluate CASO, we
replay the access requests that are not used in the correlation
analysis for each workload. We compare CASO with baseline
stripe organization (BSO) in the evaluation.
Evaluation Environment: The evaluation is run on a Linux
server with an X5472 processor and 8GB memory. The
operating system is SUSE Linux Enterprise Server and the
filesystem is EXT3. The deployed disk array consists of 15
Seagate/Savvio 10K.3 SAS disks, each of which has 300GB
storage capability and 10,000 rmp. The machine and the disk

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.5

1.0

1.5

2.0

 CASO
 BSO

(a) wdev 1.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0

1

2

3

4
 CASO
 BSO

(b) wdev 2.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.4

0.8

1.2

1.6
 CASO
 BSO

(c) wdev 3.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 CASO
 BSO

(d) src2 1.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.5

1.0

1.5

2.0
 CASO
 BSO

(e) rsrch 0.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.8

1.6

2.4

3.2
 CASO
 BSO

(f) rsrch 1.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.7

1.4

2.1

2.8
 CASO
 BSO

(g) rsrch 2.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.8

1.6

2.4

3.2
 CASO
 BSO

(h) web 1.

Fig. 8. Experiment 1 (Impact of different erasure codes on parity updates). Smaller values means less parity updates are incurred.

0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

Ratios

 CASO
 BSO

(a) wdev 1.

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

Ratios

 CASO
 BSO

(b) wdev 2.

0.1 0.2 0.3 0.4 0.5
0.0

0.4

0.8

1.2

1.6

Ratios

 CASO
 BSO

(c) wdev 3.

0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5
 CASO
 BSO

Ratios

(d) src2 1.

0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

Ratios

 CASO
 BSO

(e) rsrch 0.

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

Ratios

 CASO
 BSO

(f) rsrch 1.

0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

Ratios

 CASO
 BSO

(g) rsrch 2.

0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

Ratios

 CASO
 BSO

(h) web 1.

Fig. 9. Experiment 2 (Impact of different analysis ratios on parity updates). Smaller values means less parity updates are incurred.

array are connected by a Fiber cable with the bandwidth of
800MB/sec. The selected erasure codes are realized based on
Jerasure 1.2 [22].

B. Experiment Results

Experiment 1 (Impact of different erasure codes on parity
updates). We first measure the number of parity updates
incurred in partial stripe writes for different erasure codes. We
set the analysis ratio as 0.5 and select three erasure codes with
different parameters: the (4, 2) RS code, the (6, 3) RS code,
and the (8, 4) RS code. The results are shown in Figure 8. We
make two observations.

First, CASO can reduce 10.4% of parity updates on average
for different erasure codes under different real workloads. In

particular, when using the (4, 2) RS code in the workload
wdev_1, CASO reduces 25.1% of parity updates compared
to BSO. The reason is that CASO arranges the correlated
data chunks together in a small number of stripes, such that
the partial stripe writes to them are centralized and the number
of parity chunks to be updated is reduced.

Second, the larger value of m will generally cause more
parity updates. The reason is that in addition to the data chunks
being updated, a partial stripe write operation should also
renew the m parity chunks in a stripe so as to promise the
correctness of data recovery.
Experiment 2 (Impact of different analysis ratios on parity
updates). To study the impact of analysis ratios on parity
updates, we vary the analysis ratio from 0.1 to 0.5, and

wdev_1 wdev_2 wdev_3 rsrch_0 rsrch_1 rsrch_2 src2_1 web_1 web_3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Workloads

(k=4,m=2), CASO (k=4,m=2), BSO
(k=6,m=3), CASO (k=6,m=3), BSO
(k=8,m=4), CASO (k=8,m=4), BSO

Fig. 10. Experiment 3 (Average write speed). Larger values enable faster write operations.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.4

0.8

1.2

1.6

 CASO
 BSO

(a) wdev 2.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.3

0.6

0.9

1.2

1.5

 CASO
 BSO

(b) wdev 3.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.4

0.8

1.2

1.6

 CASO
 BSO

(c) rsrch 0.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.3

0.6

0.9

1.2

1.5

 CASO
 BSO

(d) src2 1.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.4

0.8

1.2

1.6

 CASO
 BSO

(e) rsrch 1.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.5

1.0

1.5

 CASO
 BSO

(f) rsrch 2.

(k=4,m=2) (k=6,m=3) (k=8,m=4)

0.4

0.8

1.2

1.6

 CASO
 BSO

(g) web 1.

(k=4,m=2) (k=6,m=3) (k=8,m=4)
0.0

0.4

0.8

1.2

1.6

 CASO
 BSO

(h) web 3.

Fig. 11. Experiment 4 (Normalized ratio of additional data read in degraded reads.) Smaller values indicate less data are retrieved in degraded reads.

measure the number of resulting parity updates incurred in
the (4, 2) RS code for CASO and BSO. Figure 9 illustrates
the results.

We observe that CASO generally reduces more parity
updates when taking more access requests into correlation
analysis. Take the workload wdev_1 as an example. CASO
cuts down about 21.5% of parity updates when the analysis
ratio is 0.1, and this reduction increases to 25.1% when the
analysis ratio reaches 0.5.

In addition, as referred above, the evaluation measures the
parity updates by using the remaining access requests that are
not used in correlation analysis for each workload. Therefore,
fewer access requests can be replayed when the analysis ratio
is larger, and hence the number of parity updates in both
CASO and BSO drops when the analysis ratio increases.
Experiment 3 (Average write speed). We further measure the
average speed for our testbed to complete a write operation in
different workloads. We set the analysis ratio as 0.5 and run
the tests for different erasure codes. Each test is repeated for
five runs and the results are averaged in Figure 10.

We can see that even for different erasure codes, CASO
can effectively accelerate the write speed for most of the
workloads. For example, when issuing the write operations

in wdev_1 to the system deployed with the (4, 2) RS code,
CASO can accelerate the write speed by 28.4% compared to
BSO. In addition, CASO can improve the write speed by
21.2% when replaying the write operations in src2_1 to
the system deployed with the (4, 2) RS code. This is because
CASO can significantly decrease the number of parity updates
in partial stripe writes. Note that the average write sizes
of most workloads are smaller than 10KB. Thus, the write
throughput in our test is only several megabytes per second,
which is reasonable in real storage systems.
Experiment 4 (Additional I/Os in degraded reads). In
this test, we evaluate the performance of degraded reads in
CASO. Degraded reads [9], [12], [26] usually appear when the
storage system suffers from transient failure (i.e., the stored
data chunks are temporarily unavailable). To serve degraded
reads, the storage system will retrieve additional data or parity
chunks to recover the lost chunk, and finally, the number of
I/Os increases. To evaluate degraded reads, we erase the data
on a disk, replay the read requests that are not used in the
correlation analysis for each workload, and record the average
amount of data to be additionally read in one disk’s failure.
We repeat this procedure for all k + m disks. The average
results are shown in Figure 11, which normalize the number

of chunks that are additionally read in CASO as 1.
We can see that CASO will not downgrade the overall

performance of degraded reads to the workloads. It can even
decrease 4.2% of additional chunks on average that are re-
trieved in degraded reads. Specifically, CASO can decrease
7.5% of additional data on average in degraded reads for the
workloads wdev_2, rsrch_0, web_1, and web_3. The
reason is that Algorithm 1 in CASO can differentiate and
separate read-only data chunks with write-only data chunks in
stripe organization, which will help to improve the degraded
read performance. Suppose that some data chunks in a read
request fail. Then the storage system can reuse its correlated
data chunks in the request for data reconstruction. Finally, the
extra number of I/Os in degraded reads can be decreased. We
expect that CASO can reach better degraded read performance
when being deployed in the scenario in which the correlated
data chunks are read-only and non-sequential.

VI. CONCLUSION

In this paper, we reconsider the optimization of partial stripe
writes in erasure-coded storage systems from the perspectives
of data correlation and stripe organization. We then propose
CASO, a correlation-aware stripe organization algorithm.
CASO identifies data correlations from a small portion of data
accesses. It groups the correlated data chunks into stripes to
centralize partial stripe writes, and organizes the uncorrelated
data chunks into stripes to make use of spatial locality.
Experimental results show that CASO can reduce up to 25.1%
of parity updates in partial stripe writes and accelerate the
write speed by up to 28.4% for the traces with small write
size, while still preserving the performance of degraded reads.

REFERENCES

[1] Colossus, successor to google file system.
http://static.googleusercontent.com/media/research.google.com/
en/us/university/relations/facultysummit2010/storage architecture
and challenges.pdf.

[2] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling. HDFS
RAID. In Hadoop User Group Meeting, 2010.

[3] J. C. Chan, Q. Ding, P. P. Lee, and H. H. Chan. Parity logging with
reserved space: towards efficient updates and recovery in erasure-coded
clustered storage. In Proc. of USENIX FAST, 2014.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-performance, reliable secondary storage. ACM Computing
Surveys (CSUR), 26(2):145–185, 1994.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar. Row-diagonal parity for double disk failure correction. In
Proc. of USENIX FAST, 2004.

[6] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. Diskseen: Exploiting
disk layout and access history to enhance I/O prefetch. In Proc. of
USENIX ATC, 2007.

[7] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of USENIX OSDI, 2010.

[8] G. A. Gibson and R. Van Meter. Network attached storage architecture.
Communications of the ACM, 43(11):37–45, 2000.

[9] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in windows azure storage. In Proc. of
USENIX ATC, 2012.

[10] C. Huang and L. Xu. STAR: An efficient coding scheme for correct-
ing triple storage node failures. Computers, IEEE Transactions on,
57(7):889–901, 2008.

[11] C. Jin, D. Feng, H. Jiang, and L. Tian. RAID6L: A log-assisted raid6
storage architecture with improved write performance. In Proc. of IEEE
MSST, 2011.

[12] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking
erasure codes for cloud file systems: minimizing I/O for recovery and
degraded reads. In Proc. of USENIX FAST, 2012.

[13] Q. Li, L. Shi, C. J. Xue, K. Wu, J. Cheng, Q. Zhuge, and E. H.-M.
Sha. Access characteristic guided read and write cost regulation for
performance improvement on flash memory. In Proc. of USENIX FAST,
2016.

[14] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner: Mining block
correlations in storage systems. In Proc. of USENIX FAST, 2004.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding
copy-paste and related bugs in operating system code. In USENIX OSDI,
2004.

[16] C. Lueth. RAID-DP: Network appliance implementation of raid double
parity for data protection. Technical report, 2004.

[17] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. ACM Transactions
on Storage (TOS), 4(3):10, 2008.

[18] D. Panchigar. Emc symmetrix dmxraid 6 implementation, 2009.
[19] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays

of inexpensive disks (RAID), volume 17. ACM, 1988.
[20] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large

disk drive population. In Proc. of USENIX FAST, 2007.
[21] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn, et al. A

performance evaluation and examination of open-source erasure coding
libraries for storage. In In Proc. of USENIX FAST, 2009.

[22] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library
in c/c++ facilitating erasure coding for storage applications-version 1.2.
University of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[23] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial & Applied Mathematics, 8(2):300–
304, 1960.

[24] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, and A. e. a. Dimakis.
Xoring elephants: Novel erasure codes for big data. In Proceedings of
the VLDB Endowment, 2013.

[25] B. Schroeder and G. Gibson. Disk failures in the real world: What does
an mttf of 1, 000, 000 hours mean to you? In Proc. of USENIX FAST,
2007.

[26] Z. Shen, P. Lee, J. Shu, and W. Guo. Encoding-aware data placement
for efficient degraded reads in XOR-coded storage systems. In Proc. of
IEEE SRDS, 2016.

[27] Z. Shen and J. Shu. Hv code: An all-around mds code to improve
efficiency and reliability of raid-6 systems. In Proc. of IEEE/IFIP DSN,
2014.

[28] Z. Shen, J. Shu, and Y. Fu. Parity-switched data placement: optimizing
partial stripe writes in XOR-coded storage systems. IEEE Trans. on
Parallel and Distributed Systems, 2015.

[29] Z. Shen, J. Shu, and Y. Fu. Seek-efficient I/O optimization in single
failure recovery for XOR-coded storage systems. In Proc. of IEEE
SRDS, 2015.

[30] G. Soundararajan, M. Mihailescu, and C. Amza. Context-aware prefetch-
ing at the storage server. In USENIX Annual Technical Conference, 2008.

[31] A. Thomasian. Reconstruct versus read-modify writes in raid. Informa-
tion processing letters, 93(4):163–168, 2005.

[32] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In Proc. of IPTPS, 2002.

[33] C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie. Hdp code: A
horizontal-diagonal parity code to optimize I/O load balancing in raid-6.
In Proc. of IEEE/IFIP DSN, 2011.

[34] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie. H-code: A hybrid mds
array code to optimize partial stripe writes in raid-6. In Proc. of IEEE
IPDPS, 2011.

[35] L. Xu and J. Bruck. X-code: Mds array codes with optimal encoding.
IEEE Transactions on Information Theory, 45(1):272–276, 1999.

[36] Z. Zhang and W. Jiang. Native erasure coding support inside hdfs. In
Strata + Hadoop World, 2015.

